



"Doing astronomy by looking downward"

## "The JEM-EUSO mission"

#### Andrea Santangelo\*

Advanced Studies Institute, Riken, Wako Kepler Center for Astro and Particle Physics, Eberhard-Karls-Universität, Tübingen

\* On behalf of the JEM-EUSO Collaboration

Karlsruhe, September 12, 2011

8th Air Fluorescence Workshop

#### I. The JEM-EUSO mission

The Extreme Universe Space Observatory on-board the Japan Experiment Module (JEM) of the ISS





2001-2004

Heritage of the ESA EUSO study



#### JEM EUSO Collaboration

- Japan, USA, Korea, Mexico, Russia
- Europe: Bulgaria, France, Germany, Italy, Poland, Slovakia, Spain, Switzerland
- 77 Institutions, more than 250 researchers
- RIKEN: Leading institution



#### Main Scientific Objectives (1)

- Main Objective: Astronomy and Astrophysics through the particle channel
  - Identification of sources by high-statistics arrival direction analysis (+multi-wavelength!)
  - Measurement of the energy spectra of individual sources (spectral shape, flux, power)
    - Understand and constrain acceleration and emission mechanisms

Physics and Astrophysics at E>5. ×10<sup>19</sup>eV

### **Exploratory Scientific Objectives (2)**

- Exploratory Objectives: new messengers
  - Discovery of UHE neutrinos by neutrino discrimination and identification via X<sub>0</sub> and X<sub>max</sub>
  - Discovery of UHE Gammas by discrimination of  $X_{max}$  due to geomagnetic and LPM effect
- Exploratory Objectives: magnetic fields
  - Constrains on the galactic and local extragalactic fields



*High discovery potential; tests of new physics models* 

## Scientific Objectives 3

- Exploratory Objectives: Atmospheric science
  - Nightglow
- <u>⊨ <sup>90 km</sup> j</u>
- Transient luminous events



- Space-atmosphere interactions and climate change
- Exploratory Objectives: Meteors and meteoroids



A fast UV monitoring of the atmosphere

#### Take home messages:

Physics and Astrophysics at E>5. ×10<sup>19</sup> eV

But also… Explore new physics in the energy range E≈1 10<sup>21</sup>eV

Highest statistics and therefore largest exposures at extreme energies

$$E \approx 10^{20-21} eV$$

Lower Energies are important for overlapping with current generation observatories with significant statistics...  $E < 5 \times 10^{19} \text{ eV}$ 

#### Observational Technique: fluorescence from space







J. Linsley

(+e⁻)

▶ N<sub>2</sub>\*

Y. Takahashi

The observation of the UV fluorescence tracks is a well established technique

330–400 *nm*, UV

*Kakimoto et al., 1996 A. Bunner, 1967; Nagano, 2009;* 



#### GTU time units



a) Fluorescence b) Scattered Cherenkov c) Direct (diffusively reflected Cherenkov)  $1 GTU = 2.5 \mu sec$ **Back.** =  $500 / (m^2 \text{ sr ns})$ FAST SIGNAL duration  $\approx 50 - 150 \ \mu s$ 

Simulation of the light profile observed at the entrance pupil (above) and throught the instrument using the ESAF code

Kepler Center-Tü

#### Peculiarities from space

- Far and almost constant distance of the shower (no proximity effect)
- Shower is contained in the FOV: observation of the entire profile
- Possibility of observing in cloudy conditions (in most cases X<sub>max</sub> above the cloud-top)
- Less contamination by Cherenkov
- Efficient gamma/hadron separation using different geographical areas
- Measurement of neutrino showers at high altitude
  *with less LPM effect*





... and uniform exposure

Japanese Experiment Module "Kibo" July 2009

きぼう, Hope





## Mission aspects have been successfully studies by JAXA and RIKEN

| Parameter                | Value                         |  |  |
|--------------------------|-------------------------------|--|--|
| Launch date              | JFY 2016                      |  |  |
| Mission Lifetime         | 3+2 years                     |  |  |
| Rocket                   | H2B                           |  |  |
| Transport Vehicle        | HTV                           |  |  |
| Accommodation on JEM     | EF#2                          |  |  |
| Mass                     | 1938 kg                       |  |  |
| Power                    | 926 W (op.) 352 W (non op.)   |  |  |
| Data rate                | 285 kbps (+ on board storage) |  |  |
| Orbit                    | 400 km                        |  |  |
| Inclination of the Orbit | <b>51.6°</b>                  |  |  |
| Operation Temperature    | -10° to 50°                   |  |  |



