Simulation and analysis of source related effects for KATRIN

Markus Hötzel

Graduiertenkollegs-Workshop, Bad Liebenzell 2012

10.10.2012

Institute of Experimental Nuclear Physics (IEKP)

Column density
Tritium purity
Magnetic field strength
Temperature
Contents

- KATRIN
- Windowless Gaseous Tritium Source
- Simulation
 - Density profile
 - Temperature profile
 - Source Spectrum Calculation
- Analysis
 - Ensemble method
 - Column density
 - Temperature
 - Profile likelihood
 - Tritium purity
- Summary and Outlook
Direct determination of neutrino mass: β-decay

Tritium β-decay, $E_0 = 18.6$ keV

$$m_v^2 = \sum_i \left| U_{ei} \right|^2 \cdot m_i^2$$

$$\frac{dN_i}{dE} \propto (E_0 - E) \sqrt{(E_0 - E)^2 - m_i^2c^4}$$

Model independent approach: kinematics & energy conservation
The KATRIN experiment

Calibration and monitoring system

WGTS cryostat

Transport section

Spectrometers and detector section

Strong β-source

$>10^{11}$ e$^-$/s

Remove molecules and ions

Transmit e$^-$ with $E>qU$

$\Delta E=0.93$ eV

Count e$^-$

~ 1 e$^-$/s
Windowless Gaseous Tritium Source WGTS

Column density
Tritium purity
Magnetic field strength
Temperature

DPS1-R
Module 2
3.6 T
85 K
120 K

Module 1
3.6 T
30 K
120 K

WGTS-tube
3.6 T
30 K (Standard mode)
120 K (Krypton mode)

Solenoid
T$_2$/Kr injection chamber
Beamtube

16 m
10 m

DPS1-F
Module 1
5.6 T
30 K
120 K

Module 2
5.6 T
85 K
120 K

R = Rear system
F = Forward system

Markus Hötzel – Simulation and analysis of source related effects for KATRIN
10.10.2012
Motivation: Systematic effects of the source

- KATRIN sensitivity: \(m_\nu < 200 \text{meV/c}^2 \) (90% C.L.)

- 3 years measurement time: \(\sigma_{\text{stat}} = 0.018 \text{eV}^2/\text{c}^4 \)

- Systematic effects: \(\sigma_{\text{syst}} \leq 0.017 \text{eV}^2/\text{c}^4 \)

- “4 out of 5 systematic effects are related with the WGTS”
 - Monitoring of the column density
 - Energy losses due to elastic/inelastic scattering
 - Magnetic field variations in the WGTS
 - Description of the final state distribution
Simulation
1-D density calculations

- Hydrodynamical regime
- Transitional regime
- Free molecular flow
- Unified calculation based on Boltzmann equation
2-D / Pseudo-3-D density profile

- Azimuthal temperature gradient causes 2-D deviations

2-phase LNe, $T_0 = 30$ K
Column density of the WGTS

Deviations on the 10^{-5} level

\rightarrow Negligible for KATRIN
Temperature profile (Measurement)

- „Demonstrator“ tests, 2011
- Original components, cryosystem
- Test of beam tube cooling
- No tritium circulation

Temperature stability

\[\Delta T / T = 1 \cdot 10^{-4} \]
Temperature profile (Measurement)

- „Demonstrator“ tests, 2011
- Original components, cryosystem
- Test of beam tube cooling
- No tritium circulation

- Temperature gradient ~ 1 K
- Increased thermal radiation
- Thermal conduction identified

→ Solved at assembly of the WGTS
Source Spectrum Calculation

- Combine various models of source parameters
 - Gas dynamics
 - Magnetic field
 - Energy spectrum of T_2
 - Doppler effect
 - Scattering of electrons in the source

- Use "voxelized" description of the WGTS

- Calculate expected count rates at detector
Analysis
Variance of ML estimator: MC method

