

Search for tHq with H $\rightarrow b\bar{b}$

A test of Higgs couplings

Christian Böser¹ | GK-Workshop Bad Liebenzell | 22.09.2014

¹INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK

www.kit.edu

Introduction to pp \rightarrow tHq

• Investigate coupling of the Higgs boson to fermions $o \mathcal{A}_{\mathsf{tHg}} \propto (\kappa_{V} - \kappa_{\mathsf{f}})$

■ Destructive interference in SM
 ⇒ cross-section is 18.3 fb

• With
$$\kappa_{\rm t}^{\dagger} = -1$$

•
$$\sigma_{
m tHq}=$$
 234 fb

 13 times enhanced compared to SM case

$$^{\dagger} \kappa_{\mathrm{t}} = \mathrm{Y}_{\mathrm{t}}/\mathrm{Y}_{\mathrm{t}}^{\mathrm{SM}}$$

Motivation

- Discover such a unique final state!
- Help excluding $\kappa_t = -1$ scenario

Moriond 2014

- Coupling constraints from ATLAS + CMS disfavor $\kappa_t = -1$, under assumption of only SM contributions to the total width
- BSM contributions to the loops in the H $\gamma\gamma$ and Hgg couplings are allowed $\rightarrow \kappa_{\rm t} = -1$ still tolerated

Direct search for tHq and H \rightarrow bb with $\kappa_{t} = -1$

CMS-HIG-14-015

Approval scheduled for this Friday

The CMS detector

Analysis strategy

- Challenging multijet final state
- 1 forward light jet
- 3 or 4 b jets (spectator b outside of tracker acceptance in \sim 30% of the cases)

Expected yields

	S/B	
3 tag region	\sim 0.7%	(13/1900 events)
4 tag region	\sim 2.1%	(1.4/66 events)

Analysis strategy

- Challenging multijet final state
- 1 forward light jet
- 3 or 4 b jets (spectator b outside of tracker acceptance in \sim 30% of the cases)

Expected	yields
----------	--------

	S/B	
3 tag region	\sim 0.7%	(13/1900 events)
4 tag region	\sim 2.1%	(1.4/66 events)

- tī production dominant background
- Validation done in tt control region

 MVAs for reconstruction and classification

Reconstruction of tHq

- Find correct jet assignment to final state quarks is combinatorial issue
- Reconstruct all possible hypotheses per event
- Additional constraints to reduce combinatorics
 - Correct interpretation
 ^ˆ all four quarks matched to a jet within ΔR < 0.3
 - Wrong interpretations: all other possible jet assignments
- Train MVA to discriminate between correct and wrong hypotheses
 - Kinematic variables
 - b-tagging information
 - Angular correlations
- Application on data: Take hypothesis with largest MVA response

MVA Response of tHq Reconstruction

- Good discrimination between correct and wrong hypotheses found
- Data/MC comparisons done in tt control region

Validation

Performance

Additional reconstruction under tt hypothesis

Good discrimination of processes tHq and tt is crucial for the analysis

- Idea to get better separation power:
 - Perform additionally reconstruction under tt production hypothesis
 - Use similar set of variables as for tHq reconstruction
 - Take this as input for classification

 $j_{\bar{t}}?$

 Again: Take correct assignment for training and take hypothesis with largest MVA response for application

MVA Response of tt Reconstruction

- Good discrimination between correct and wrong hypotheses found
- Data/MC comparisons done in tt control region

Validation

Performance

Christian Böser Search for tHq with H $\rightarrow b\bar{b}$

Classification

- Take all information after reconstruction
- Optimize classification MVA to separate signal from background

Fit on MVA output distributions

Electron channel

Muon channel

Christian Böser Search for tHq with H $\rightarrow b\bar{b}$

Results

95% Upper Limit on $\sigma/\sigma_{\kappa_{ m t}=-1}$			
Expected Observed			
$5.14\substack{+2.14 \\ -1.44}$	7.57		
$6.24^{+2.26}_{-1.71}$	6.95		
	$\frac{1}{5.14^{+2.14}_{-1.44}}$ Expected 5.14 ^{+2.14} 6.24 ^{+2.26} _{-1.71}		

- Combination of all MVA distributions into a single plot
 - Events in all channels sorted in bins of similar expected S/B ratio

- Observations in good agreement with SM
- Cross-check analysis with similar result

13/14

Summary

- Investigation of tHq is an active field with a lot of potential
- Search for tHq with H ightarrow b $ar{
 m b}$ is challenging
- Upper limits on $\kappa_{\rm t} = -1$ case
- CMS-PAS-HIG-14-015 will be (hopefully)
 - .. approved this Friday
 - .. shown at TOP 2014 in Cannes for the first time
- Combination paper with all available channels planned
- Stay tuned!

