

<u>Two Experimental Techniques Yielding</u> <u>Different Descriptions of Quenching</u>

a very personal view by

Andreas Ulrich

with real work done by:

Thomas Dandl, Thomas Heindl, and Andrei Morozov*

and a lot of help by

Jochen Wieser**

Physik Department E12 Technische Universität München *University of Coimbra **Optimare Analytik GmbH & Co KG Air Fluorescence Workshop, Karlsruhe 2011

andreas.ulrich@ph.tum.de

"Communities"

Molecular Physics

Potential curves, energy levels, QM calculations, disentangle vibr. rot. spectra etc.

Gas Kinetics

Population and depopulation of levels, energy transfer, light emission, laser schemes etc.

Particle and Astro-Particle Physics

Energy loss in matter, particle tracks, particle identification, "quenching factors" etc.

Air Fluorescence: A bit of all of these subjects!

This picture leads to the following analysis of the fluorescence:

Measurement of p' using dc excitation

 $I \propto A_{ik} n$ $\frac{dn}{dt} = R_p - A_{ik} n - \sum k_q N_q n$

const. pumping rate

$$R_{p} = const \implies \frac{dn}{dt} = 0$$
$$I \propto \frac{R_{p}}{A_{ik} + \sum k_{q} N_{q}}$$

$$I_{0} = \frac{R_{p}}{A_{ik} + 0} \qquad I = \frac{R_{p}}{A_{ik} + \sum k_{q} N_{q}} \qquad \frac{I}{I_{0}} = \frac{1}{1 + \frac{\sum k_{q} N_{q}}{A_{ik}}}$$

Just one "quencher" of density N_a

$$\frac{I}{I_0} = \frac{1}{1 + \frac{k_q N_q}{A_{ik}}} = \frac{1}{1 + \frac{p}{p'}} ; \quad p' = \frac{A_{ik}}{k_q} \frac{p}{N_q}$$

 $p \propto N_p$

$$p' = const \frac{A_{ik}}{k_q}$$

Measurement of quenching rate constants using pulsed excitation:

After the pulse:

A complex gas kinetics is normally the case See rare gases:

172nm excimer light following a 2 ns ion beam excitation pulse

G. Ribitzki et al, Phys. Rev. E 50,3973 (1994)

Fig. 8. The inverse of observed lifetimes of the Ne II emission at 337.82 nm is plotted versus the target pressure p. The straight line is a least-squares fit to the data. A second time constant is observed at low pressures.

An extreme case: Recombination laser – Diploma thesis C. Skrobol

This is, by far, too complicated for the air fluorescence data analysis?

What can be done?

We have to identify what is

- "purely academic and irrelevant" or
- <u>"relevant for our goal"</u>

and focus on air instead of nitrogen?

So one has to identify relevant processes. My personal feeling at the moment: (based on some of the data described below)

I think it is important to be aware how data were obtained!

Excitation	Nitrogen	Air
Individual particles		Where to put an e
Particle beam		Wer ???? nded air

- b) Measurements with air should be more relevant than with "pure" nitrogen
- c) Recombination may be relevant
- d) Cascades may be important
- e) I would guess that Ar, N and NO are not important
- f) The p' concept is conceptually wrong but may be "ok" as an approach in air
- g) Deviations between p' and k_q measurements reveal other mechanisms

How can I dare to make such strong statements ?

Some observations:

MLL

ТШП

Technische Universität München

Extension into the VUV shows N I lines ! (nitrogen spectrum)

Atomic nitrogen shows up in the VUV spectral range

Emission of the 337nm C-B transition from pure (?) nitrogen

Thomas Heindl L'Aquila

Technische Universität München

N₂ Absolute Fluorescence Efficiency

Thomas Heindl L'Aquila

Technische Universität München

Problem with Efficiency Data – Fitting P'

Correlation with lifetime and quenching data:

Another test: 337nm emission intensity – nitrogen vs. air

Quenching rate constants of nitrogen and oxygen are involved !

MII

How does the intensity ratio depend on p' O_2 and p' N_2 ?

MLL

For the comparison of nitrogen and air the p' concept fails \rightarrow there must be other important processes involved !!

I suspect due to the factor of 2:

Recombination!

ТЛП Technische Universität München **e**⁻ N_2 Recombination Ar* X cascades Energy transfer Quenching + chemistry + В impurities Radiation trapping ? A normally: 50% excitation 50% ionization 0, NO N et al. N_2 A. Ulrich et al., Air Fluorescence, Karlsruhe 2011

ТШТ

Technische Universität München

So: going from air to $Ar-N_2$ means $16x13 \sim 200 x$ intensity increase !!!! With the same power deposition

Comment: how to study beam vs. single particle excitation

Conclusion:

- p' is conceptionally wrong (but may be ok in air (O_2) ?)
- Transfer from nitrogen to air is probably too complicated for the air fluorescence data analysis.
- Oxygen quenching should be measured again.
- What type of excitation is an "extended air shower" ???
- How can p, T, humidity be included if not from "first principles" from nitrogen measurements ???

Sorry for the long and somewhat smart-alecky presentation!

Happy End !!! Reading a draft of an AIRFLY paper this weekend Now, if I think I understand the problems and discrepancies I find a photon yield for air at 1000 hPa of

5.594 ± 0.37 Phot. /MeV (from Y Heindl and r Dandl)

Compared with the AIRFLY averaged value at 1013 hPa of

5.61 ± 0.06 Phot. /MeV

Thank you for your attention !

