

Measurement of the single top t-channel cross section at CMS

GK Workshop Bad Liebenzell 2012

Steffen Röcker | 10.10.2012

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK

Single top production

- \blacksquare Virtuality of the involved W boson \rightarrow three different production mechanisms
- t-channel and tW cross sections largely enhanced at LHC due to gluon splitting
- *t*-channel and *tW* depend on b-quark PDF (up to 4% $\Delta \sigma$)
- Largest cross section at Tevatron and LHC: t-channel

Single top - history and motivation

- Single top quark production first discovered in 2009 at Tevatron by CDF and DØ
- Discovery in s+t-channel after long and difficult search
- Rediscovery of t-channel in 2011 at LHC with first data
- Can now be studied in detail at LHC

Interesting properties:

- Allows direct measurement of CKM matrix element $|V_{tb}|$
- Sensitive to b quark PDF
- Wtb coupling enables tests of V–A structure, anomalous couplings
- Allows study of top quark polarization
- Background for Higgs/SUSY and search for new physics (4th generation, H^+ , $W^{'}$)

Top quark decay

- Top quark decays immediately due to high mass / large width
- Top quark decays into W boson and b quark (SM: BR \approx 100%)
- W boson from top-quark decay further decays into charged lepton and neutrino (BR \approx 32%), here only muon and electron channel
- Spin information passed to decay products

Event selection

- Muon (electron+b-jet) trigger \rightarrow data set 1.17/fb (1.56/fb)
- 1 isolated muon (electron) with $p_T > 20(30)$ GeV/c and $|\eta| < 2.1$ (2.5)
- Veto electrons (muons) and loose muons (electrons) in muon (electron) decay channel
- MTW > 50 GeV/ c^2 (E_T^{miss} > 35 GeV/ c^2) to suppress QCD

- 2,3 or 4 jets with p_T > 30 GeV/c and $|\eta|$ < 4.5
- 0, 1 or \geq 2 jets with b-tag (0.1% mistag rate)

CMS detector

 Single top analyses need information from all detector subsystems to reconstruct (forward) jets, leptons, and missing transverse energy (E^{miss}_T)

Event Display - $\rho - z$ plane

Karbruhe Institute of Technology

Top quark reconstruction

- Reconstructed from detector: jets, leptons, E^{miss}_T
- Top quark candidate reconstructed from W boson and b-tagged jet
- W boson from lepton and E_T^{miss} : $p_{z,\nu}$ from E_T^{miss} by constraint on W boson mass
 - Two real solutions: Choose the one with smallest $|p_{z,\nu}|$
 - Imaginary solution: Minimal variation of E_T^{miss} so that $M_T^W = M_W$
- Assign b-tagged jet to top quark decay
 - Assignment of top quark correct in approx. 88% of cases (MC studies)

Backgrounds

- Contribution from background processes after selection:
 - Single Top: *s*-channel, *tW*
 - W+jets
 - Top quark pair production tt
 - Z+jets
 - Diboson (WW, WZ, ZZ)
 - QCD multijet

- Main backgrounds: W+jets and top quark pair production $t\bar{t}$
- \blacksquare QCD multijet background difficult to model, MC statistics very small \rightarrow data driven estimation

Data driven background estimation

- QCD multijet distribution extracted from orthogonal data set:
- Muon channel:
 - Invert relative isolation cut
- Electron channel:
 - Anti-Electron ID
 (2 out of 3 criteria must not be fulfilled)
- Orthogonal selection has been checked in MC
- Fit to transverse mass of W boson (MTW) / E_T^{miss} before cut to extract shape and rate $F(x) = a \cdot S(x) + b \cdot B(x)$

Discriminating variables

- Pseudorapidity of light quark mostly in forward region
- Other variables alone: not much separation power
- lacksquare \to Use a multivariate technique

Neural network

- Karbruhe Institute of Technology
- Artificial neural networks (NN) modeled after biological neural networks
- Multiple nodes with nonlinear activation function in three or more layers, each node connected to every node in the next layer with specific weight
- The network learns by minimizing an error function and changing the weights (Supervised learning, backpropagation)