88.2

14 TeV

982

BACKUP

Cross sections

$$\mathcal{A} = \frac{g}{\sqrt{2}} \left[(c_F - c_V) \frac{m_t \sqrt{s}}{m_W v} A\left(\frac{t}{s}, \varphi; \xi_t, \xi_b\right) + \left(c_V \frac{2m_W s}{v} \frac{s}{t} + (2c_F - c_V) \frac{m_t^2}{m_W v}\right) B\left(\frac{t}{s}, \varphi; \xi_t, \xi_b\right) \right]$$
$$c_F \equiv g_{ht\bar{t}}/g_{ht\bar{t}}^{SM} \qquad c_V \equiv g_{hWW}/g_{hWW}^{SM}$$

Cross section is challengingly small

• The main background is $t\bar{t}$; its cross section is provided for comparison

Cross-section	8 TeV	14 TeV
$tHq, y_t = +1 \text{ (SM)}$	$18.3\pm0.4\text{fb}$	$88.2^{+1.7}_{-0.0}{\rm fb}$
$tHq, y_t = -1$	$233.8^{+4.6}_{-0.0}{ m fb}$	$980^{+30}_{-0}{ m fb}$
tī	245 ⁺⁹ _10 pb	950 ⁺⁴⁰ ₋₃₀ pb

tHq cross sections are cited according to M. Farina et al., JHEP 1305 (2013) 022 [arXiv:1211.3736]. Cross-sections for $t\bar{t}$ are calculated in M. Czakon, P. Fiedler, Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254]. Uncertainties are combined following R. Barlow, arXiv:physics/0306138

Flavor Scheme Comparison

4FS, pp→tHq

- m(b) > m(p) → b quark is no proton constituent,
- *b* quarks can only be pair-produced in high Q^2 production

5FS, pp→tHq

- b quarks in initial state, i.e. inside the proton
- Additional b comes through parton shower

Baseline Selection

Logical OR of single lepton triggers hlt_isomu24 / hlt_ele27_wp80

- Exactly 1 reconstructed isolated lepton
 - Muons: $p_{\rm T} > 26\,{
 m GeV}, \ |\eta| < 2.1, \ {
 m reliso} < 0.12$
 - Electrons: $p_{\rm T} > 30\,{
 m GeV}, \ |\eta| < 2.5, \ {
 m reliso} < 0.10$

3 tag Region

- #jets₃₀ ≥ 4
- #jets_{CSVT} = 3

4 tag Region

- #jets₃₀ ≥ 5
- #jets_{CSVT} = 4

Data-driven QCD estimation

Apply ABCD method

- Requires two selection cuts which are assumed to be uncorrelated for QCD events
 - A region: ordinarily-defined signal or control region used in this analysis.
 - **B region**: as A, but the lepton cuts are inverted; ie. the event is required to have exactly one lepton failing the "tight" definition but passing the "loose" definition.
 - C region: as A, but the pfMET cuts are inverted; in the electron channel the cut is ∉_T < 45 GeV and in the muon channel ∉_T < 35 GeV.</p>
 - **D** region: both cuts described above are inverted.

$$N_{A,QCD} = \frac{(N_{B,data} - N_{B,non-QCD}) \cdot (N_{C,data} - N_{C,non-QCD})}{N_{D,data} - N_{D,non-QCD}}$$
(1)

Data-driven QCD estimation

Table : Input Variables of tHq Reconstruction

Variable	Description		
Charge_BTop	Electric charge of b-quark jet from decay of top quark, multiplied by lepton's charge;		
Cos_LepRecoil_TH	Cosine of the angle between momenta of lepton and recoil jet in the rest frame of $t + H$ system		
DeltaR_BJetsHiggs	ΔR between the two jets from decay of Higgs boson		
DeltaR_BTopW	ΔR between b-quark jet and W boson from decay $t ightarrow { m W}$		
DeltaR_TopHiggs	ΔR between reconstructed top quark and Higgs boson		
abs(Eta_Recoil)	Pseudorapidity of recoil jet		
log(Mass_BTopLep)	Invariant mass of b-quark jet from decay of top quark and charged lepton		
log(Mass_Higgs)	Mass of reconstructed Higgs boson		
abs(MaxEta_BHiggs)	Pseudorapidity of the most forward jet from decay of H		
log(MinPt_BHiggs)	Transverse momentum of the softest jet from decay of H		
NumBTag_Higgs	Number of b-tagged jets among the two jets from decay of H		
PassBTag_BTop	Equals 1 if the b-quark jet from decay of t is b-tagged, 0 otherwise		
PassBTag_Recoil	Equals 1 if the recoil jet is b-tagged, 0 otherwise		
RelHt	Relative H_T , $(p_T(t) + p_T(H))/H_T$		

