Update of the average value of available measurements of the absolute air-fluorescence yield

<u>J. Rosado</u>, P. Gallego, D. García-Pinto, F. Blanco and F. Arqueros Universidad Complutense de Madrid

Outline

- 1. Introduction
- 2. Updates
- 3. Results

1. Introduction

1. Introduction

 FY (ph/MeV) results normalized to 337 nm, 1013 hPa and 293 K (dry air) using fluorescence spectrum of AIRFLY*

$$Y_{337}(P_0, T_0) = Y_{\Delta\lambda}(P, T) \frac{I_{337}}{I_{\Delta\lambda}} \frac{1 + P/P'(T)}{1 + P_0/P'(T_0)}$$
$$\approx Y_{\Delta\lambda}(P, T) \frac{I_{337}}{I_{\Delta\lambda}} \frac{P}{P_0} \sqrt{\frac{T_0}{T}}$$

independent of P'

1. Introduction

- Dedicated simulations of each experiment using our MC algorithm^{*} to calculate the deposited energy and some geometrical factors
 - → Large corrections (>6%) for "type A" experiments using the Bethe-Bloch energy loss, i.e., ignoring secondaries (e.g., Nagano)
 - → General agreement (~2%) with simulations performed by "type B" experiments using GEANT4 or EGS4

*Talk of F. Arqueros

1. Introduction

Experiment of Nagano *et al.** (used in Auger)

- Simulation including geometrical details
- Corrections:
 - 1. Total track length: -1%
 - 2. Geometrical acceptance: +1%
 - 3. Deposited energy: +6%
- 5.05 ph/MeV \rightarrow 5.35 ph/MeV

*M. Nagano *et al.*, *Astropart. Phys.* 20 (2003) 293;
M. Nagano *et al.*, *Astropart. Phys.* 22 (2004) 235
J. Rosado *et al.*, 8th AFW, Karlsruhe, Germany, September 2011

2. Updates

2. Updates

- Since our Astropart. Phys. 34 (2010) 134
 - 1. Improved MC algorithm
 - 2. Cross-check with GEANT4
 - 3. Statistical analysis and average
 - 4. New result of AIRFLY
- Our final analysis will be published soon (preliminary version already available at arXiv:1103.2022)

- 2. Updates: Improved MC algorithm
- **Density correction** applied to all cross sections (previously not applied to $\sigma_{\rm K}$)
- **Bethe-Bloch energy loss** dE_{dep}/dX (MeV g⁻¹ cm²) Simulated E_{dep} • Simulation better 4 Size (mm) (~1 atm) infinite accounts for energy 3 losses of electrons 2 at very high 0.01 energy (>10 GeV) 0 **10**¹⁰ 10^{4} 10⁵ 106 107 108 10⁹ **10**¹¹ E(eV)

2. Updates: Cross-check with GEANT4

• Our GEANT4 results fully compatible with those of AIRFLY* and MACFLY**

*Private communication **P. Colin *et al.*, *Astropart. Phys.* 27 (2007) 317

- 2. Updates: Statistical analysis
- Compatibility study (χ^2) : outliers, weights...
- Effect of corrections
- Effect of very weak energy dependence of FY predicted by our MC algorithm
- New result of AIRFLY*: $Y_{337} = 5.61 \text{ ph/MeV} (4\%) \text{ at } 1013 \text{ hPa}, 293 \text{ K}$
- Average value of the FY

*Talk of M. Bohacova

Normalized FYs without corrections vs energy

J. Rosado et al., 8th AFW, Karlsruhe, Germany, September 2011

Normalized FYs with corrections vs energy

J. Rosado et al., 8th AFW, Karlsruhe, Germany, September 2011

- Statistical analysis
 - → Different measurements of a same experiment are averaged assuming same systematic error
 - \rightarrow Weighted mean, variance and χ^2 statistic

$$\langle Y \rangle = \frac{\sum_{i} w_{i} Y_{i}}{\sum_{i} w_{i}}, \quad w_{i} = \frac{1}{\sigma_{i}^{2}}$$

$$\sigma_{\langle Y \rangle}^{2} = \frac{\chi^{2}/\mathrm{ndf}}{\sum_{i} 1/\sigma_{i}^{2}}, \quad \chi^{2}/\mathrm{ndf} = \frac{1}{n-1} \sum_{i} \frac{\left(Y_{i} - \langle Y \rangle\right)^{2}}{\sigma_{i}^{2}}$$

Uncorrected sample

J. Rosado et al., 8th AFW, Karlsruhe, Germany, September 2011

Corrected sample

J. Rosado et al., 8th AFW, Karlsruhe, Germany, September 2011

No corrections to "type B" experiments

J. Rosado et al., 8th AFW, Karlsruhe, Germany, September 2011

Test	<y>(ph/MeV)</y>	σ (%)	χ^2/ndf
Corrections	5.48	3.6	1.07
No corr. to type B exp.	5.49	3.5	0.99
No weights	5.30	3.8	-
Weak E dependence	5.43	3.5	1.00
Excluding MACFLY	5.61	2.4	0.46
Excluding Lefeuvre	5.23	4.8	1.01

$\langle Y_{337} \rangle = 5.45 \text{ ph/MeV}$ with a conservative uncertainty of 5%

- 3. Results: Statistical analysis prior to AIRFLY
- **Compatibility** (χ^2) of results **improves** when corrections to "type A" experiments are applied
- From measurements prior to AIRFLY, we obtain $\langle Y_{337} \rangle = 5.45 \text{ ph/MeV} (5\%)$
- Good agreement (3%) with the AIRFLY result of $Y_{337} = 5.61 \text{ ph/MeV} (4\%)$
- Difference is even smaller taking into account the systematic 2% difference between GEANT4 and our MC

Uncorrected sample

J. Rosado et al., 8th AFW, Karlsruhe, Germany, September 2011

Consistent with our MC

Consistent with GEANT4

J. Rosado et al., 8th AFW, Karlsruhe, Germany, September 2011

- 3. Results: Conclusions
- **Compatibility** of results even **improves** when the AIRFLY result is included
- We obtain $\langle Y_{337} \rangle = 5.49 \text{ ph/MeV} (3\%)$ consistent with our MC algorithm
- We obtain $\langle Y_{337} \rangle = 5.60 \text{ ph/MeV} (3\%)$ consistent with GEANT4
- Systematic difference of 2%
- An intermediate value: $\langle Y_{337} \rangle = 5.55 \text{ ph/MeV} (4\%) ?$

Thanks!