Mössbauer neutrinos

Joachim Kopp

Max-Planck-Institut für Kernphysik, Heidelberg

30 July 2009, ISAPP School

Outline

1. The Mössbauer neutrino experiment
2. Oscillations of Mössbauer neutrinos: Qualitative arguments
3. Mössbauer neutrinos in QFT
4. Conclusions
Outline

1. The Mössbauer neutrino experiment
2. Oscillations of Mössbauer neutrinos: Qualitative arguments
3. Mössbauer neutrinos in QFT
4. Conclusions
Classical Mössbauer effect

Classical Mössbauer effect: *Recoilfree* emission and absorption of γ-rays from nuclei bound in a crystal lattice.

Classical Mössbauer effect

Classical Mössbauer effect: *Recoilfree* emission and absorption of γ-rays from nuclei bound in a crystal lattice.

R. L. Mössbauer, Z. Phys. 151 (1958) 124

→ Extremely narrow emission and absorption lines
Classical Mössbauer effect

Classical Mössbauer effect: *Recoilfree* emission and absorption of γ-rays from nuclei bound in a crystal lattice.

- Extremely narrow emission and absorption lines
- Observation of gravitational redshift of photons

R. L. Mössbauer, Z. Phys. 151 (1958) 124
Classical Mössbauer effect

Classical Mössbauer effect: *Recoilfree* emission and absorption of γ-rays from nuclei bound in a crystal lattice.

→ Extremely narrow emission and absorption lines
→ Observation of gravitational redshift of photons
→ Determination of the chemical environment of the emitting nucleus

R. L. Mössbauer, Z. Phys. 151 (1958) 124
Classical Mössbauer effect

Classical Mössbauer effect: *Recoilfree* emission and absorption of γ-rays from nuclei bound in a crystal lattice.

- Extremely narrow emission and absorption lines
- Observation of gravitational redshift of photons
- Determination of the chemical environment of the emitting nucleus

R. L. Mössbauer, Z. Phys. 151 (1958) 124

Mössbauer neutrinos

A similar effect should exist for neutrino emission/absorption in bound state β decay and induced electron capture processes.

Production:

$^3\text{H} \rightarrow ^3\text{He} + + \bar{\nu}_e + e^-$

Detection:

$^3\text{He} + + e^- (\text{bound}) + \bar{\nu}_e \rightarrow ^3\text{H}$

^3H and ^3He are embedded in metal crystals (metal hydrides).

Physics goals:

Neutrino oscillations on a laboratory scale:

$E = 18.6$ keV, $L_{\text{osc}} \approx 20$ m.

Gravitational interactions of neutrinos

Study of solid state effects with unprecedented precision
Mössbauer neutrinos

A similar effect should exist for neutrino emission/absorption in bound state β decay and induced electron capture processes.

Proposed experiment:

Production: $^3\text{H} \rightarrow ^3\text{He}^+ + \bar{\nu}_e + e^-(\text{bound})$

Detection: $^3\text{He}^+ + e^-(\text{bound}) + \bar{\nu}_e \rightarrow ^3\text{H}$

^3H and ^3He are embedded in metal crystals (metal hydrides).
Mössbauer neutrinos

A similar effect should exist for neutrino emission/absorption in bound state β decay and induced electron capture processes.

Proposed experiment:

Production: 3H \rightarrow 3He$^+ + \bar{\nu}_e + e^-$ (bound)

Detection: 3He$^+ + e^-$ (bound) $+ \bar{\nu}_e$ \rightarrow 3H

3H and 3He are embedded in metal crystals (metal hydrides).

Physics goals:

- Neutrino oscillations on a laboratory scale: $E = 18.6$ keV, $L_{\text{osc}}^{\text{atm}} \sim 20$ m.
- Gravitational interactions of neutrinos
- Study of solid state effects with unprecedented precision
Mössbauer neutrinos have very special properties:

- Neutrino receives full decay energy: \(Q = 18.6 \text{ keV} \)
- Natural line width: \(\gamma \sim 1.17 \times 10^{-24} \text{ eV} \)
- Atucal line width: \(\gamma \gtrsim 10^{-11} \text{ eV} \)
 - Inhomogeneous broadening (Impurities, lattice defects)
 - Homogeneous broadening (Spin interactions)
Mössbauer neutrinos (2)

Mössbauer neutrinos have very special properties:
- Neutrino receives *full* decay energy: $Q = 18.6$ keV
- Natural line width: $\gamma \sim 1.17 \times 10^{-24}$ eV
- Atucal line width: $\gamma \gtrsim 10^{-11}$ eV
 - Inhomogeneous broadening (Impurities, lattice defects)
 - Homogeneous broadening (Spin interactions)

Experimental challenges:
- Is the Lamb-Mössbauer factor (fraction of recoil-free emissions/absorptions) large enough?
- Can a linewidth $\gamma \gtrsim 10^{-11}$ eV be achieved?
- Can the resonance condition be fulfilled?
Mössbauer neutrinos (3)

Recent controversy:

- **Does the small energy uncertainty prohibit oscillations of Mössbauer neutrinos?**
- **Do oscillating neutrinos need to have equal energies resp. equal momenta?**

- **Does the time-energy uncertainty relation prevent oscillations?**

Mössbauer neutrinos (3)

Recent controversy:
- Does the small energy uncertainty prohibit oscillations of Mössbauer neutrinos?
- Do oscillating neutrinos need to have equal energies resp. equal momenta?

