

Theoretical evaluation of <u>fluorescence</u> emission and <u>energy</u> <u>deposition</u> in air generated by electrons

Fernando Arqueros Universidad Complutense de Madrid

Outline

- Introduction
- Relative intensities
- The role of secondary electrons
- MC simulation
- Results
 - Energy deposition
 - Fluorescence emission
 - Remarks on P' measurements
 - Fluorescence yield vs. E and PR
 - Absolute Fluorescence yield
- Conclusions

Introduction

1N(0-1)

1N(0-0)

- Air-fluorescence induced by • electrons.
- Spectrum: 2P and 1N systems •

100

90

80

70

60 50

40

10 Pa (Rosado et al.)

2P(0-0)

1N system

2P system

- Fluorescence yield Y (# photons/unit deposit energy): parameter to convert the telescope signal in shower energy.
- Fluorescence is quenched by collisional de-excitation and thus, the FY depends on atmospheric parameters (P, T, h).

$$Y_{\lambda} = \frac{Y_{\lambda}^{0}}{1 + P/P_{\lambda}'}; \qquad P_{\lambda}'(T,h)$$

- The fluorescence yield is NOT a "name" (e.g. Nagano, Kakimoto, ..) but a <u>set of parameters</u>:
 - 1) Absolute value (e.g. Y_{337} , $Y_{\Delta\lambda}$) \longrightarrow Main source of uncertainty
 - 2) Wavelength spectrum
 - 3) Pressure dependence in dry air (P' $_{\lambda}$)
 - 4) Humidity dependence (P'_w)
 - 5) Temperature dependence (α)

Non-negligible

contribution

Relative intensities

- <u>Common upper level v</u>: proportional to Einstein coefficients

 $I_{vv'} \propto A_{vv'}$

- <u>Different upper levels</u>: Franck-Condon coefficients $q_{X \rightarrow v}$

$$\frac{I_{vv'}}{I_{00}} = \frac{q_{X \to v} A_{vv'}}{q_{X \to 0} A_{00}} \frac{1 + P / P'_{0}}{1 + P / P'_{v}} \overset{P >>P'}{\approx} \frac{q_{X \to v} A_{vv'}}{q_{X \to 0} A_{00}} \frac{P'_{v}}{P'_{0}}$$

independent of P

Applicability of F-C principle is not expected *a priori* because fluorescence is induced by low-energy secondaries, nevertheless ...

Relative intensities

$$\frac{I_{vv'}}{I_{00}} = \frac{q_{X \to v} A_{vv'}}{q_{X \to 0} A_{00}} \frac{1 + P / P'_{0}}{1 + P / P'_{v}} \overset{P >>P'}{\approx} \frac{q_{X \to v} A_{vv'}}{q_{X \to 0} A_{00}} \frac{P'_{v}}{P'_{0}}$$

independent of P

Applicability of F-C principle is not expected *a priori*, nevertheless ... **it works** for 2P(0-v') and 2P(1-v') bands (90% contribution) and also for weaker bands when taking into account experimental uncertainties.

- Accurate I_{λ} within 290 430 nm from AIRFLY
- Beyond this interval (small contributions), the above formula can be used safely.

Seconday electrons

Excitation cross section of the 2P system peaked at few eVs \rightarrow High energy electrons cannot produce 2P fluorescence (dominant at high pressure)

2P fluorescence is generated by low energy electrons from ionizations.

- Suggested by Bunner (PhD thesis 1967).
- First detailed calculation up to GeVs:
 F. Blanco and F. Arqueros Phys. Lett. A 345 (2005) 355

Phys. Lett. A 345 (2005) 355

Phys. Lett. A 345 (2005) 355

Fluorescence intensity vs pressure

Fluorescence intensity vs energy

The model accounts for experimental results previously not well understood

MC simulation*

* F. Arqueros et al. New J. Phys. 11 (2009) 065011 updated details in J. Rosado Ph.D. thesis (in press)

- Elastic scattering - Individual e⁻ - molecule collision
- Excitation
 - $E = E \langle E_{exc} \rangle$

-
$$n_{337} = \sigma_{337} / \sigma_{exc}$$

Ionization

- e^{-} ejected with E_s
- $E = E \langle E_{exc} \rangle E_s$
- $n_{391} = \sigma_{391} / \sigma_{ion}$
- K-shell ionization (410 eV).
- Bremsstrahlung
 - 3% of E converted in γ -ray.
- Energy cutoff
 - E_{cut} = 11 eV

MC simulation*

* F. Arqueros et al. New J. Phys. 11 (2009) 065011 updated details in J. Rosado Ph.D. thesis (in press)

