



KIT Center Elementary Particle and Astroparticle Physics (KCETA)

### 8<sup>th</sup> Air Fluorescence Workshop

12. – 14. September 2011

8th Air Fluorescence Workshop, Karlsruhe, 12 – 14 September 2011





KIT – Universität des Landes Baden-Württemberg und nationales Großforschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

### Ingredients for a common fluorescence description

 The fluorescence yield is NOT a "name" (e.g. Nagano, Kakimoto, ..) but a <u>set of parameters</u>:

Absolute value (e.g. Y<sub>337</sub>, Y<sub>Δλ</sub>) → Main source of uncertainty
Wavelength spectrum
Pressure dependence in dry air (P'<sub>λ</sub>)
Humidity dependence (P'<sub>w</sub>)
Temperature dependence (α)

F. Arqueros (UCM)

8th Air Fluorescence Workshop, Karlsruhe

3

### **Possible strategies**

**"fluorescence community"**point of view

- Understand almost all underlying processes
- Find best physical values for
  - 1. Absolute calibrated yield
  - 2. Pressure dependence
  - 3. Temperature-dependent collisional cross sections
  - 4. Humidity quenching
  - 5. Spectrally resolved intensities
- Find an average value for all items AND / OR

provide all ingredients by individual experiments

### "cosmic ray community"point of view

- A convincing, commonly accepted fluorescence description is needed for comparison of CR observations and fluorescence experiments
- Have reasonable estimate as intermediate solution for
  - Absolute calibrated yield
  - Pressure dependence
  - Temperature-dependent collisional cross sections
  - Humidity quenching
  - Spectrally resolved intensities

### **Possible strategies**

"fluorescence community"point of view

- Understand almost all underlying processes
- Find best physical values for
  - 1. Absolute calibrated yield
  - 2. Pressure dependence
  - 3. Temperature-dependent collisional cross sections
  - 4. Humidity quenching
  - 5. Spectrally resolved intensities
- Find an average value for all items AND / OR

provide all ingredients by individual experiments



### "cosmic ray community"point of view

- A convincing, commonly accepted fluorescence description is needed for comparison of CR observations and fluorescence experiments
- Have reasonable estimate as intermediate solution for
  - Absolute calibrated yield
  - Pressure dependence
  - Temperature-dependent collisional cross sections
  - Humidity quenching
  - Spectrally resolved intensities



#### Can be defined today!

Proposal of a reference fluorescence yield for comparing cosmic ray experiments



14. September 2011







### 2. Pressure Dependence – suggestion A

M. Nagano et al. | Astroparticle Physics 22 (2004) 235–248

### Table 4

| Average $p'$               | values in di          | fferent radiative systems          | in nitrogen gas and in air |
|----------------------------|-----------------------|------------------------------------|----------------------------|
| Transition state           | Gas                   | p' (hPa at 20 °C)                  |                            |
| 2P(0, v")                  | N <sub>2</sub><br>Air | $144.7 \pm 3.1$<br>18.1 ± 0.6      | -                          |
| 2 <b>P</b> (1, <i>v</i> ") | N <sub>2</sub><br>Air | $74.5 \pm 2.8$<br>$25.6 \pm 1.4$   |                            |
| 2P(2, v'')                 | N <sub>2</sub><br>Air | $36.2 \pm 8.0$<br>$7.9 \pm 1.8$    |                            |
| 1N(0, <i>v</i> ")          | N <sub>2</sub><br>Air | $5.48 \pm 0.46$<br>$4.83 \pm 0.24$ | _                          |