- Does the time-energy uncertainty relation prevent oscillations?

⇒ Careful treatment with as few assumptions as possible is needed
⇒ Answer to the above questions will be No.
Outline

1. The Mössbauer neutrino experiment

2. Oscillations of Mössbauer neutrinos: Qualitative arguments

3. Mössbauer neutrinos in QFT

4. Conclusions
Textbook derivation of the oscillation formula

Diagonalization of the mass terms of the charged leptons and neutrinos gives

\[\mathcal{L} \supset -\frac{g}{\sqrt{2}} (\bar{e}_\alpha \gamma^\mu U_{\alpha j} \nu_{jL}) W^-_\mu + \text{diag. mass terms} + h.c. \]

(flavour eigenstates: \(\alpha = e, \mu, \tau \), mass eigenstates: \(j = 1, 2, 3 \))
Textbook derivation of the oscillation formula

Diagonalization of the mass terms of the charged leptons and neutrinos gives

$$\mathcal{L} \supset -\frac{g}{\sqrt{2}} (\bar{e}_{\alpha L} \gamma^\mu U_{\alpha j} \nu_{jL}) W^-_{\mu} + \text{diag. mass terms} + \text{h.c.}$$

(flavour eigenstates: $\alpha = e, \mu, \tau$, mass eigenstates: $j = 1, 2, 3$)

Assume, at time $t = 0$ and location $\vec{x} = 0$, a flavour eigenstate

$$|\nu(0, 0)\rangle = |\nu_\alpha\rangle = \sum_i U_{\alpha j}^* |\nu_j\rangle$$

is produced. At time t and position \vec{x}, it has evolved into

$$|\nu(t, \vec{x})\rangle = \sum_i U_{\alpha j}^* e^{-iE_j t + i\vec{p}_j \vec{x}} |\nu_i\rangle$$
Textbook derivation of the oscillation formula

Diagonalization of the mass terms of the charged leptons and neutrinos gives

\[\mathcal{L} \supset -\frac{g}{\sqrt{2}} \langle \bar{e}_{\alpha L} \gamma^\mu U_{\alpha j} \nu_{jL} \rangle W^-_\mu + \text{diag. mass terms} + h.c. \]

(flavour eigenstates: \(\alpha = e, \mu, \tau \), mass eigenstates: \(j = 1, 2, 3 \))

Assume, at time \(t = 0 \) and location \(\vec{x} = 0 \), a flavour eigenstate

\[|\nu(0, 0)\rangle = |\nu_\alpha\rangle = \sum_i U^*_{\alpha j}|\nu_j\rangle \]

is produced. At time \(t \) and position \(\vec{x} \), it has evolved into

\[|\nu(t, \vec{x})\rangle = \sum_i U^*_{\alpha j} e^{-iE_j t + i\vec{p}_j \vec{x}} |\nu_i\rangle \]

Oscillation probability:

\[P(\nu_\alpha \rightarrow \nu_\beta) = \left| \langle \nu_\beta | \nu(t, \vec{x}) \rangle \right|^2 = \sum_{j,k} U^*_{\alpha j} U_{\beta j} U_{\alpha k} U^*_{\beta k} e^{-i(E_j - E_k) t + i(\vec{p}_j - \vec{p}_k) \vec{x}} \]
Equal energies or equal momenta?

Typical *assumptions* in the “textbook derivation” of the oscillation formula:

- Different mass eigenstates have equal energies: $E_j = E_k \equiv E$

 (“Evolution only in space”, “Stationary evolution”)

These are assumptions or approximations, not fundamental principles!
Equal energies or equal momenta?

Typical *assumptions* in the “textbook derivation” of the oscillation formula:

- Different mass eigenstates have equal energies: \(E_j = E_k \equiv E \)

 (“Evolution only in space”, “Stationary evolution”) \(\Rightarrow p_j = \sqrt{E^2 - m_j^2} \approx E - \frac{m_j^2}{2E} \)

\[
P(\nu_\alpha \rightarrow \nu_\beta) = \sum_{j,k} U_{\alpha j}^* U_{\beta j} U_{\alpha k} U_{\beta k} e^{-i \frac{\Delta m_{jk}^2 L}{2E}}
\]
Equal energies or equal momenta?

