

Search for the decay $B^0 ightarrow au^+ au^-$ at Belle

GK-Workshop 2015, Freudenstadt

Michael Ziegler | September 28, 2015

KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT)

How to detect New Physics?

Rare B Decays

Small branching ratios in the SM \Rightarrow effects from NP could be seen

$$\mathcal{B}(B^0 \to e^+ e^-)_{\rm SM} = (2.48 \pm 0.21) \times 10^{-15}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-)_{\rm SM} = (1.06 \pm 0.09) \times 10^{-10}$$

$$\mathcal{B}(B^0 \to \tau^+ \tau^-)_{\rm SM} = (2.22 \pm 0.19) \times 10^{-8}$$

Values from: Bobeth, C. et al., $B_{s,d} \rightarrow \ell^+ \ell^-$ in the Standard Model with Reduced Theoretical Uncertainty. Phys. Rev. Lett. 112, 101801 (2014)

Search for $B^0 ightarrow au^+ au^-$ at Belle

Experimental Setup

- KEKB: asymmetric energy *e*⁺*e*⁻ collider
- $\sqrt{s} \approx M(\Upsilon(4S))$
- Final data sample: $772 \times 10^6 \ B ar{B}$ pairs

Reconstruction

Challenge of $B^0 \to \tau^+ \tau^-$

au leptons decay in the detector ightarrow at least 2 neutrinos in the final state

- But at Belle: only two B mesons in an event
- Initial state well known
- Reconstruct one of them in a hadronic final state called B_{Tag}
- In the rest of the event, search for the signal side called $B_{
 m Sig}$

Tag Side - The hadronic full reconstruction

• B_{Tag} reconstructed in a large number of hadronic decay channels

- Multivariate selection at each stage
- Final probability for reconstructed B_{Tag} candidate being a B meson
- Remaining tracks and energy deposition in the detector must come from second B meson

Results of the Full Reconstruction

Efficiency of Full reconstruction: $\mathcal{O}(10^{-3})$

Michael Ziegler – $B^0
ightarrow au^+ au^-$

Signal Side

Reconstruct τ in different channels ...

Decay mode	${\cal B}$ in %
$\begin{aligned} \tau^- &\to e^- \bar{\nu}_e \nu_\tau \\ \tau^- &\to \mu^- \bar{\nu}_\mu \nu_\tau \end{aligned}$	$17,83 \\ 17,41$
$\tau^- \to \pi^- \nu_\tau$	10, 83

 \ldots and combine two oppositely charged au candidates to $B_{
m Sig}$

Selection

- No charged track and π^0 in rest of event
- More cuts on kinematic variables like missing mass, ...

Afterwards

Divide sample according to the final state

What do we expect so far?

Final state: one τ decays to e the other to π (+ neutrinos)

What is $E_{\rm Ecl}$?

Remaing energy in the calorimeter that is not used in the reconstruction

Michael Ziegler -
$$B^0 o au^+ au^-$$

Background Composition

- Background from light quarks suppressed
- Main background: misreconstucted B^0 . e.g.:

$$B^0 \to D^- (\to K_L \pi^-) e^+ \nu_e$$

Michael Ziegler - $B^0 o au^+ au^-$

Background Suppression

NeuroBayes networks are used

18

Michael Ziegler - $B^0 o au^+ au^-$

$E_{ m Ecl}$ after the cut

Signal extraction

Counting experiment in the signal window $E_{\rm Ecl} < 0.2 \; {\rm GeV}$

Michael Ziegler –
$$B^0
ightarrow au^+ au^-$$

Expected Sensitivity

A scan over different branching ratios for $B^0 \rightarrow \tau^+ \tau^-$ is performed to estimate the expected sensitivity

Conclusion

- NP can be seen in rare B decays
- Knowledge of the initial state makes reconstruction of decays with many neutrinos in the final state possible
- Expected limit (@ 95% CL):

$$\mathcal{B}(B^0 \to \tau^+ \tau^-)_{\text{expected}} < 7.5 \times 10^{-4}$$

Just the beginning of the search for $B^0
ightarrow au^+ au^-$

Results for $B^0 o \mu^+ \mu^-$

Source: LHCb & CMS Collaborations, Nature, 522 (2015), p. 68-72

Michael Ziegler - $B^0
ightarrow au^+ au^-$

