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In31de Matter

atoms have
* electrons ...

| orbiting
a nucleus ...

which 15 made
of protons ... Q
m ...and
neutrons

which are
made of quarks,
up-quarks and’
down-quarks ..

which are at
the current limit

All matter 1s made of What are they?
* the same constltuents What forces between them‘?
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From Cosmic Rays to CERN

Discovered a century ago ..
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cosmic-ray b
K y showers were
“\ 7 14 found to
— contaln many

“different types '
of partlcles 9%

CERN set up in 1954 to"study these partlcles in detail
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The ‘Standard Model’

(; o .' : 9 € - neutrino @ electon
\;l charm Q L - neutrino @ muon
Q . | Q T - neutrino @ tau
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The ‘Standard Model’

The matter Particles

- '

u down - neutrino c electon
A~

Q@, strange L - neutrino ’» muon
i -

Q.' bottom Q T - neutrino @ tau

The fundamental interactions

™8 Gravitation electromagnetism  weak nuclear force strong nuclear force | e



The ‘Standard Model’
Cosmic DNA

The matter particles =
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Photon: the Particle of Light
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‘ Photon: the Particle of Light |

R

* Quantum hypothesis introduced by Planck:
E=hf




Photon: the Particle of Light

| * Quantum hypothesis introduced by Planck:
E=hf

| * Physical reality postulated by Einstein to
explain photoelectric effect




Photon: the Particle of Light

| * Quantum hypothesis introduced by Planck:
E=hf

| * Physical reality postulated by Einstein to
explain photoelectric effect




Photon: the Particle of Light

| * Quantum hypothesis introduced by Planck:
E=hf

| * Physical reality postulated by Einstein to
explain photoelectric effect




Photon: the Particle of Light

| * Quantum hypothesis introduced by Planck:
E=hf

| * Physical reality postulated by Einstein to
explain photoelectric effect




Photon: the Particle of Light

| * Quantum hypothesis introduced by Planck:
E=hf

| * Physical reality postulated by Einstein to
explain photoelectric effect
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| Dlscovery method suggested in 1976:

SEARCH FOR GLUONS IN ¢*¢~ ANNIHILATION
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validiey of the naive parton model and by agymptotic freedor, we segpest that hard
geon beemsstratiung may be Dhe Comimant sowrce of hadross with larpe mometa trans-
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 Jets of hadrons produced by gluons observed at
| DESY (Hamburg) in 1979 ‘;‘ -

|« Second force particle discovered |/
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Radioactivity due to charged-current
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Weak Interactions ;

Radioactivity due to charged-current
weak interactions (p decay)

W boson - carrier of weak interaction

postulated by Yukawa

Discovered at CERN 1n
1983 by Carlo Rubbia et al P2
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The ‘Standard Model’ of
Particle Physics

Crucial tests 1n

experiments at CERN, etc.
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In agreement with all > " \ Ry el
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i LEP determined how many types |-
of elementary particles '
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Open Questions beyond the

Standard Model

* What 1s the origin of particle masses?

due to a Higgs boson?

 Why so many types of matter particles? 'LHC

LHC
e Unification of fundamental forces? LHC

e Quantum theory of gravity?
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Why do Thmgs Welgh‘7

Newton:
Weight proportional to Mass

|

| Einstein:
Energy related to Mass

! Neither explained origin of Mass

= Where do the masses
= come from?

- Are masses due to Higgs boson?
| (the physicists’ Holy Grail)



Think of a Snowtield




Think of a Snowtield

Skier moves fast:
Like particle without mass
e.g., photon = particle of light



Think of a Snowfield |

Skier moves fast:
Like particle without mass
e.g., photon = particle of light lﬁ\

Snowshoer sinks into snow,
moves slower:

Like particle with mass
e.g., electron



Think of a Snowtield

=

»
- .'-v
\

Skier moves fast:
Like particle without mass
e.g., photon = particle of light /i

5|
Snowshoer sinks into snow, s~ [/
moves slower: @

Like particle with mass

e.g., electron

Hiker sinks deep,
moves very slowly:
Particle with large mass




Think of a Snowtield

The LHC will look for
the snowflake:
The Higgs Boson

Skier moves fast:
Like particle without mass
e.g., photon = particle of light

Snowshoer sinks into snow, <
moves slower: 7 O
Like particle with mass

e.g., electron

Hiker sinks deep,
moves very slowly:
Particle with large mass
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Evidence for Dark Matter
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than allowed by centripetal -
force due to visible matter e
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Evidence for Dark Matter

Galaxies rotate more rapidly 8 X-ray emitting gas held
than allowed by centripetal in place by extra

dark matter

force due to visible matter
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Evidence for Dark Matter

Galaxies rotate more rapidly 8 X-ray emitting gas held

than allowed by centripetal in place by extra ‘dark galaxy’
force due to visible matter dark matter without stars

Even a

Gravity = Centripetal Acceleration

6n _ w2
r2
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Supersymmetry?
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Supersymmetry?

— * Would unify matter particles and force particles
~ | » Related particles spinning at different rates

o - »n - 1 - 32 . 2

Higgs - Electron - Photon - Gravitino - Graviton

_ (Every particle is a ‘ballet dancer’)

~ | » Would help fix particle masses
* Would help unitfy forces

|« Predicts light Higgs boson

~ = * Could provide dark matter for the
s astrophysicists and cosmologists
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A Bitino of Shistory

. Impossible to combine internal and
external (Lorentz) symmetry —

. Extend Poincar¢ symmetry using fermionic
charges —

: Supersymmetry in 2 dimensions (for
baryons in strings) —

. First supersymmetric field theories 1n 4
dimensions: nonlinear for v —

renormalizable theories —
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Loop Corrections to Higgs Mass?