Typical assumptions in the “textbook derivation” of the oscillation formula:

- Different mass eigenstates have equal energies: $E_j = E_k \equiv E$

 (“Evolution only in space”, “Stationary evolution”) \Rightarrow p_j = \sqrt{E^2 - m_j^2} \simeq E - \frac{m_j^2}{2E}

\[
P(\nu_\alpha \rightarrow \nu_\beta) = \sum_{j,k} U_{\alpha j} U_{\beta j} U_{\alpha k} U_{\beta k} e^{-i \frac{\Delta m^2_{jk} L}{2E}}
\]

- Different mass eigenstates have equal momenta: $p_j = p_k \equiv p$

 (“Evolution only in time”, “Non-stationary evolution”)

These are assumptions or approximations, not fundamental principles!

Joachim Kopp (MPI Heidelberg)
Equal energies or equal momenta?

Typical *assumptions* in the “textbook derivation” of the oscillation formula:

- Different mass eigenstates have equal energies: \(E_j = E_k \equiv E \)

 (“Evolution only in space”, “Stationary evolution”) \(\Rightarrow p_j = \sqrt{E^2 - m_j^2} \approx E - \frac{m_j^2}{2E} \)

\[
P(\nu_\alpha \to \nu_\beta) = \sum_{j,k} U^*_j U_\beta j U_\alpha k U^*_\beta k e^{-i \frac{\Delta m^2_{jk} L}{2E}}
\]

- Different mass eigenstates have equal momenta: \(p_j = p_k \equiv p \)

 (“Evolution only in time”, “Non-stationary evolution”) \(\Rightarrow E_j = \sqrt{p^2 + m_j^2} \approx p + \frac{m_j^2}{2p} \)

\[
P(\nu_\alpha \to \nu_\beta) = \sum_{j,k} U^*_j U_\beta j U_\alpha k U^*_\beta k e^{-i \frac{\Delta m^2_{jk} T}{2p}}
\]

These are assumptions or approximations, not fundamental principles!
Equal energies or equal momenta?

Typical *assumptions* in the “textbook derivation” of the oscillation formula:

- Different mass eigenstates have equal energies: \(E_j = E_k \equiv E \)

 (“Evolution only in space”, “Stationary evolution”) \(\Rightarrow p_j = \sqrt{E^2 - m_j^2} \approx E - \frac{m_j^2}{2E} \)

\[
P(\nu_\alpha \rightarrow \nu_\beta) = \sum_{j,k} U_{\alpha j}^* U_{\beta j} U_{\alpha k} U_{\beta k}^* e^{-i \frac{\Delta m_{jk}^2}{2E} L}
\]

- Different mass eigenstates have equal momenta: \(p_j = p_k \equiv p \)

 (“Evolution only in time”, “Non-stationary evolution”) \(\Rightarrow E_j = \sqrt{p^2 + m_j^2} \approx p + \frac{m_j^2}{2p} \)

\[
P(\nu_\alpha \rightarrow \nu_\beta) = \sum_{j,k} U_{\alpha j}^* U_{\beta j} U_{\alpha k} U_{\beta k}^* e^{-i \frac{\Delta m_{jk}^2}{2p} T}
\]

These are *assumptions* or *approximations*, not fundamental principles!
Problems with the textbook derivation

In general, neither the equal energy assumption nor the equal momentum assumption is physically justified because both violate energy-momentum conservation in the production and detection processes.

Example: Pion decay at rest:

\[\pi^+ \rightarrow \mu^+ + \nu_\mu, \quad \pi^- \rightarrow \mu^- + \bar{\nu}_\mu. \]
Problems with the textbook derivation

- In general, neither the equal energy assumption nor the equal momentum assumption is physically justified because both violate energy-momentum conservation in the production and detection processes.

- Example: Pion decay at rest: \(\pi^+ \rightarrow \mu^+ + \nu_{\mu}, \pi^- \rightarrow \mu^- + \bar{\nu}_{\mu} \)
Problems with the textbook derivation

- In general, neither the equal energy assumption nor the equal momentum assumption is physically justified because both violate energy-momentum conservation in the production and detection processes.

- Example: Pion decay at rest: $\pi^+ \rightarrow \mu^+ + \nu_\mu$, $\pi^- \rightarrow \mu^- + \bar{\nu}_\mu$

Energy-momentum conservation for emission of mass eigenstate $|\nu_i\rangle$:

\[
E_i^2 = \frac{m^2_{\pi}}{4} \left(1 - \frac{m^2_{\mu}}{m^2_{\pi}} \right)^2 + \frac{m^2_i}{2} \left(1 - \frac{m^2_{\mu}}{m^2_{\pi}} \right) + \frac{m^4_i}{4m^2_{\pi}}
\]

\[
p_i^2 = \frac{m^2_{\pi}}{4} \left(1 - \frac{m^2_{\mu}}{m^2_{\pi}} \right)^2 - \frac{m^2_i}{2} \left(1 - \frac{m^2_{\mu}}{m^2_{\pi}} \right) + \frac{m^4_i}{4m^2_{\pi}}
\]

For massless neutrinos: $E_i = p_i = E \equiv \frac{m_{\pi}}{2} \left(1 - \frac{m^2_{\mu}}{m^2_{\pi}} \right) \approx 30$ MeV.