- Simulate a „measured spectrum“ of KATRIN
- Use slightly different source parameters as “theoretical spectrum”
- Fit and store best fit value \hat{m}_v^2
- Repeat e.g. 4000 times
- Read off systematic shift Δm_v^2 and statistical uncertainty σ_{stat}
Systematic influence of the column density

\[\Delta m^2_{\nu} (\text{eV}^2) \times 10^{-3} \]

\[\Delta \rho_d / \rho_d \]

\[\Delta p_{\text{in}} / p_{\text{in}} \]

unaccounted shift

\[-7.5 \times 10^{-3} \text{eV}^2 \]
Systematic influence of the source temperature

\[\Delta \frac{T}{T} \times 10^{-3} \]

\[\text{systematic shift } \Delta m^2 \text{ (eV}^2\text{)} \]

\[+ 7.5 \cdot 10^{-3} \text{ eV}^2 \]
Influence of the temperature profile

- Increased temperature gradient $>3K$ due to additional thermal radiation

- Neglect temperature profile:

$$\Delta m^2_\nu = (1.0 \pm 2.3) \cdot 10^{-4} \text{ eV}^2$$
Requirements & Achievements

<table>
<thead>
<tr>
<th>source of syst. uncertainty</th>
<th>requirements</th>
<th>(\Delta m^2_{\nu}) (10^{-3} eV^2)</th>
<th>achievements</th>
</tr>
</thead>
<tbody>
<tr>
<td>variations of column density</td>
<td>(\frac{\Delta \rho d}{\rho d} < 2 \cdot 10^{-3})</td>
<td>< 1.5</td>
<td></td>
</tr>
<tr>
<td>injection pressure</td>
<td>(\frac{\Delta \rho_{\text{in}}}{\rho_{\text{in}}} < 2 \cdot 10^{-3})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>exit pressure</td>
<td>(\frac{\Delta \rho_{\text{ex}}}{\rho_{\text{ex}}} < 0.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>temperature</td>
<td>(\frac{\Delta T}{T} < 2 \cdot 10^{-3})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tritium purity</td>
<td>(\frac{\Delta \varepsilon_T}{\varepsilon_T} < 2 \cdot 10^{-3})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGTS magnetic field</td>
<td>(\frac{\Delta B_S}{B_S} < 2 \cdot 10^{-3})</td>
<td>< 2</td>
<td>1.3 (\cdot 10^{-4})</td>
</tr>
<tr>
<td>WGTS potential</td>
<td>(\Delta U < 10 \text{ mV})</td>
<td>< 1.2</td>
<td></td>
</tr>
</tbody>
</table>

Experimental achievements reported in [arXiv:1205.5421](https://arxiv.org/abs/1205.5421)
Profile likelihood & Systematics

- Include systematics into analysis

At KATRIN

- Parameter of interest: \(m_{\nu}^2 \)

- Nuisance parameters: \(\vec{\theta} = \{ \rho d, \varepsilon_T, \ldots \} \)

- Profile likelihood:
 \[
 \lambda(m_{\nu,0}^2 \mid \bar{X}) = \frac{\sup \{L(m_{\nu,0}^2, \bar{\theta} \mid \bar{X}); \bar{\theta}\}}{\sup \{L(m_{\nu}^2, \bar{\theta} \mid \bar{X}); m_{\nu}^2, \bar{\theta}\}}
 \]
Profile likelihood

\[- \log L(\bar{X} \mid m_v^2, \bar{\theta}) = - \sum_i p(X_i \mid m_v^2, \bar{\theta})\]
Profile likelihood with constraints (pull method)

\[-\log L(\bar{X} \mid m_v^2, \bar{\theta}) = -\sum_i p(X_i \mid m_v^2, \bar{\theta}) - \frac{(|\epsilon_T - \bar{\epsilon}_T|^2)}{2\sigma^2}\]

Constraint, e.g., external measurement of tritium purity $\bar{\epsilon}_T$.
Summary

- „4 out of 5 systematic uncertainties are related with the WGTS“
- Simulation with detailed source model
 - Density profile
 - Temperature profile
 - Spectrum Calculation
- Analysis
 - MC methods
 - Profile likelihood to include systematics
- Results
 - Requirements on source parameters validated
 - Experimental achievements e.g. „Demonstrator“ measurements

Outlook

- Full 3-D gasdynamics simulation of pumping chambers
- Use provided analysis routines to investigate further systematic effects
2-D density calculations

Injection region

Pumping chamber
Bulk velocity in the WGTS

![Diagram showing bulk velocity u_z as a function of radial distance r to the beam axis for different z values (0.5 m, 2.0 m, 4.0 m, 4.5 m).]
Systematic influence of the tritium purity

![Graph showing systematic shift vs. unaccounted shift]

- Systematic shift Δm_y^2 (eV2)
- Unaccounted shift $\Delta \varepsilon_T / \varepsilon_T$