# Conceptual View of the JEM-EUSO Telescope



#### International Role Sharing



#### The UV Telescope Parameters

| Parameter              | Value              |  |  |
|------------------------|--------------------|--|--|
| Field of View          | <b>±30°</b>        |  |  |
| Monitored Area         | >1.3×10⁵km²        |  |  |
| Telescope aperture     | ≥2.5 m             |  |  |
| Operational wavelength | 300-400 nm         |  |  |
| Resolution in angle    | 0.075°             |  |  |
| Focal Plane Area       | 4.5 m <sup>2</sup> |  |  |
| Pixel Size             | <3 mm              |  |  |
| Number of Pixels       | ≈3×10⁵             |  |  |
| Pixel size on ground   | ≈560 m             |  |  |
| Time Resolution        | 2.5 µs             |  |  |
| Dead Time              | <3%                |  |  |
| Detection Efficiency   | ≥20%               |  |  |

+ Optics Throughput

#### BBM of the Optics (Protypes)



Tested performances meet already the requirements (or are close to it) *large diameter Fresnel lenses manufactured in Japan and tested in the US at the University of Alabama (Huntsville) and at MSFC (NASA)* 



#### Full aperture tests, Xenon lamp at 40 m Source wavelength range: 300-400 nm, CCD Images of the focal spots - 9x7 mm<sup>2</sup>

![](_page_21_Figure_1.jpeg)

Measured with the source on the optical axis.

Measured with the source at 10 degrees to the optical axis.

![](_page_22_Figure_0.jpeg)

#### **Detector and electronics**

- MAPMT-64
- ASIC Spaciroc
- Electronic Cell Board
- 137 PDM 1st trigger and readout
- CCB 2nd trigger

![](_page_23_Picture_6.jpeg)

From 9.6 GB/s to 3 GB/day on the entire FS

PDM Bread board model integrated at RIKEN

#### II. Performances

#### Take home messages:

*Physics and Astrophysics at E>5 × 10<sup>19</sup> eV* 

But also ...

- Explore new physics in the energy range  $E \approx 10^{20}$ - $10^{21}$ eV
  - Highest statistics and therefore largest exposures at extreme energies

 $E \approx 10^{20-21} eV$ 

But also ... lower energies are important for overlapping with ground-based detectors and make a statistically significant comparison!

 $E < 5 \times 10^{19} eV$ 

# Key observation and instrument requirements

| Observation area (Nadir)                 | $\geq 1.3 \times 10^{5} (H_{orbit}/400[km])^{2} km^{2}$                             |
|------------------------------------------|-------------------------------------------------------------------------------------|
| Arrival direction determination accuracy | $\leq 2.5^{\circ}$ (at <i>E</i> =10 <sup>20</sup> [eV] and 60^{\circ} zenith angle) |
| Energy determination accuracy            | $\leq$ 30% (E=10 <sup>20</sup> [eV] and 60° zenith angle)                           |
| X <sub>max</sub> determination accuracy  | $\leq$ 120 [g/cm <sup>2</sup> ] (E=10 <sup>20</sup> [eV] and 60° zenith angle)      |
| Energy threshold                         | ≤ 5.5 × 10 <sup>19</sup> [eV]                                                       |
| Duty cycle                               | ≥ 17%                                                                               |
| Lifetime                                 | > 3 years (goal: > 5 years)                                                         |

### Which is the annual exposure?

- Of course it depends on the zenith angle and energy...
- It is determined by three factors:  $TA \times \eta \times \kappa$

 $TA \rightarrow Trigger Aperture$  Determined by the trigger efficiency

 $\eta \rightarrow duty \ cycle$ 

Determined by the background (and operation)

 $\kappa \rightarrow cloud impact$  Determined by the cloud coverage

### P.Bobik et al., 2011 Duty cycle estimation

defined as the fraction of time in which the nightglow background doesn't hamper EAS observation