- Elastic scattering

 Individual e⁻ molecule collision
- Excitation
 - $E = E \langle E_{exc} \rangle$

-
$$n_{337} = \sigma_{337} / \sigma_{exc}$$

- Ionization
 - e^- ejected with E_s
 - $E = E \langle E_{exc} \rangle E_s$
 - $n_{391} = \sigma_{391} / \sigma_{ion}$
 - K-shell ionization (410 eV).
- Bremsstrahlung
 - 3% of E converted in γ -ray.
- Energy cutoff
 - E_{cut} = 11 eV

Novel parameterization of the energy spectrum of secondaries

$$\frac{d\sigma_{ion}}{dE_s} = \begin{cases} \frac{4\pi Z Ry}{E_p^{'}} \frac{1 + C(E_p) \exp\left\{-E_s / E_k\right\}}{E_s^2 + w^2} & \text{for } E_s \le (E_p - I) \\ 0 & \text{for } E_s > (E_p - I) \end{cases}$$

$$E'_p = \frac{1}{2} m_e \beta^2 c^2$$

Fully consistent with:

- EEDL Møller at high E_s
- Opal (exp.) at low E_s
- $\sigma_{ion}(E_p)$
- Bethe Bloch

MC simulation

Parameterization of the energy spectrum of secondaries consistent with Bethe-Bloch

MC simulation

Geometry

Generic simulation:

- Medium: sphere R of air (P, T)
- Primary electron forced to interact at the center

Detailed simulation:

- Geometry
- e⁻ beam features
- Field of view

Results: Energy deposition

<u>Generic simulations</u>: E_{dep} weakly dependent of PR.

Detailed simulations:

E_{dep} weakly dependent of fine geometrical details.

E_{dep} from generic simulations equals those of detailed simulation for R ≈ size of the collision chamber

Results

Energy deposition – cross check

GEANT4 has been implemented for comparisons with our MC simulation using simple geometries

Results

versus E

2%

Energy deposition – cross check

Results

Energy deposition – cross check

Energy deposition – cross check

Results: Fluorescence

8th Air Fluorescence Workshop, Karlsruhe

Fluorescence emission cross-check

Neglecting the effect of secondary electrons in $\epsilon_{vv'}$ give rise to systematic errors in the measurement of P'

* F. Arqueros et al. New J. Phys. 11 (2009) 065011

Nagano's data of $\epsilon_{vv'}$ (P) have been re-analyzed including the $\alpha_{vv'}$ (P) dependence from our MC

*updated results in J. Rosado Ph.D. thesis (in press)

Fluorescence intensity vs. pressure P' measurement*

AIR	P' ₃₃₇ (hPa)	P' ₃₉₁ (hPa)
Nagano	19.2	5.02
AIRFLY	15.9	2.94
Nagano corrected	14.6	3.3

Discrepancies between Nagano and AIRFLY are reduced significantly when corrected for this effect

*updated results in J. Rosado Ph.D. thesis (in press)

Fluorescence yield versus Energy

Experimental tests show Y independent of E within < 5 %

Fluorescence yield versus PR

Y strongly dependent on PR in the vicinity of the electron track (PR < 100 hPa \times 100 μ m)

Theoretical value of the air-fluorescence yield

$$Y_{337} = \frac{1}{1 + P / P_{337}'} Y_{337}^{0} = \frac{6.3 \text{ ph/MeV}}{1013 \text{ hPa} 293\text{K}}$$

 P'_{337} from AIRFLY* Y^0_{337} from our MC simulation

Uncertainties in our calculations:

Energy deposit ≈ 2% Fluorescence emission ≈ 20 % Fluorescence yield ≈ 20 %

Average value of experimental results**

* Astropart Phys. 28 (2007) 41

** talk of J. Rosado

$$Y_{337} = 5.57 \text{ ph/MeV}$$

Conclusions

- Fluorescence emission and energy deposition in air is reasonably well understood.
- Our simulation in agreement with GEANT4 (2%). Some disagreement (< 5%) with EGS4-FLASH.
- FY independent of E supported by theory at the level of < 1.5% (1MeV – 100 GeV).
- Theoretical absolute FY in good agreement with experiments.
- Systematic errors when the effect of secondaries is neglected.
- Detailed simulations provide the necessary correction factors.
 When applied, agreement between experiments improves:
 - Energy deposition/absolute FY (see talk of J. Rosado)
 - P' values in ϵ (P) measurements, e.g., Nagano vs AIRFLY

Thanks