To first order in m_i^2:

\[
E_i \approx E + \xi \frac{m^2_i}{2E}, \quad p_i \approx E - (1 - \xi) \frac{m^2_i}{2E}, \quad \xi \approx \frac{1}{2} \left(1 - \frac{m^2_{\mu}}{m^2_{\pi}} \right) \approx 0.2
\]
Mössbauer neutrinos are the *only* realistic case, where $E_j \approx E_k$ holds approximately, due to the tiny energy uncertainty, $\sigma_E \sim 10^{-11}$ eV.

More realistic treatment desirable: Wave packet model

\Rightarrow

$P(\nu_\alpha \rightarrow \nu_\beta) = \sum_{j,k} U^*_{\alpha j} U_{\beta j} U_{\alpha k} U^*_{\beta k} e^{-i \Delta m^2_{jk} L \frac{E_j}{2}}$
Problems with the textbook derivation (2)

Mössbauer neutrinos are the *only* realistic case, where $E_j \approx E_k$ holds *approximately*, due to the tiny energy uncertainty, $\sigma_E \sim 10^{-11}$ eV.

\Rightarrow We thus expect:

$$P(\nu_\alpha \rightarrow \nu_\beta) = \sum_{j,k} U_{\alpha j}^* U_{\beta j} U_{\alpha k} U_{\beta k}^* e^{-i \frac{\Delta m^2_{jk} L}{2E}}$$
Problems with the textbook derivation (2)

- Mössbauer neutrinos are the *only* realistic case, where $E_j \sim E_k$ holds *approximately*, due to the tiny energy uncertainty, $\sigma_E \sim 10^{-11}$ eV.

⇒ We thus expect:

$$P(\nu_\alpha \rightarrow \nu_\beta) = \sum_{j,k} U^*_{\alpha j} U_{\beta j} U_{\alpha k} U^*_{\beta k} e^{-i \frac{\Delta m^2_{jk} L}{2E}}$$

- More realistic treatment desirable: *Wave packet model*
 - Requires neither equal E nor equal p
 - Takes into account finite resolutions of the source and the detector
Problems with the textbook derivation (2)

- Mössbauer neutrinos are the only realistic case, where \(E_j \approx E_k \) holds approximately, due to the tiny energy uncertainty, \(\sigma_E \sim 10^{-11} \text{ eV} \).

\[\Rightarrow \text{We thus expect:} \]

\[P(\nu_\alpha \rightarrow \nu_\beta) = \sum_{j,k} U^\alpha_j U^\beta_j U^\alpha_k U^\beta_k e^{-i \frac{\Delta m^2_{jk} L}{2E}} \]

- More realistic treatment desirable: Wave packet model
 - Requires neither equal \(E \) nor equal \(p \)
 - Takes into account finite resolutions of the source and the detector

Beuthe, Giunti, Grimus, Kiers, Kim, Lee, Mohanty, Nussinov, Stockinger, Weiss, ...
Conditions for oscillations in a wave packet approach
Conditions for oscillations in a wave packet approach

- Coherence in production and detection processes

\[\sigma^2_m = \sqrt{(2E \sigma^2_E)^2 + (2p \sigma^2_p)^2} > \Delta m^2 \]

This is easily fulfilled for Mössbauer neutrinos, since \(\sigma_E \approx 10^{-11} \) eV, \(\sigma_p = \frac{1}{2} \sigma_x \approx 1/\text{interatomic distance} \approx 10 \) keV, \(E = p = \frac{1}{18.6} \) keV.
Conditions for oscillations in a wave packet approach

- Coherence in production and detection processes
 Neutrino oscillations are caused by the superposition of different mass eigenstates.
 \[\Rightarrow \text{If an experiment can distinguish different mass eigenstates, oscillations will vanish.} \]
Coherence in production and detection processes

Neutrino oscillations are caused by the superposition of different mass eigenstates.

⇒ If an experiment can distinguish different mass eigenstates, oscillations will vanish.

Requirement for mass resolution σ_m:

$$\sigma_m^2 = \sqrt{(2E\sigma_E)^2 + (2p\sigma_p)^2} > \Delta m^2$$

Conditions for oscillations in a wave packet approach

- Coherence in production and detection processes
 Neutrino oscillations are caused by the superposition of different mass eigenstates.
 ⇒ If an experiment can distinguish different mass eigenstates, oscillations will vanish.