### 2. Pressure Dependence – suggestion A

M. Nagano et al. | Astroparticle Physics 22 (2004) 235–248



## 2. Pressure Dependence – suggestion B

Table 2 Collisional quenching reference pressures in dry air at 293 K M. Ave et al. / Nuclear Instruments and Methods in Physics Research A 597 (2008) 41–45 Band  $p'_{\rm air}(\lambda)$  (hPa)  $\lambda$  (nm) 2P(0,0)337.1  $15.89\pm0.73$ 2P(0,1)357.7  $15.39 \pm 0.25 \pm 0.72$ 2P(0,2)380.5  $16.51 \pm 0.48 \pm 0.72$ 2P(0,3)405.0  $17.8 \pm 1.5 \pm 0.8$ 2P(1,0) 315.9  $11.88 \pm 0.31 \pm 0.62$ 2P(1,1)333.9  $15.5 \pm 1.5 \pm 0.7$ 2P(1,2)353.7  $12.70 \pm 0.34 \pm 0.64$ 2P(1,3)375.6  $12.82 \pm 0.45 \pm 0.62$ 2P(1,4)399.8  $13.6 \pm 1.1 \pm 0.6$ 2P(1,5)427.0  $6.38 \pm 0.68 \pm 0.43$ 2P(2,0)297.7  $17.3 \pm 4.0 \pm 0.8$ 2P(2,1)313.6  $12.27 \pm 0.78 \pm 0.64$ 2P(2,2)330.9  $16.9 \pm 3.5 \pm 0.76$ 2P(2,3)350.0  $15.2 \pm 3.7 \pm 0.7$ 2P(2,4)371.1  $14.8\pm1.9\pm0.7$ 2P(2,5) $13.7 \pm 3.3 \pm 0.7$ 394.3 2P(2,6) $13.8\pm4.0\pm0.7$ 420.0 2P(3,1)296.2  $18.5 \pm 5.0 \pm 0.8$ 2P(3,2)311.7  $18.7\pm3.8\pm0.8$ 2P(3,3)328.5  $20.7 \pm 2.6 \pm 0.8$ 1N(0,0)391.4  $2.94 \pm 0.58 \pm 0.31$ 1N(0,1)427.8  $2.89 \pm 0.64 \pm 0.30$ 1N(1,1)388.5  $3.9\pm1.7\pm0.3$ GH(0,4)346.3  $21\pm10\pm1$ GH(0,6)387.7  $7.6 \pm 1.6 \pm 0.5$ 

Quoted uncertainties are statistical and the propagated uncertainty of  $p'_{air}(337)$ , respectively.

## 2. Pressure Depende - sugges



| ssure                 | -45          | Band           | $\lambda$ (nm) | $p'_{\rm air}(\lambda)$ (hPa) |
|-----------------------|--------------|----------------|----------------|-------------------------------|
| andonco               | ) 41         | 2P(0,0)        | 337.1          | $15.89\pm0.73$                |
| JEHUEHLE              | 08           | 2P(0,1)        | 357.7          | $15.39 \pm 0.25 \pm 0.72$     |
|                       | 20           | 2P(0,2)        | 380.5          | $16.51 \pm 0.48 \pm 0.72$     |
| uggestion B           | 597 (        | 2P(0,3)        | 405.0          | $17.8\pm1.5\pm0.8$            |
|                       | ΊΑ           | 2P(1,0)        | 315.9          | $11.88 \pm 0.31 \pm 0.62$     |
|                       | rcl          | 2P(1,1)        | 333.9          | $15.5\pm1.5\pm0.7$            |
|                       | iea          | 2P(1,2)        | 353.7          | $12.70 \pm 0.34 \pm 0.64$     |
|                       | Res          | 2P(1,3)        | 2              | $12.82 \pm 0.45 \pm 0.62$     |
|                       | S            | 2P(1,4)        |                | $13.6 \pm 1.1 \pm 0.6$        |
|                       | iysic        | 2P(1,5)        |                | $6.38 \pm 0.68 \pm 0.43$      |
|                       | n Pl         | 28             | Loms           | $17.3\pm4.0\pm0.8$            |
|                       |              |                | Sterr          | $12.27 \pm 0.78 \pm 0.64$     |
|                       |              | andthis and sy | .0.9           | $16.9 \pm 3.5 \pm 0.76$       |
|                       |              | velensin bar.  | 350.0          | $15.2\pm3.7\pm0.7$            |
| -f                    | NS           | Nithin         | 371.1          | $14.8\pm1.9\pm0.7$            |
| cet O                 |              | CN W.          | 394.3          | $13.7\pm3.3\pm0.7$            |
| ntages niete sersi    | ste          |                | 420.0          | $13.8\pm4.0\pm0.7$            |
| Advante competer Comp | me           | 2P(3,1)        | 296.2          | $18.5\pm5.0\pm0.8$            |
| Most cheo.            | nı           | 2P(3,2)        | 311.7          | $18.7\pm3.8\pm0.8$            |
| Cross                 | Inst         | 2P(3,3)        | 328.5          | $20.7\pm2.6\pm0.8$            |
| • •                   | lear         | 1N(0,0)        | 391.4          | $2.94 \pm 0.58 \pm 0.31$      |
|                       | Nuc          | 1N(0,1)        | 427.8          | $2.89 \pm 0.64 \pm 0.30$      |
|                       | al. /        | 1N(1,1)        | 388.5          | $3.9\pm1.7\pm0.3$             |
|                       | et           |                |                |                               |
|                       | Ve           | GH(0,4)        | 346.3          | $21\pm10\pm1$                 |
|                       | I. A         | GH(0,6)        | 387.7          | $7.6\pm1.6\pm0.5$             |
|                       | $\mathbb{N}$ |                |                |                               |

Quoted uncertainties are statistical and the propagated uncertainty of  $p'_{\rm air}(337)$ , respectively.