NeuroBayes:

- 3-layer feedforward network
- Robust preprocessing of input variables (Decorrelation, transformation to Gaussian)
- Spline-fit to variables to be robust against statistical fluctuations or noise

Neural network - input variables

- Detailed studies of multiple variables
- Only use well modeled variables, i.e. those with good KS test values in control region
- Network rejects variables with low significance
- 37 variables in muon channel
 38 variables in electron channel
- Most important variables: light quark η, H_T, M_{jet1,jet2}

correlation matrix of input variables

Neural network - training

- Signal/background ratio 50:50 (*t*-channel vs *tt*, *W*+jets, *Z*+jets)
- Network can separate signal and background
- Purity increases with discriminator output

Neural network - discriminator in background region

Discriminator output well modeled in $t\bar{t}$ enriched background region

Neural network - discriminator in signal region

Statistical inference

Bayesian method

$$p(\mu| ext{data}) \propto \int p'(ext{data}|\mu,ec{ heta}) \cdot \pi(\mu)\pi(ec{ heta}) \, \mathrm{d}ec{ heta}$$

- Impact of systematic effects marginalized as nuisance parameters (JER, JES, b-tagging, ...)
- Influence of theoretical uncertainties studied separately, not marginalized (Renormalization/factorization (Q² scale), matching, PDF, different signal generator)
- Integration via Markov Chain Monte Carlo (MCMC)
- Statistical framework: http://www.theta-framework.org
- Cross section for electrons, muons:

$$\sigma_{t-ch.} = 69.7^{+7.2}_{-7.0} \text{ (stat. + syst. + lum.)} \pm 3.6 \text{ (theor.) pb}$$
(muons)
$$\sigma_{t-ch.} = 65.1^{+9.2}_{-8.9} \text{ (stat. + syst. + lum.)} \pm 3.5 \text{ (theor.) pb}$$
(electrons)

and combined:

$$\sigma_{t-ch.} = 68.1 \pm 4.1 \text{ (stat.)} \pm 3.4 \text{ (syst.)}^{+3.3}_{-4.3} \text{ (theor.)} \pm 1.5 \text{ (lum.) pb}$$

Combination

This measurement is combined with two other measurements:

- Template fit to light quark η
- W+jets background data driven
- One analysis bin (2 jets 1 tag)

- BDT analysis (Aachen)
 - MVA analysis (BDT)
 - Bayesian method } same as NN
 - Multiple analysis bins

All three analyses employ the same selection

Correlation is estimated by dicing toys

Combination - Result

Combining all three analyses with BLUE yields a cross section of

$$\sigma_{t-ch.} = \boxed{67.2 \pm 6.1 \text{ pb}} = 67.2 \pm 3.7 \text{ (stat.)} \pm 3.0 \text{ (syst.)} \pm 3.5 \text{ (theor.)} \pm 1.5 \text{ (lum.) pb}$$

- with a relative uncertainty of 9.1%
- Published in TOP-011-021 (arXiv:1209.4533), submitted to JHEP

Combination - Estimation of $|V_{tb}|$

- Under the assumption that $|V_{tb}|^2 \gg |V_{td}|^2 + |V_{ts}|^2$ and $|V_{tb}| = 1$ for $\sigma_{t-ch.}^{th}$
- One can extract $|V_{tb}|$ from the cross section measurement

$$V = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$|f_{L_V} V_{
m tb}| = \sqrt{rac{\sigma_{t-
m ch.}}{\sigma_{t-
m ch.}^{
m th}}} = 1.020 \pm 0.046 ~
m (exp.) \pm 0.017$$
 (theor.)