Requirement for mass resolution σ_m:

$$\sigma_m^2 = \sqrt{(2E\sigma_E)^2 + (2p\sigma_p)^2} > \Delta m^2$$

This is easily fulfilled for Mössbauer neutrinos, since

$$\sigma_E \sim 10^{-11} \text{ eV}$$

$$\sigma_p = 1/2\sigma_x \sim 1/\text{interatomic distance} \sim 10 \text{ keV}$$

$$E = p = 18.6 \text{ keV}$$
Conditions for oscillations in a wave packet approach

- Coherence in production and detection processes
- Coherence maintained during propagation

\[\sigma_x \]

It can be shown that, for Mössbauer neutrinos, \(\sigma_p \) is small enough, so that \(L_{osc} \ll L_{coh} \).

\[P_{ee} = \sum_{j,k} |U_{ej}|^2 |U_{ek}|^2 \exp\left[-2\pi i L_{jk} \right] \]

\[L_{jk} = \frac{4\pi E \Delta m^2}{jk} \]
Conditions for oscillations in a wave packet approach

- Coherence in production and detection processes
- Coherence maintained during propagation

Decoherence could be caused by wave packet separation

\[L_{\text{osc}} \ll L_{\text{coh}} \]

\[P_{\text{ee}} = \left| \sum_{j,k} U_{ej} U_{ek} \right|^2 \exp \left[-2\pi i L_{\text{osc}} \right] \]

\[L_{\text{osc}} = \frac{4\pi E}{\Delta m^2} \]

Joachim Kopp (MPI Heidelberg)
Conditions for oscillations in a wave packet approach

- Coherence in production and detection processes
- Coherence maintained during propagation
 - Decoherence could be caused by wave packet separation

It can be shown that, for Mössbauer neutrinos, σ_p is small enough, so that

$$L^{osc} \ll L^{coh}.$$
Conditions for oscillations in a wave packet approach

- Coherence in production and detection processes
- Coherence maintained during propagation
 Decoherence could be caused by wave packet separation

It can be shown that, for Mössbauer neutrinos, σ_p is small enough, so that

$$L^{\text{osc}} \ll L^{\text{coh}}.$$

\Rightarrow Stanard oscillation formula is approximately recovered:

$$P_{ee} = \sum_{j,k} |U_{ej}|^2 |U_{ek}|^2 \exp \left[-2\pi i \frac{L}{L^{\text{osc}}_{jk}} \right]$$

$$L^{\text{osc}}_{jk} = \frac{4\pi E}{\Delta m^2_{jk}}$$
Outline

1. The Mössbauer neutrino experiment
2. Oscillations of Mössbauer neutrinos: Qualitative arguments
3. Mössbauer neutrinos in QFT
4. Conclusions
Quantum field theoretical treatment

Aim: Properties of the neutrino should be automatically determined from properties of the source and the detector.
Quantum field theoretical treatment

Aim: Properties of the neutrino should be automatically determined from properties of the source and the detector.

Idea: Treat neutrino as an internal line in a tree level Feynman diagram:
Quantum field theoretical treatment

Aim: Properties of the neutrino should be automatically determined from properties of the source and the detector.

Idea: Treat neutrino as an internal line in a tree level Feynman diagram:

External particles reside in harmonic oscillator potentials. E.g. for 3H atoms in the source:

$$\psi_{H,S}(\vec{x}, t) = \left[\frac{m_H \omega_{H,S}}{\pi} \right]^{3/4} \exp \left[-\frac{1}{2} m_H \omega_{H,S} |\vec{x} - \vec{x}_S|^2 \right] \cdot e^{-iE_{H,S}t}$$
Oscillation amplitude

\[iA = \int d^3x_1 \, dt_1 \int d^3x_2 \, dt_2 \left(\frac{m_{H\omega_H, S}}{\pi} \right)^{\frac{3}{4}} \exp \left[-\frac{1}{2} m_{H\omega_H, S} |\vec{x}_1 - \vec{x}_S|^2 \right] e^{-iE_{H, S}t_1} \]

\[\cdot \left(\frac{m_{He\omega_{He}, S}}{\pi} \right)^{\frac{3}{4}} \exp \left[-\frac{1}{2} m_{He\omega_{He}, S} |\vec{x}_1 - \vec{x}_S|^2 \right] e^{+iE_{He, S}t_1} \]

\[\cdot \left(\frac{m_{He\omega_{He}, D}}{\pi} \right)^{\frac{3}{4}} \exp \left[-\frac{1}{2} m_{He\omega_{He}, D} |\vec{x}_2 - \vec{x}_D|^2 \right] e^{-iE_{He, D}t_2} \]

\[\cdot \left(\frac{m_{H\omega_H, D}}{\pi} \right)^{\frac{3}{4}} \exp \left[-\frac{1}{2} m_{H\omega_H, D} |\vec{x}_2 - \vec{x}_D|^2 \right] e^{+iE_{H, D}t_2} \]

\[\cdot \sum_j M^\mu M^{\nu*} |U_{ej}|^2 \int \frac{d^4p}{(2\pi)^4} e^{-ip_0(t_2-t_1)+i\vec{p}(\vec{x}_2-\vec{x}_1)} \]

\[\cdot \bar{u}_{e, S} \gamma_\mu (1 - \gamma^5) \frac{i(\not{p} + m_j)}{p_0^2 - \not{p}^2 - m_j^2 + i\epsilon} (1 + \gamma^5) \gamma_\nu u_{e, D}. \]
Oscillation amplitude

\[iA = \int d^3x_1 \, dt_1 \int d^3x_2 \, dt_2 \left(\frac{m_{\omega H,S}}{\pi} \right)^{\frac{3}{4}} \exp \left[-\frac{1}{2} m_{\omega H,S} |\vec{x}_1 - \vec{x}_S|^2 \right] e^{-iE_{H,S}t_1} \]