## 3. Temperature-dependent collsional cross sections – suggestion A

| v' | (v',v'') | λ (nm) | α <sub>λ</sub> [1] |
|----|----------|--------|--------------------|
| 0  | (0,0)    | 337.1  | -0.35±0.01         |
| 0  | (0,1)    | 357.7  | -0.35±0.02         |
| 0  | (0,2)    | 380.5  | -0.34±0.03         |
| 0  | (0,3)    | 405.0  | -0.37±0.08         |
| 1  | (1,0)    | 315.9  | -0.19±0.03         |
| 1  | (1,2)    | 353.7  | -0.22±0.04         |
| 1  | (1,3)    | 375.6  | -0.17±0.05         |
| 1  | (1,4)    | 399.8  | -0.20±0.08         |
| 2  | (2,1)    | 313.6  | -0.13±0.05         |
| 2  | (2,3)    | 350.0  | -0.38±0.16         |
| 2  | (2,4)    | 371.1  | -0.24±0.13         |
| 2  | (2,5)    | 394.3  | -0.20±0.14         |

ii) For two  $N_2^+$  1N bands

| v' | v" | λ (nm) | α <sub>λ</sub> [1] |
|----|----|--------|--------------------|
| 0  | 0  | 391.4  | -0.79±0.03         |
| 0  | 1  | 427.8  | -0.54±0.08         |

[1] M. Bohacova, 6<sup>th</sup> FW, L'Aquila, Italy, Feb. 2009

#### ± 0.08 systematic error due to 337 ratio

# 3. Temperature-dependent collsional cross sections – suggestion A



#### ± 0.08 systematic error due to 337 ratio

## **3. Temperature-dependent collsional cross** sections – suggestion B



## **3. Temperature-dependent collsional cross** sections – suggestion B



## 3. Temperature-dependent collsional cross sections – summary

| Molecular<br>state                    | Quencher                       | $lpha_\lambda$ (LYM) |                   | $lpha_{\lambda}$ (TRM)                     |     |
|---------------------------------------|--------------------------------|----------------------|-------------------|--------------------------------------------|-----|
| N <sub>2</sub> (C, v'=0)              | N <sub>2</sub>                 | -0.87±0.07           | Coimbra           | $-0.83 \pm 0.04$                           | TUM |
| N <sub>2</sub> (C, v'=1)              | N <sub>2</sub>                 |                      |                   | -0.36 ± 0.04                               | TUM |
| N <sub>2</sub> <sup>+</sup> (B, v'=0) | N <sub>2</sub>                 | -0.82                | Belikov<br>et al. |                                            |     |
| N <sub>2</sub> (C, v'=0)              | 0 <sub>2</sub>                 |                      |                   | $-0.42 \pm 0.05$                           | TUM |
| N <sub>2</sub> (C, v'=0)              | N <sub>2</sub> +O <sub>2</sub> | -0.35 ± 0.09         | AIRFLY            | - <mark>0.48</mark> ± 0.05<br>(prediction) |     |
| N <sub>2</sub> (C, v'=1)              | N <sub>2</sub> +O <sub>2</sub> | $-0.20 \pm 0.11$     | AIRFLY            |                                            |     |
| N <sub>2</sub> (C, v'=2)              | N <sub>2</sub> +O <sub>2</sub> | -0.22 ± 0.25         | AIRFLY            |                                            |     |
| N <sub>2</sub> <sup>+</sup> (B, v'=0) | N <sub>2</sub> +O <sub>2</sub> | -0.79 ±0.03          | AIRFLY            |                                            |     |

$$\mathbf{p'_{v'}}(T) = \mathbf{p'_{v'}}(T_0) \left(\frac{T_0}{T}\right)^{\alpha_{v'} - 0.5}$$