- Based on the Universitetsky Tatiana satellite G. K. Garipov et al. 2005a, 2005b
- Scaling of the UV intensity from Tatiana's to the ISS orbit

The JEM-EUSO duty cycle has been estimated for a set of Solar Zenith angles assuming an UV background < 1500 photons/(m<sup>2</sup> ns sr)

#### P.Bobik et al., ID886

| Solar zenith angle (deg.) | Duty cycle (%) |  |
|---------------------------|----------------|--|
| 108                       | 22.2           |  |
| 109                       | 22.1           |  |
| 110                       | 21.9           |  |
| 111                       | 21.7           |  |
| 112                       | 21.5           |  |
| 113                       | 21.3           |  |
| 114                       | 21.0           |  |
| 115                       | 20.6           |  |
| 116                       | 20.3           |  |
| 117                       | 19.9           |  |
| 118                       | 19.5           |  |
| 119                       | 19.0           |  |
| 120                       | 18.4           |  |

Duty cycle (2)

Note that: <u>Selecting bckg < 1500</u> <u>photons/(m<sup>2</sup> ns sr)</u> with its relative occurrence gives a trigger efficiency curve <u>equivalent</u> to an <u>average bckg of 500</u> <u>photons/(m<sup>2</sup> ns sr)</u>

We can also operate at higher background rates (higher energies)

#### Duty cycle: EUSO old estimate

![](_page_30_Figure_1.jpeg)

C. Berat et al. 2003

F. Montanet et al. 2004

Independent estimate

All these results are in very good agreement with and actually better than *the conservative value* assumed by the JEM-EUSO consortium: 20%

#### Cloud Coverage

F. Garino et al., 2011

Cloud top

|       |                       | <3 km | <b>3-7</b> km | 7-10 km | >10 km |
|-------|-----------------------|-------|---------------|---------|--------|
| hти   | τ>2                   | 17.2  | 5.2           | 6.4     | 6.1    |
| an ne | <b>τ</b> ≈ 1-2        | 5.9   | 2.9           | 3.5     | 3.1    |
| puco  | $\tau \approx 0.1$ -1 | 6.4   | 2.4           | 3.7     | 6.8    |
|       | $\tau \approx 0.1$    | 29.2  | <0.1          | <0.1    | 1.2    |

Occurence of clouds (in %) between 50° N and 50° S on TOVS database. The matrix Optical depth vs. Cloud-top altitude is shown.

Confirmed by ISCCP, CACOLO & MERIS database

![](_page_32_Figure_0.jpeg)

L. Saez et al., 2011, K. Shinozaki et al. 2011

# Cloud-impact to trigger efficiency $E > 5 \cdot 10^{19} eV$ Cloud top

| 4            |                       | <3 km | <b>3-7</b> km | 7-10 km | >10 km |
|--------------|-----------------------|-------|---------------|---------|--------|
| Optical Dept | τ>2                   | 90%   | 65%           | 35%     | 20%    |
|              | $\tau \approx 1-2$    | 90%   | 70%           | 45%     | 25%    |
|              | $\tau \approx 0.1$ -1 | 90%   | 80%           | 75%     | 70%    |
|              | $\tau \approx 0.1$    | 90%   | 90%           | 90%     | 90%    |

Average efficiency<sup>\*</sup> = 82% above 50 EeV

\*A spectral distribution dN/dE << E<sup>-3</sup> is assumed

![](_page_34_Figure_0.jpeg)

# In more than 70% of the cases the UV track including Xmax is observable

\*Different geometrical conditions for optically thick or optically thin clouds

#### Trigger Probability (Zenith angle vs. Energy)

![](_page_35_Figure_1.jpeg)


## Normalised Aperture: Efficiency



### **OVERALL NET IMPROVEMENT**



Energy threshold of JEM-EUSO lowered by a factor ~1.8 compared Andrea Santangelo, Kepler Center-Tü

# Instantaneous Aperture



K.Shinozaki et al., 2011



K.Shinozaki et al., 2011

### Why JEM-EUSO? Large exposure + Full sky coverage



# Angular Resolution



End to end simulations show that the requirement is met.