\[\cdot \left(\frac{m_{He\omega He,S}}{\pi} \right)^{\frac{3}{4}} \exp \left[-\frac{1}{2} m_{He\omega He,S} |\vec{x}_1 - \vec{x}_S|^2 \right] e^{+iE_{He,S}t_1} \]

\[\cdot \left(\frac{m_{He\omega He,D}}{\pi} \right)^{\frac{3}{4}} \exp \left[-\frac{1}{2} m_{He\omega He,D} |\vec{x}_2 - \vec{x}_D|^2 \right] e^{-iE_{He,D}t_2} \]

\[\cdot \left(\frac{m_{\omega H,D}}{\pi} \right)^{\frac{3}{4}} \exp \left[-\frac{1}{2} m_{\omega H,D} |\vec{x}_2 - \vec{x}_D|^2 \right] e^{+iE_{H,D}t_2} \]

\[\cdot \sum_j \mathcal{M}^\mu \mathcal{M}^{\nu*} |U_{ej}|^2 \int \frac{d^4p}{(2\pi)^4} e^{-ip_0(t_2-t_1) + i\vec{p}(\vec{x}_2 - \vec{x}_1)} \]

\[\cdot \bar{u}_e, S \gamma_\mu (1 - \gamma^5) \frac{i(p + m_j)}{p_0^2 - \vec{p}^2 - m_j^2 + i\epsilon} (1 + \gamma^5) \gamma_\nu u_{e,D}. \]

Evaluation:

- \(dt_1 \, dt_2 \)-integrals \(\rightarrow \) energy-conserving \(\delta \) functions \(\rightarrow \) \(p_0 \)-integral trivial
- \(d^3x_1 \, d^3x_2 \)-integrals are Gaussian
- \(d^3p \)-integral: Use Grimus-Stockinger theorem
The Grimus-Stockinger theorem

Let $\psi(\vec{p})$ be a three times continuously differentiable function on \mathbb{R}^3, such that ψ itself and all its first and second derivatives decrease at least like $1/|\vec{p}|^2$ for $|\vec{p}| \to \infty$. Then, for any real number $A > 0$,

$$\int d^3 p \frac{\psi(\vec{p}) e^{i\vec{p}\vec{L}}}{A - \vec{p}^2 + i\epsilon} \xrightarrow{|\vec{L}| \to \infty} \frac{2\pi^2}{L} \psi(\sqrt{A}L) e^{i\sqrt{A}L} + O(L^{-\frac{3}{2}}).$$

\Rightarrow Quantification of requirement of on-shellness for large $L = |\vec{L}|$.

From the amplitude to the transition rate

Amplitude:

\[iA = \frac{-i}{2L} \mathcal{N} \delta(E_S - E_D) \exp \left[-\frac{E_S^2 - m_j^2}{2\sigma_p^2} \right] \sum_j M^\mu M^{\nu*} |U_{ej}|^2 e^{i\sqrt{E_S^2 - m_j^2}L} \]

\[\sigma_p^{-2} = (m_{H\omega_H,S} + m_{He\omega_{He,S}})^{-1} + (m_{H\omega_H,D} + m_{He\omega_{He,D}})^{-1} \]
From the amplitude to the transition rate

Amplitude:

\[iA = -\frac{i}{2L} N \delta(E_S - E_D) \exp \left[-\frac{E_S^2 - m_j^2}{2\sigma_p^2} \right] \sum_j M^\mu M^{\nu *}|U_{ej}|^2 e^{i\sqrt{E_S^2 - m_j^2}L} \]

\[\cdot \bar{u}_{e,S} \gamma_\mu \frac{1-\gamma^5}{2}(\rho_j + m_j)^{1+\gamma^5} \gamma_{\nu} u_{e,D}, \]

\[\sigma_p^{-2} = (m_{H\omega_{H,S}} + m_{He\omega_{He,S}})^{-1} + (m_{H\omega_{H,D}} + m_{He\omega_{He,D}})^{-1} \]

Transition rate: Integrate $|A|^2$ over densities of initial and final states

\[\Gamma \propto \int_{0}^{\infty} dE_{H,S} \; dE_{He,S} \; dE_{He,D} \; dE_{H,D} \]

\[\cdot \delta(E_S - E_D) \rho_{H,S}(E_{H,S}) \rho_{He,D}(E_{He,D}) \rho_{He,S}(E_{He,S}) \rho_{H,D}(E_{H,D}) \]

\[\cdot \sum_{j,k} |U_{ej}|^2 |U_{ek}|^2 \exp \left[-\frac{2E_S^2 - m_j^2 - m_k^2}{2\sigma_p^2} \right] e^{i\left(\sqrt{E_S^2 - m_j^2} - \sqrt{E_S^2 - m_k^2}\right)L} \]

Analogue of Lamb-Mössbauer factor
(Recoil-free fraction)