Table : Input Variables of $t\bar{t}$ Reconstruction

Variable	Description	
Charge_BTopHad -	Difference of electric charges of b-quark jets from decays of thad and tlep, multi-	
Charge_BTopLep	plied by lepton's charge	
DeltaR_Light	ΔR between the two light-flavor jets from decay of t_{had}	
DeltaR_BTopHadWHad	ΔR between b-quark jet and $\mathrm W$ boson from decay $t_{had} o \mathrm W$	
DeltaR_BTopHadWLep	ΔR between b-quark jet and W boson from decay $t_{ m lep} ightarrow { m W}$	
log(DMass_TopHadWHad)	Difference between masses of thad and W from decay of thad	
abs(Eta_TopHad)	Pseudorapidity of thad	
log(Mass_BTopLepLep)	Invariant mass of b-quark jet from decay of tlep and charged lepton	
log(Mass_WHad)	Mass of W from decay of thad	
NumBTag_Light	Number of b-tagged jets among the two light-flavor jets from decay of thad	
PassBTag_BTopHad	Equals 1 if the b-quark jet from decay of thad is b-tagged, 0 otherwise	
PassBTag_BTopLep	Equals 1 if the b-quark jet from decay of tlep is b-tagged, 0 otherwise	
log(Pt_TopHad)	Transverse momentum of thad	
log(Pt_TopLep)	Transverse momentum of t _{lep}	
RelHt	Relative H_T , $(p_T(t_{had}) + p_T(t_{lep}))/H_T$	
SumCharge_Light	Sum of electric charges of the two light-flavor jets from decay of thad, multiplied by lepton's charge	

Table : Input variables for the classification MVA

Variable	Description	
glb_Charge_Lep	Electric charge of the lepton	
abs(thq_Eta_Recoil)	Pseudorapidity of the recoil jet	
thq_NumBTag_Higgs	Number of b-tagged jets among the two jets from the Higgs boson decay	
log(thq_Pt_Higgs)	Transverse momentum of the Higgs boson	
log(thq_Pt_Recoil)	Transverse momentum of the recoil jet	
tt_DeltaR_Light	ΔR between the two light-flavor jets from the decay of t_{had}	
log(tt_Mass_TopHad)	Mass of t _{had}	
tt_NumPassBTag_Light	Number of b-tagged jets among the two light-flavor jets from the decay of t_{had}	

Table : Impact of systematic uncertainties

Omitted systematic	impact on limit [%]	only Systematic	impact on limit [%]
JES	-1.3	JES	-1.8
JER	-0.2	JER	1.4
BTag light flavor	-0.7	BTag light flavor	13.3
BTag heavy flavor	2.1	BTag heavy flavor	1.9
Pile up	0.1	Pile up	-0.9
Unclustered energy	-0.6	Unclustered energy	-4.0
Lepton efficiency	-2.5	Lepton efficiency	-0.9
Luminosity	-2.0	Luminosity	-1.0
Cross section (PDF)	-2.2	Cross section (PDF)	17.5
Cross section (Scale)	-2.4	Cross section (Scale)	18.9
MC Bin-by-Bin unc.	-3.3	MC Bin-by-Bin unc.	1.8
Q^2 scale (tHq + $t\overline{t}$)	-9.1	Q^2 scale (tHq + $t\bar{t}$)	33.7
Matching	-1.4	Matching	-2.9
Top p_T reweighting	-3.2	Top p_T reweighting	43.8
tt HF rates (b)	-1.2	tt HF rates (b)	29.4
<i>tī</i> HF rates (<i>b</i> b)	-0.9	<i>t</i> t HF rates (<i>b</i> b)	33.6
<i>t</i> t HF rates (<i>c / c</i> c)	-3.8	<i>t</i> t̄ HF rates (<i>c / c</i> c̄)	23.0
$t\overline{t}$ HF rates (total)	-7.9	<i>t</i> t HF rates (total)	32.3