

Absolute Air Fluorescence Yield Measurement

Martina Bohacova for the AIRFLY collaboration

Method and analysis

Compare fluorescence yield to a well known process to eliminate photo-detector systematics

• Full MC simulation of the ratio with nominal FLY is compared to the ratio measured in laboratory

AIRFLY at the Fermilab Test Beam

Veto Downst.

Signal PMT

Veto Upstream

1111111h."

0

Acceptance counter

Fluorescence Measurement in N_2 120 GeV protons

Total simulation of the experiment

- * using version Geant4.9.2.p02
- Standard electromagnetic processes (protons 120 GeV)
- Cerenkov process implemented by Geant4
- G4ScintillationProcess simulates the fluorescence – nominal yield 20 ph/MeV sampled from the AIRFLY spectrum
- 337 nm line forms 25.75% of the spectrum
- Cut in range 1 mm particles with shorter range deposit all their energy on the spot

Independent calibration using 337 nm laser

Triac

PMT NIST Calibrated Probe (5%)

attenuators

Fluorescence

Integrating sphere known transmission

Fluorescence Measurement in N_2 and air

$$S_{FI}(N_2) - S_{FI}(air) = (FI_{N2} + Bkg) - (FI_{air} + Bkg)$$

 $Fl_{N2} = (19.44 \pm 0.15) \ 10^{-4} \text{ p.e./proton}$ Bkg = (0.61 ± 0.08) 10⁻⁴ p.e./proton Same background from secondaries produced in air and N_2

r = 7.45±0.08 measured in the Fermilab apparatus with an alpha source

1% statistical unc.

consistent with vacuum bkg only 3% of signal

Three Measurements with

different systematics

performed in Nitrogen to increase the statistics

Ratio Nitrogen/Air (337nm)

Measured at AWA Argonne

r = 7.35±0.08

Confirmed in Fermilab setup

Currently used in Auger: 5.05 photons/MeV

Checks of the systematic effects

 dependence on the threshold for s.p.e. 	neg.
- photon counting time window	< 1 %
- independent data analysis	0.7 %.
- Cherenkov yield uncertainty due to RI	neg.
 Cherenkov contribution with port open 	neg.
 fluorescence with port open and closed 	neg.

Pointing laser to different spots neg.
 remounting the laser system < 1%

Laser calibration

Systematic uncertainties

Fluo/Cere ratio

- sphere efficiency ~ 0.9 % ~ 5.0 % - laser probe calibration - calibration sphere - PMT quantum efficiency ~ 1.0 % Transmission ~ 0.8 % ~ 1.0 % - Monte Carlo statistics - Monte Carlo statistics ~ 1.0 % ~ 1.0 % - N_{2}/Air ratio - N_{g}/Air ratio ~ 1.0 % - sphere λ dependence ~ 1.0 % - *sphere efficiency* ~ 0.9 % - filter transmittance ~ 2.0 % - background subtraction ~ 1.0 % - background subtraction ~ 1.0 % - energy deposit ~ 2.0 % - energy deposit ~ 2.0 % ~ 0.3 % - geometry

Total

3.7 %

Total

5.8%

Combined result

 $(Y_{air})_{Airfly} = 5.61 \pm 0.06_{stat} \pm 0.21_{syst} \text{ photons}_{337}/\text{MeV}$ (dry air, 1013 hPa, 293 K)

Summary

• Precise measurement of the absolute fluorescence yield of the 337 nm line was performed.

• Two independent calibration methods are giving compatible results.

- Our results are consistent within the uncertainties with other experiments.
- Total uncertainty of 4% achieved

• Together with AIRFLY measurements of the air fluorescence spectrum and its pressure, temperature and humidity dependence, the total uncertainty on the energy scale of UHECR due to FLY will be reduced to ~ 5%.

Backup slides

Photocathode coverage in Frascati

Moreover – Cerenkov light is polarized, fluorescence is not Integrating sphere eliminates the differences M. Bohacova 13, 9, 11