Oscillation phase
The Lamb-Mössbauer factor

The Lamb-Mössbauer factor is the relative probability of recoil-free emission and absorption, compared to the total emission and absorption probability.

\[\exp \left[-\frac{2}{E_i} - \frac{m_j^2}{2\sigma^2} - \frac{m_k^2}{2\sigma^2} \right] = \exp \left[-\left(\frac{p_{\text{min}}^{jk}}{2\sigma^2} \right)^2 \right] \exp \left[-\left| \Delta m^2_{jk} \right| \frac{2\pi}{\sigma^2} \right] \]

where \((p_{\text{min}}^{jk})^2 = E_i^2 - \max(m_j^2, m_k^2) \).

\[4\pi\sigma_x E_i / \sigma_p \lesssim L_{\text{osc}}^{jk}, \]

which is easily fulfilled in realistic situations.
The Lamb-Mössbauer factor

The **Lamb-Mössbauer factor** is the relative probability of recoil-free emission and absorption, compared to the total emission and absorption probability.

Difference to the standard Mössbauer effect: Appearance of neutrino masses

⇒ Emission and absorption of lighter mass eigenstates is suppressed compared to that of heavy mass eigenstates
The Lamb-Mössbauer factor

The Lamb-Mössbauer factor is the relative probability of recoil-free emission and absorption, compared to the total emission and absorption probability.

Difference to the standard Mössbauer effect: Appearance of neutrino masses

⇒ Emission and absorption of lighter mass eigenstates is suppressed compared to that of heavy mass eigenstates

Convenient reformulation:

\[
\exp \left[- \frac{2E_S^2 - m_j^2 - m_k^2}{2\sigma_p^2} \right] = \exp \left[- \frac{(p_{jk}^{\text{min}})^2}{\sigma_p^2} \right] \exp \left[- \frac{|\Delta m_{jk}^2|}{2\sigma_p^2} \right]
\]

where \((p_{jk}^{\text{min}})^2 = E_S^2 - \max(m_j^2, m_k^2)\).
The Lamb-Mössbauer factor

The Lamb-Mössbauer factor is the relative probability of recoil-free emission and absorption, compared to the total emission and absorption probability.

Difference to the standard Mössbauer effect: Appearance of neutrino masses
⇒ Emission and absorption of lighter mass eigenstates is suppressed compared to that of heavy mass eigenstates

Convenient reformulation:

\[
\exp \left[- \frac{2E_S^2 - m_j^2 - m_k^2}{2\sigma_p^2} \right] = \exp \left[- \frac{(p_{jk}^{\text{min}})^2}{\sigma_p^2} \right] \exp \left[- \frac{|\Delta m_{jk}^2|}{2\sigma_p^2} \right]
\]

where \((p_{jk}^{\text{min}})^2 = E_S^2 - \max(m_j^2, m_k^2)\).

⇒ Localization condition

\[4\pi \sigma_x E / \sigma_p \lesssim L^{\text{osc}}_{jk},\]

(with \(\sigma_x = 1/2\sigma_p\)) is satisfied if \(L^{\text{osc}}_{jk} \gtrsim 2\pi \sigma_x\), which is easily fulfilled in realistic situations.
Line broadening

Energy levels of 3H and 3He in the source and detector are smeared e.g. due to spin-spin interactions, crystal impurities, lattice defects, etc.

R. S. Raghavan, hep-ph/0601079
Line broadening

Energy levels of 3H and 3He in the source and detector are smeared e.g. due to spin-spin interactions, crystal impurities, lattice defects, etc.

R. S. Raghavan, hep-ph/0601079

Good approximation:

$$\rho_{A,B}(E_{A,B}) = \frac{\gamma_{A,B}/2\pi}{(E_{A,B} - E_{A,B,0})^2 + \gamma_{A,B}^2/4}$$
Line broadening

Energy levels of 3H and 3He in the source and detector are smeared e.g. due to spin-spin interactions, crystal impurities, lattice defects, etc.

R. S. Raghavan, hep-ph/0601079

Good approximation:

$$\rho_{A,B}(E_{A,B}) = \frac{\gamma_{A,B}/2\pi}{(E_{A,B} - E_{A,B,0})^2 + \gamma_{A,B}^2/4}$$

Result for two neutrino flavours:

$$\Gamma \propto \frac{(\gamma_S + \gamma_D)/2\pi}{(E_{S,0} - E_{D,0})^2 + (\gamma_S + \gamma_D)^2} \cdot \left\{ 1 - 2s^2c^2 \left[1 - \frac{1}{2}(e^{-L/L_{coh}^S} + e^{-L/L_{coh}^D}) \cos \left(\pi \frac{L}{L_{osc}} \right) \right] \right\}$$

$$L_{coh}^{S,D} = 4\bar{E}^2/\Delta m^2\gamma_{S,D}$$
Line broadening

Energy levels of 3H and 3He in the source and detector are smeared e.g. due to spin-spin interactions, crystal impurities, lattice defects, etc.