* Consider generic fermion and boson loops:
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More Shistory

: No-renormalization theorems —
: Discovery of supergravity —
: Relevance to hierarchy problem —

: Source of astrophysical dark matter —

: Superunification of gauge couplings —

: LEP data favour light Higgs boson
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Stanford Usiversity, Stanford, Californis PA30%
D. V. Nanopeules, K. Oltve', sed u. Sredntens?
s
Qi=1211 Geneve 2), Switzerlend

ABSTRACT
Vo conslder the commological Constreints oo swersymsetric thecries
with & nev, stable particle, Circumstantial evidence points to &
mautral gasge/RNiggs ferndon ss the best candidate for this perticle,
and we derive bounds om the p ® in the Lagrangien which govern
1te mase and cowplings. One favored possibility fs that the lightest
nestral swpersywsetric particle is predominsatly & photine 7 vith sass

above Y Ca¥, while anothar 1 that the lightest seutral scpersymsetric
particle is o Niggs fernion with sass sdove 3 Ce¥ or less thas O(100)eV.
Ve also point out that & gravitine sass of 10 to 100 Ca¥ fwplies that the
temperature after complation of an Inflationary phase cannat be above
10" Ge¥, and prodably not above 3 # 10'7 Ge¥. This tapesss constratists
on machaniens for gesareting the baryon number of the wniverse.

(Sbmitted to Weclear Mgeics B)
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Radiative corrections to the masses of
supersymmetric Higgs bosons

John Ellis
Theory Division, CERN, Genewa, Switzerland

Glovanni Ridoll
INFN, Sezione & Genova, Italy

and

Fabio Zwirner'
Theory Division, CERN, Geneva, Switzerland

Abstract

The lightest neutral Higgs bosos in the minimal supersymmetric extensson
of the Standard Model has & troo-level mass less than that of the 2° We
calculate radiative corrections to its mass and to that of the heavier CP-even
seutzal Higgs boson. We find large corrections that increase with the top
quark and squark masses, and vary with the ratio of vacwum expectation
values vy/vy. These radiative corroctions can be as large as O(100) GeV,
and have the efect of (1) invalidating lower bounds on vy/v, inferred from
unssconsaful Higes searches at LEP 1, (i) in many cases, increasing the
enss of the lighter CP-even Higgs boson beyond my, (i) often, increasiag
the mass of the heavier CP-even Higgs boson beyond the LEP reach, into
a range mare accessible to the LHC or SSC.

YO0 leave from Ietituto N Je di Fisica Nucleare, Seabone di Padova, ltaly.



Other Reasons to like Susy

®
5
3
g
.?;5;
3
3
&
w

Energy u (GeV)




Other Reasons to like Susy

: It enables the gauge couplings to unity
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Other Reasons to like Susy

It enables the gauge couphngs to unlfy SM
————— - s
P X ‘13-
It predicts my; < 150 GeV 3= S
H s @ 0
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: 2 3
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6= - 3 £ MSSM
E g
4= 3 {&
i E Theory uncertainty jock
G - ~ Fit including theory errors E
2 L_ % --- Fit excluding theory errors §
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As suggested by electroweak data 8
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Possible Nature of LSP
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Possible Nature of LSP

* No strong or electromagnetic interactions

» Possible weakly-interacting scandidates

(Excluded by LEP, direct searches)
(partner of Z, H, vy)

(nightmare for astrophysical detection)




Constraints on Supersymmetry
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Constraints on Supersymmetry
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Current Constraints on CMSSM
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Primary targets:
*Origin of mass
eNature of Dark Matter
ePrimordial Plasma
eMatter vs Antimatter
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Beam Lifetime ~ 10 H

TIMBER v3.1.3
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First LHC Collision in ATLAS

Candidate
Collision Event
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ATLAS preliminary

No

Supersymmetry
yet!




Collision in CMS

First candidate collision




Two-Jet Event in CMS

CMS Experiment at the LHC, CERN
Date Recorded: 2009-12-06 07:18 GMT
RurvEvent: 123596 / 6732761

Candidate Dijet Colision Event




No Higgs yet!
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Collision in LHCDb
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Collision in ALICE
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Onward & Upward: First Ramp
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2.36 TeV Collision in ATLAS







Looking for Dark Matter
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Minimal Supersymmetric Extension of
Standard Model (MSSM)
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Non-Universal Scalar Masses
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Non-Universal Scalar Masses

» Different sfermions with same quantum #s?
e.g., d, s squarks?

* Squarks with different #s, squarks and sleptons?

* Non-universal susy-breaking masses for Higgses?
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How Soon Might the CMSSM be
Detected?
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O.Buchmueller, JE et al: arXiv:0808.4128



How Soon Might the NUHM1 be
Detected?

tan3=10,A,=0, u>0
jets + MET (CMS) — 1fb@ 14 TeV
| — * 100/pb @ 14 TeV

- = 50/pb @ 10 TeV
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Best-Fit Spectra
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Spectra with likely Ranges
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Likelithood Function for Higgs Mass
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Likelithood Function for Neutralino Mass |
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Elastic Scattering Cross Sections
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Likelihood Function for Spin-
Independent Dark Matter Scattering
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| Then we would not
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The LHC 1s not only the World’s .
most powerful microscope,
but also a telescope ... .

>
... able to cast light on the
dark corners of the Universe



Why Supersymmetry (Susy)?
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