

Implementation of Meteorological Model Data in Air Shower Reconstructions

Martin Will Karlsruhe Institute of Technology

8th Air Fluorescence Workshop, Karlsruhe 2011

Overview

GDAS Data Source and Description

- Comparison with Local Measurements
- Application to Air Shower Reconstructions
- Estimation of Reconstruction Uncertainties

Motivation

- Balloons with radiosondes are most accurate way of measuring height-dependent profiles of atmospheric parameters
- Monthly average profiles were compiled and used in reconstructions

However:

- Launches were performed at irregular intervals, several days apart
- Demanded large efforts
- Monthly models good description of local conditions
 - Without new launches not up-to-date
 - Some months better described than others

Therefore:

- Use GDAS as good, reliable, cost-effective alternative
- Provides temperature, pressure, relative humidity and many more

Global Data Assimilation System

state variable

weekly for free on NCEP ftp

- GDAS provides temperature, pressure, relative humidity and many other values
 - Same as weather balloons
- Data at 23 fixed pressure levels between 1000 and 20 hPa
 - 5 below ground for AS
- Provides surface values
 - Problem with altitude at beginning until mid 2005
 - > After June 2005 always below FDs

- Needed mostly for simulation
- "real" data in field of view of FDs

Only use data after June 2005 from surface and pressure level 6 (850 hPa) and above

Balloons vs. Monthly Profiles

6

September 2011

Fluorescence Calculation

- AIRFLY parameterization
- Normalization of Y₃₃₇ to value of Nagano et al.
- Spectrally resolved, 34 transitions between 295 and 430 nm

$$Y_{air}(\lambda, p, T) = Y_{air}(337 \text{nm}, p_0, T_0) \cdot I_{\lambda}(p_0, T_0) \times \frac{1 + \frac{p_0}{p'_{air}(\lambda, T_0)}}{1 + \frac{p}{p'_{air}(\lambda, T_0)}\sqrt{\frac{T H_{\lambda}(T_0)}{T_0 H_{\lambda}(T)}}}$$

Modifications

Temperature-dependent cross sections

$$\frac{H_{\lambda}(T)}{H_{\lambda}(T_{0})} = \left(\frac{T}{T_{0}}\right)^{\alpha_{\lambda}}$$

Water vapor quenching

$$\frac{1}{p'_{\text{air}}} \rightarrow \frac{1}{p'_{\text{air}}} \left(1 - \frac{p_{\text{h}}}{p}\right) + \frac{1}{p'_{\text{H}_2\text{O}}} \frac{p_{\text{h}}}{p}$$

M. Ave et al. (AIRFLY Collaboration), Nucl. Instr. Meth. A597 (2008) 50

Shower Reconstructions

Reconstruct data between June 2005 and December 2010

- Compare reconstructions
 - FY_{std}, MP
 - without vapor quenching and temp.-dep. cross sections
 - Monthly Average Profiles (MP)
 - > FY_{mod}, MP
 - with vapor quenching and temp.-dep. cross sections
 - Monthly Average Profiles (MP)

FYmod, GDAS

- with vapor quenching and temp.-dep. cross sections
- GDAS

Energy

12

Reconstruction Uncertainties

Simulate p and Fe showers using atm. profiles from
 109 cloud-free nighttime balloon launches

1.3%

- 3 reconstructions: using real profile, monthly profiles, GDAS
- Systematic offset: **below 1% in Energy**
- Low energies: 0.9%
- High energies:

- Simulate p and Fe showers using atm. profiles from
 109 cloud-free nighttime balloon launches
- 3 reconstructions: using real profile, monthly profiles, GDAS
- Systematic offset: **below 0.5 g cm⁻² in X**max
- 2.0 g cm⁻² Low energies: 10 ∆X_{max} [g cm⁻². 3.5 g cm⁻² High energies: ∆X_{max} [g cm⁻²] 8 **Monthly Profiles GDAS** -8 -10<mark>-17.5</mark> 19 18 18.5 19.5 17.5 18 18.5 19 19.5 20 lg(<E>/eV) lg(<E>/eV)

Conclusions

- Comparisons with on-site measurements confirm applicability of GDAS data
- GDAS and full atm.-dep. Airfly fluorescence model are currently best description of molecular atmosphere available
- Reconstruction uncertainty much smaller than with monthly models, for medium to high energies half

Thanks for your attention

Backup

Temperature LM

Uncertainties

- Weather stations are not sheltered
- Influences from surface, nearby buildings (metal containers)