R. S. Raghavan, hep-ph/0601079

Good approximation:

$$\rho_{A,B}(E_{A,B}) = \frac{\gamma_{A,B}/2\pi}{(E_{A,B} - E_{A,B,0})^2 + \gamma^2_{A,B}/4}$$

Result for two neutrino flavours:

$$\Gamma \propto \frac{(\gamma_S + \gamma_D)/2\pi}{(E_{S,0} - E_{D,0})^2 + (\gamma_S + \gamma_D)^2} \cdot \left\{ 1 - 2s^2c^2 \left[1 - \frac{1}{2}(e^{-L/L_S^{coh}} + e^{-L/L_D^{coh}})\cos \left(\pi \frac{L}{L_{osc}} \right) \right] \right\}$$

$$L^{coh}_{S,D} = 4\bar{E}^2/\Delta m^2 \gamma_{S,D}$$

In realistic cases: $L^{coh}_{S,D} \gg L_{osc} \Rightarrow$ Decoherence is not an issue.
Outline

1. The Mössbauer neutrino experiment
2. Oscillations of Mössbauer neutrinos: Qualitative arguments
3. Mössbauer neutrinos in QFT
4. Conclusions
Conclusions

- Mössbauer neutrinos do oscillate.
Conclusions

- Mössbauer neutrinos do oscillate.
- **Plane wave treatment:** Mössbauer neutrinos are the *only* case where the equal energy assumption is justified.
Conclusions

- Mössbauer neutrinos do oscillate.
- **Plane wave treatment**: Mössbauer neutrinos are the *only* case where the equal energy assumption is justified.
- **Wave packet treatment**:

 - Coherence and localization conditions are irrelevant for realistic experiments.
 - Properties of the neutrino wave packets have to be put in by hand.
 - QFT treatment:
 - Only properties of the source and the detector are put in by hand.
 - Generalized Lamb-Mössbauer factor leads to localization condition.
 - Nonzero line width leads to coherence condition.
 - Both conditions are easily fulfilled in realistic experiments.
Conclusions

- Mössbauer neutrinos do oscillate.
- **Plane wave treatment:** Mössbauer neutrinos are the *only* case where the equal energy assumption is justified.
- **Wave packet treatment:**
 - Coherence and localization conditions are irrelevant for realistic experiments.
Conclusions

- Mössbauer neutrinos do oscillate.

- **Plane wave treatment:** Mössbauer neutrinos are the *only* case where the equal energy assumption is justified.

- **Wave packet treatment:**
 - Coherence and localization conditions are irrelevant for realistic experiments.
 - Properties of the neutrino wave packets have to be put in by hand.
Conclusions

- Mössbauer neutrinos do oscillate.
- **Plane wave treatment:** Mössbauer neutrinos are the *only* case where the equal energy assumption is justified.
- **Wave packet treatment:**
 - Coherence and localization conditions are irrelevant for realistic experiments.
 - Properties of the neutrino wave packets have to be put in by hand.
- **QFT treatment:**
Conclusions

- Mössbauer neutrinos do oscillate.

- **Plane wave treatment:** Mössbauer neutrinos are the *only* case where the equal energy assumption is justified.

- **Wave packet treatment:**
 - Coherence and localization conditions are irrelevant for realistic experiments.
 - Properties of the neutrino wave packets have to be put in by hand.

- **QFT treatment:**
 - Only properties of the source and the detector are put in by hand.
Conclusions

- Mössbauer neutrinos do oscillate.
- **Plane wave treatment:** Mössbauer neutrinos are the *only* case where the equal energy assumption is justified.
- **Wave packet treatment:**
 - Coherence and localization conditions are irrelevant for realistic experiments.
 - Properties of the neutrino wave packets have to be put in by hand.
- **QFT treatment:**
 - Only properties of the source and the detector are put in by hand.
 - Generalized Lamb-Mössbauer factor leads to localization condition.
Conclusions

- Mössbauer neutrinos do oscillate.
- **Plane wave treatment:** Mössbauer neutrinos are the *only* case where the equal energy assumption is justified.
- **Wave packet treatment:**
 - Coherence and localization conditions are irrelevant for realistic experiments.
 - Properties of the neutrino wave packets have to be put in by hand.
- **QFT treatment:**
 - Only properties of the source and the detector are put in by hand.
 - *Generalized Lamb-Mössbauer factor* leads to *localization condition*.
 - Nonzero line width leads to *coherence condition*.
Conclusions

- Mössbauer neutrinos do oscillate.
- **Plane wave treatment:** Mössbauer neutrinos are the *only* case where the equal energy assumption is justified.
- **Wave packet treatment:**
 - Coherence and localization conditions are irrelevant for realistic experiments.
 - Properties of the neutrino wave packets have to be put in by hand.
- **QFT treatment:**
 - Only properties of the source and the detector are put in by hand.
 - Generalized Lamb-Mössbauer factor leads to localization condition.
 - Nonzero line width leads to coherence condition.
 - Both conditions are easily fulfilled in realistic experiments.
Thank you!