T.Mernik et al., 2011



End to end simulations show that the requirement is met.

 $\Delta X_{max} < 70 gr/cm^2$  (Requirement  $\Delta X_{max} < 120 gr/cm^2$ ) OK

Andrea Santangelo, Kepler Center-Tü

*T.Mernik et al.*, 2011

# Comparison with current observatories

| Observatory                                       | Aperture<br>km <sup>2</sup> sr | Status     | Start | Lifetime | Duty<br>cycle | Annual<br>Exposure<br>km² sr yr | Relative<br>to Auger |
|---------------------------------------------------|--------------------------------|------------|-------|----------|---------------|---------------------------------|----------------------|
| Auger                                             | 7,000                          | Operations | 2006  | 4 (16)   | 1             | 7000                            | 1                    |
| ТА                                                | 1,200                          | Operations | 2008  | 2 (14)   | 1             | 1,200                           | 0.2                  |
| TUS                                               | 30,000                         | Developed  | 2012  | 5        | 0.14          | 4,200                           | 0.6                  |
| JEM-EUSO<br>(E≈10 <sup>20</sup> eV)               | 430,000                        | Design     | 2017  | 5        | 0.14          | 60,000                          | 9                    |
| JEM-EUSO<br>(highest energies)<br>Tilted mode 35° | 1,500,000                      | Design     | 2017  | 5        | 0.14          | 200,000                         | 28                   |

## Near Term Programmatics

- Test and calibration of the Optics; integration of the PDM engineering model (Spring 2012);
- Summer 2012 integration of a prototype (optics + PDM EM) and ...
- in October December 2012

Tests of the prototype at the TA site

# JEM-EUSO Balloon

- Look down from the balloon with an UV telescope (PDM EM + 3 lenses system)
- Engineering test
- Background test
- Airshower from 40 km altitude

2009 Proposal submitted to CNES 2011/6 Approved by CNES

→ 2013, January, first launch from Kiruna

## Conclusions

- *Science:* Evidence for GZK, Indication for Anisotropy, hints of sources but *puzzling scenario* (PAO, HiRes, TA)
  - Current generation of UHE Observatory is too small
  - We need next generation
  - *Exploration of the unknown*: UHE neutrinos, photons and new physics
- Breakthrough can come from space:
  - Large exposures, uniform exposures of the entire sky
  - JEM-EUSO is the pathfinder with potentially outstanding science output.
- JEM-EUSO is feasible:
  - Phase A/B studies of JAXA and of the Collaboration confirms it
  - Prototyping phase has been started. Tests on the key mission elements have been conducted.
- *Launch in 2017*

## Conclusions

- The JEM-EUSO duty cycle and cloud impact have been thoroughly estimated to be  $\eta \approx 20\%$  and  $\kappa > 70\%$ .
- JEM-EUSO is designed to have a annual exposure about 9xAuger at 10<sup>20</sup> eV in nadir mode and 28xAuger at the highest unexplored energies in tilt mode.
- To reach/approach 1ML integrated exposure it is *necessary to operate the mission also in tilted mode.*
- Simulations in nadir mode shows that the energy, angular and  $X_{max}$  resolution meet the requirements.
- JEM-EUSO will have enough exposure and reconstruction capability at 3x10<sup>19</sup> eV to overlap with current generation observatory.
- JEM-EUSO is not EUSO! Optics and PMTs QE have been greatly improved and so have been the performances... Andrea Santangelo, Kepler Center-Tü

H<sub>max</sub> & ZA dependence



#### F.Garino et al., ID398

Andrea Santangelo, Kepler Center-Tü

# Comparison with current observatories

| Observatory                                       | Aperture<br>km² sr | Status     | Start | Lifetime | Duty<br>cycle | Annual<br>Exposure<br>km² sr yr | Relative<br>to Auger |
|---------------------------------------------------|--------------------|------------|-------|----------|---------------|---------------------------------|----------------------|
| Auger                                             | 7,000              | Operations | 2006  | 4 (16)   | 1             | 7000                            | 1                    |
| TA                                                | 1,200              | Operations | 2008  | 2 (14)   | 1             | 1,200                           | 0.2                  |
| TUS                                               | 30,000             | Developed  | 2012  | 5        | 0.14          | 4,200                           | 0.6                  |
| JEM-EUSO<br>(E≈10 <sup>20</sup> eV)               | 430,000            | Design     | 2017  | 5        | 0.14          | 60,000                          | 9                    |
| JEM-EUSO<br>(highest energies)<br>Tilted mode 35° | 1,500,000          | Design     | 2017  | 5        | 0.14          | 200,000                         | 28                   |