- with a possible anomalous form factor f_L from BSM models
- Constraining $|V_{tb}|$ to the interval [0, 1] and setting $f_L = 1$ yields: (Feldman Cousins)

 $0.92 < |V_{tb}| \le 1@$ 95% CL

Steffen Röcker - Measurement of the single top t-channel cross section at CMS

Conclusion

- Measured single top t-channel cross section and $|V_{tb}|$ with neural network analysis in multiple channels at $\sqrt{s} = 7$ TeV
- Combination yields cross section with relative uncertainty < 10%</p>
- Most precise single top t-channel cross section measurement

•
$$|V_{tb}| \approx 1$$
 and 0.92 < $|V_{tb}| \leq 1$ @ 95% CL

Conclusion and outlook

Conclusion:

- Measured single top t-channel cross section and $|V_{tb}|$ with neural network analysis in multiple channels at $\sqrt{s} = 7$ TeV
- Combination yields cross section with relative uncertainty < 10%</p>
- Most precise single top t-channel cross section measurement
- $|V_{tb}| \approx$ 1 and 0.92 $< |V_{tb}| \le$ 1 @ 95% CL

Outlook:

- Already recorded 15/fb at $\sqrt{s} = 8$ TeV this year
- Detailed studies of theory possible:
 - Differential measurement in top p_T and η
 - Polarization of top quarks

• . . .

Backup

Event Display - 3D view

Analysis regions

- Events without b-tag: (W+light enriched) control region of input variables
- Events with ≥ 2 b-tags:

Estimation of top quark pair production and constraint of systematic effects

Systematic effects

Uncertainty source			NN	BDT	$\eta_{j'}$
Marginalised (NN, BDT)	Experimental uncert.	Statistical	-6.1/+5.5%	-4.7/+5.4%	±8.5%
		Limited MC data	-1.7/+2.3%	$\pm 3.1\%$	±0.9%
		Jet energy scale	-0.3/+1.9%	$\pm 0.6\%$	-3.9/+4.1%
		Jet energy resolution	-0.3/+0.6%	$\pm 0.1\%$	-0.7/+1.2%
		b tagging	-2.7/+3.1%	$\pm 1.6\%$	±3.1%
		Muon trigger + reco.	-2.2/+2.3%	±1.9%	-1.5/+1.7%
		Electron trigger + reco.	-0.6/+0.7%	±1.2%	-0.8/+0.9%
		Hadronic trigger	-1.3/+1.2%	$\pm 1.5\%$	±3.0%
		Pileup	-1.0/+0.9%	$\pm 0.4\%$	-0.3/+0.2%
		MET modeling	-0.0/+0.2%	$\pm 0.2\%$	$\pm 0.5\%$
	Backg. rates	W+jets	-2.0/+3.0%	-3.5/+2.5%	±5.9%
		light flavor (u, d, s, g)	-0.2/+0.3%	$\pm 0.4\%$	n/a
		heavy flavor (b, c)	-1.9/+2.9%	-3.5/+2.5%	n/a
		tī	-0.9/+0.8%	$\pm 1.0\%$	±3.3%
		QCD, muon	±0.8%	$\pm 1.7\%$	±0.9%
		QCD, electron	±0.4%	$\pm 0.8\%$	-0.4/+0.3%
		s-, tW ch., dibosons, Z+jets	±0.3%	$\pm 0.6\%$	±0.5%
	Total marginalised uncertainty		-7.7/+7.9%	-7.7/+7.8%	n/a
	Luminosity		±2.2%		
Not marginalised	Theor. uncert.	Scale, tt	-3.3/+1.0%	$\pm 0.9\%$	-4.0/+2.1%
		Scale, W+jets	-2.8/+0.3%	-0.0/+3.4%	n/a
		Scale, t-, s-, tW channels	-0.4/+1.0%	$\pm 0.2\%$	-2.2/+2.3%
		Matching, tt	±1.3%	$\pm 0.4\%$	±0.4%
		t-channel generator	±4.2%	$\pm 4.6\%$	±2.5%
		PDF	±1.3%	$\pm 1.3\%$	±2.5%
		Total theor. uncertainty	-6.3/+4.8%	-4.9/+5.9%	-5.6/+4.9%
Syst. + theor. + luminosity uncert.			-8.1/+7.8%	-8.1/+8.4%	±10.8%
Total (stat, + syst, + theor, + lum,)			-10.1/+9.5%	$-9.4/\pm10.0\%$	+13.8%

Table: Sources of uncertainty on the cross section measurement.