Impact of the Fluorescence Yield selection on the reconstructed shower parameters

J. R. Vázquez, D. García Pinto and F. Arqueros Universidad Complutense de Madrid

Outline

- Introduction
- Impact of the Fluorescence Yield dataset on reconstructed shower parameters
 - Comparison of Auger, HiRes and TA databases
 - Results on E and X_{max}
- Impact of uncertainties of quenching parameters

INTRODUCTION

Fluorescence yield

 Y_{λ} is defined as the number of λ photons emmited per unit of deposited energy (ph/MeV)

$$Y_{\lambda} = \frac{Y_{\lambda}^{0}}{1 + P/P_{\lambda}'}$$

P' values determine the dependence of the fluorescence yield with atmospheric properties

$$\frac{1}{P'} = \frac{f_{N_2}}{P'_{N_2}} + \frac{f_{O_2}}{P'_{O_2}} + \frac{f_w}{P'_w}$$

P' contains contributions from all possible quenchers

$$P'_{i} = \frac{\sqrt{\pi \mu_{Ni} kT}}{\sqrt{8\tau_{0}\sigma_{Ni}}} \quad \sigma_{Ni} \propto T^{\alpha} \qquad P'_{i} \propto T^{\frac{1}{2}-\alpha}$$

P' depends on temperature

FY Dataset

The reconstruction of the shower parameters requires:

- **1.-** Absolute values in dry air for all wavelengths, Y_{λ} (P_0 , T_0) or alternatively $Y_{ref}(P_0, T_0)$ and $I_{\lambda}(P_0, T_0)$.
- **2.-** P' $_{\lambda}(T_0)$ for dry air
- 3.- T dependence of collisional cross section, α_{λ}
- 4.- P' $_{\rm w}$ for all wavelengths (and its $\alpha_{\rm w}$ values if possible).
- Y_{λ} at any given P, T conditions can be obtained from:

$$Y_{\lambda}(P,T) = Y_{\lambda}(P_0,T_0) \frac{1 + P_0 / P_{\lambda}'(T_0)}{1 + P / P_{\lambda}'(T)}$$

IMPACT OF DATASET SELECTION ON RECONSTRUCTED SHOWER PARAMETERS

I.- Auger Dataset

- Absolute value of Y_{337} at 1013 hPa and 293 K by Nagano.
- Relative intensities and P' for 34 bands measured by AIRFLY.
- α parameter measured by AIRFLY for 14 bands
- P' w measured by AIRFLY for 14 bands

II.- HiRes Dataset

- -Absolute value of Y_{337} , Y_{357} and Y_{391} at 1013 hPa and 293 K by Kakimoto.
- Relative intensities for the remaining bands distributed according to Bunner spectrum.

Kakimoto

- P' values from Kakimoto.
- No T, h effects

III.- Telescope Array Dataset

- Absolute value of Y (300 – 420 nm) at 1013 hPa and 293 K

- Y (300 400 nm) from Kakimoto
- Y (400 420 nm) from FLASH
- Relative intensities measured for 20 bands by FLASH.
- P' values from Kakimoto.
- No T,h effects

Comparison of FY: HiRes vs Auger

Difference between HiRes and Auger significantly reduced when optical efficiency is included

Y^{Auger} does not take into account T,h effects

Comparison of FY: HiRes vs Auger

Y^{Auger} = fluorescence yield from the Auger dataset (no T, h) Y^{HiRes} = fluorescence yield from the HiRes dataset

Comparison of FY: TA vs Auger

FY difference between TA and Auger still remains when optical efficiency is included

FY ratio vs Depth Telescope Array vs Auger

- Y^{Auger} = fluorescence yield from the Auger dataset (no T,h)
- Y^{T-A} = fluorescence yield from the Telescope Array dataset

Comparison of FY: TA vs HiRes

Non-negligible discrepancies when optical efficiency is included

FY ratio vs Depth Telescope Array vs HiRes

Data Sample

Hybrid data Pierre Auger Observatory

Atmospheric profiles: new Malargüe Monthly Models (Argentina)

Software Offline with different FY Dataset implemented

Cuts:

- ICRC 2007 Quality Cuts
- Xmax in FOV
- $\sigma(X_{\text{max}}) < 40 \text{ gcm}^{-2}$
- $\frac{\chi^2_{\rm GH}}{\rm ndof} < 2.5$

•
$$\frac{\sigma_E}{E} < 0.2$$

- Distance to core r < 1500 m
- 5 pixels (at least) in axis fit
- Zenith angle < 60°
- logE > 18

Shower parameters comparison:

Auger vs HiRes

Shower parameters comparison:

HiRes vs TA

IMPACT OF QUENCHING UNCERTAINTIES (α and P'_W)

Quenching parameters Uncertainties

α , P'_w values measured by AIRFLY¹:

λ (nm)	α_{λ}	$p'_{\rm H_2O}~({\rm hPa})$
313.6	-0.09 ± 0.10	1.21 ± 0.13
337.1	-0.36 ± 0.08	1.28 ± 0.08
353.7	-0.21 ± 0.09	1.27 ± 0.12
391.4	-0.80 ± 0.09	0.33 ± 0.03

On average the uncertainties reported by AIRFLY

$$\sigma_T = \sigma(\alpha) \approx 0.25 \cdot \alpha \qquad \sigma_{P_w^{\perp}} \approx 0.10 \cdot P_w^{\perp}$$

Large uncertainties on parameters \rightarrow ¿Reconstruction?

Changing Y_{auger} shifting:
$$\alpha$$
 in (± σ_T) and P'_w in (± σ_w)

¹ NIM A **597** (2008) 50, updated by M. Bohacova (6th Fluorescence Air Workshop – L' Aquila)

Quenching Parameters Uncertainties

Uncertainties of P'_{w} and α on shower reconstruction

Uncertainties of P'_{w} and α on shower reconstruction

Uncertainties of P'_{w} and α on shower reconstruction

Results compatible with those obtained using a symple analytical method¹

¹(Vázquez et al. ICRC 2011)

CONCLUSIONS

Conclusions

- The datasets currently employed by the different ultra-high energy cosmic rays experiments affect the reconstructed shower parameters, especially the energy

Auger vs HiRes:	Auger vs TA:	HiRes vs TA:
<δE> = 1.7%	<δE> = 8.8%	<δE> = 6.8%

- An effort to employ the same datasets must be done in order to get rid of systematics uncertainties.

- Current uncertainties on quenching parameters translate to less than 1% to the reconstructed energy.