Beijing, August, 2011

**International Cosmic Ray Conference 2011** 

### Why JEM-EUSO? Large exposure + Full sky coverage



# Current Status of the Mission? Please ask in the question time...

## Conclusions

- *Science:* Evidence for GZK, Indication for Anisotropy, hints of sources but *puzzling scenario* (PAO, HiRes, TA)
  - Current generation of UHE Observatory is too small
  - We need next generation
  - *Exploration of the unknown*: UHE neutrinos, photons and new physics
- Breakthrough can come from space:
  - Large exposures, uniform exposures of the entire sky
  - JEM-EUSO is the pathfinder with potentially outstanding science output.
- JEM-EUSO is feasible:
  - Phase A/B studies of JAXA and of the Collaboration confirms it
  - Prototyping phase has been started. Tests on the key mission elements have been conducted.
- *Launch in 2017*

# **Current Status of the Mission**

- Phase A study jointly conducted by JAXA and the JEM-EUSO consortium (Payload and Mission) is vigorously ongoing...
- JEM-EUSO has been included (in 2010) in the ELIPS program of ESA
- National contributions have been defined (and in many cases asked and in a few cases already approved!)
- US JEM-EUSO MO proposal (Explorer Call) is being reviewed by NASA (September 2011)

**International Cosmic Ray Conference 2011** 



- We expect to discover several tens of clusters

- Can observe the whole sky

### Atmospheric Monitoring System

### •IR Camera

Imaging observation of cloud temperature inside FOV of JEM-EUSO

### •<u>Lidar</u>

Ranging observation using UV laser

```
-JEM-EUSO "slow-data"
```

Continuous background photon counting



- Cloud amount, cloud top altitude:
- Airglow :
- Calibration of telescope :

(IR cam., Lidar, slow-data) (slow-data) (Lidar)

### Calibration and Monitor by Onboard LIDAR, Ground LIDAR & Xe flasher





0

5

10

#### Precision optics cancels chromatic aberration



Spot size is 2.5 mm

20

25

30

15

### Result of end-to-end simulation



### Transfer to the ISS: H-IIB Transfer Vehicle (HTV)



# Science Instrument: UV Telescope + Atmospheric Monitoring



### Bittermann, 2010

## The Zoo of neutrino models



### Discrimination of Neutrinos vs Protons



### Xmax

X1 initial point

Karlsruhe, June 28, 2011

Joint Seminar of Particle and Astroparticle Physics of Heidelberg, Tübingen and KIT

### Neutrino shower simulation



Horizontally incident neutrinos Survival prob. to come in FOV Neutrino: ~exp(-0.001) Proton: ~exp(-1000) for 10<sup>20</sup> eV

CONEX code used for shower simulation in atmosphere



# Profile of neutrino induced showers



- First peak resulted from hadronic part of shower
- Second and following peaks from electromagnetic part
  - LPM effect more significant at lower altitudes

### Neutrino cross sections

#### **Black Hole production**



Feng & Shapere, 2002

### EW instanton effects



Han & Hooper, 2004

#### p-brane production



Anchordoqui, Feng and Goldberg, 2002

### Exchange of KK modes



### Bittermann, 2010

## The Zoo of neutrino models



### Constrains from Auger

Auger Collaboration, 2009

**Top-down models** *are strongly constrained by the absence of identified photon candidates* in the Auger data



### Transient Luminous events



Figure 2.2.5-2. Various transient luminous events associated with lightning.

From the JEM-EUSO phase A report

### Atmospheric Luminous Phenomena



OH airglow observed from ground



Lightning picture observed from ISS



Leonid meteor swarm in 2001 taken by Hivison camera



Various transient eventsdrea Santangelo, Kepler Center-Tü


## JEM-EUSO DAQ – Data reduction block scheme