# 4. Humidity quenching – suggestion average of these two sets of measurements







14. September 2011



14. September 2011

### 5. Spectral resolved intensities – suggestion B

Table 1

Relative intensities of observed band heads in air at 800 hPa and 293 K

#### $\lambda$ (nm) $I_{\lambda}$ (%) Trans. $I_{\lambda}$ (%) Trans. $\lambda$ (nm) 2P(3,1)296.2 $5.16\pm0.29$ GH(0,5)366.1 $1.13\pm0.08$ 2P(2,0)297.7 2P(3,5)367.2 $0.54\pm0.04$ $2.77\pm0.13$ GH(6,2)302.0 $0.41\pm0.06$ 2P(2,4)371.1 $4.97\pm0.22$ GH(5,2)308.0 2P(1,3) 375.6 $17.87 \pm 0.63$ $1.44\pm0.10$ 2P(0,2) $\mathbf{27.2} \pm 1.0$ 2P(3,2)311.7 $7.24\pm0.27$ 380.5 $11.05 \pm 0.41$ 2P(4,7)385.8 $0.50\pm0.08$ 2P(2,1)313.6 2P(1,0) 315.9 $1.17\pm0.06$ $39.3\pm1.4$ GH(0,6)387.7 GH(6,3)317.6 $0.46\pm0.06$ 1N(1,1)388.5 $0.83\pm0.04$ 2P(4,4)1N(0,0)391.4 $\mathbf{28.0} \pm \mathbf{1.0}$ 2P(0,0) 326.8 $0.80\pm0.08$ 0.25 $3.80\pm0.14$ 2P(3,3)328.5 2P(2,5)394.3 $3.36\pm0.15$ rel. Intensity (area scaled to unity) $2.15\pm0.12$ 2P(2,2)330.9 2P(1,4)399.8 $8.38\pm0.29$ 333.9 $8.07\pm0.29$ 2P(1,1) $4.02 \pm 0.18$ 2P(0,3)405.0 0.2 2P(0,1) 2P(0,0)337.1 100 2P(3,7)414.1 $0.49\pm0.07$ GH(0,4)346.3 $1.74\pm0.11$ 2P(2,6)420.0 $1.75\pm0.10$ 2P(2,3)350.0 $2.79\pm0.11$ 1N(1.2)423.6 $1.04\pm0.11$ 0.15 $7.08 \pm 0.28$ 2P(1,2)353.7 $21.35\pm0.76$ 2P(1,5)427.0 2P(1,0) 2P(0,1)1N(0,1)357.7 $67.4 \pm 2.4$ 427.8 $4.94\pm0.19$ 2P(1,1) 1N(0,0) All lines are normalized to the 2P(0,0)-transition at 337.1 nm. 0.1 2P(0,2) 2P(3,2)<sub>2P(2,1)</sub> N(0,1) 2P(2,4) 2P(1,3) 2P(1,2) 2P(3,3) 2P(2,2) 2P(0,3) 2P(3,1) 2P(2,5) 2P(1,4 0.05 2P(1,5) <u>4</u> რ Ñ 0

Fig. 1. Air fluorescence spectrum excited by 3 MeV electrons at 800 hPa. Labelsindicate 21 major transitions.M. Ave et al. / Nuclear Instruments and Methods in Physics Research A 597 (2008) 41–45

420

300

280

320

340

380

360 λ (nm) 400

### 5. Spectral resolved intensities – suggestion B



Fig. 1. Air fluorescence spectrum excited by 3 MeV electrons at 800 hPa. Labelsindicate 21 major transitions.M. Ave et al. / Nuclear Instruments and Methods in Physics Research A 597 (2008) 41–45

### 5. Spectral resolved intensities – summary



- An open discussion started......
- and the main aspects of it can be read at the next slide

## **Comments during Discussion**

Short time scale:

- The aim should be to define a reference
- A reasonable reference fluorescence description has good chances to be used at the cosmic ray experiment, at least at Pierre Auger Observatory, Telescope Array and JEM-EUSO

Longer time scale:

- The aim should be to find the best physical description
- Build averages for relevant parameters for a reference where possible
- Building averages for all parameters is partly not feasible or sometimes would be physically wrong
- Try to address 4 out of the 5 items from slides 3 and 4, so excluding the absolute value of the fluorescence yield
- Some of the presented suggestions could be acceptable to all participants
- One should not forget older investigations and their results like Bunner, Davidson & O'Neil, ...
- Try to get all PIs of the fluorescence experiments together for about 1 week to investigate the experimental systematics in order to evaluate a solution for averaging absolute fluorescence yield values

### **Final action items**

- Build a small committee with representatives of all experiments
- Produce a draft / suggestion for a reference fluorescence description which is physically meaningful, and acceptable to all
- Suggestions for committee members will be solicited by the chair of the committee (B. Keilhauer)
- Circulate the draft in the community as fast as possible
- After iteration: Preparation of common publication in a dedicated journal with a comparison and discussion of all fluorescence yield data