

Search for Supersymmetry at the LHC

Isabell-A. Melzer-Pellmann

- Introduction to Supersymmetry
- Challenges in data analysis
- Tools for SUSY searches
- Detailed example for a SUSY search
- Outlook

The Standard Model

Dark Matter

observed

10

M33 rotation curve

expected from

uminous dis

R (kpc)

We don't know much about the largest part of the universe!

Corrections to the Higgs Mass

Up to 1-loop corrections

Most dangerous !

Corrections to the Higgs Mass

Where do we expect Λ ?

Isabell Melzer-Pellmann

GK Workshop Bad-Liebenzell 22.-24.9.2014

Where we are...

Open questions of the Standard Model

- Challenges in data analysis
- Tools for SUSY searches
- Detailed example for a SUSY search
- Outlook

Supersymmetry

Each SM particle gets assigned a SUSY partner particle with spin differing by $^{1\!\!/_2}$ SUSY transformation:

- ↓ Q |fermion> = |boson>

Name convention:

- ← Fermion ← → S-fermion
- → Boson \leftarrow → bos(on)-ino

SUSY Particles

Overview of Particles

		-	a		
Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates	
Higgs bosons	0	+1	$H^0_u \; H^0_d \; H^+_u \; H^d$	$h^0 \hspace{0.1 cm} H^0 \hspace{0.1 cm} A^0 \hspace{0.1 cm} H^{\pm}$	5 physical Higgs
			$\widetilde{u}_L \widetilde{u}_R \widetilde{d}_L \widetilde{d}_R$	(same)	Dosons
squarks	0	-1	$\widetilde{s}_L \widetilde{s}_R \widetilde{c}_L \widetilde{c}_R$	(same)	
			$\widetilde{t}_L \widetilde{t}_R \widetilde{b}_L \widetilde{b}_R$	$\widetilde{t}_1 \widetilde{t}_2 \widetilde{b}_1 \widetilde{b}_2$	
			$\widetilde{e}_L \widetilde{e}_R \widetilde{ u}_e$	(same)	
sleptons	0	-1	$\widetilde{\mu}_L \widetilde{\mu}_R \widetilde{ u}_\mu$	(same)	
			$\widetilde{ au}_L \ \widetilde{ au}_R \ \widetilde{ u}_ au$	$\widetilde{ au}_1 \ \widetilde{ au}_2 \ \widetilde{ au}_{ au}$	
neutralinos	1/2	-1	$\widetilde{B}^0 \ \widetilde{W}^0 \ \widetilde{H}^0_u \ \widetilde{H}^0_d$	$\widetilde{N}_1 \ \widetilde{N}_2 \ \widetilde{N}_3 \ \widetilde{N}_4$	$\widetilde{\chi}_1^{\ 0}, \widetilde{\chi}_2^{\ 0}, \widetilde{\chi}_3^{\ 0}, \widetilde{\chi}_4^{\ 0}$
charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}^+_u \widetilde{H}^d	\widetilde{C}_1^\pm \widetilde{C}_2^\pm	$\widetilde{\chi}_1^{+/-} \widetilde{\chi}_2^{+/-}$
gluino	1/2	-1	\widetilde{g}	(same)	
goldstino (gravitino)	$\frac{1/2}{(3/2)}$	-1	\widetilde{G}	(same)	

SUSY Mass Eigenstates

Mass eigenstates are calculated from gauge eigenstates, e.g. $f_1 = f_L \cos(M_f) + f_R \sin(M_f)$, where the mass matrix M_f depends on:

- M_1 , M_2 , tan β , μ : SUSY masses and breaking
- → m_Z , m_W , sin² θ_W : EWSB mixing: B,W → Z, γ

Neutralino mixing: (\widetilde{B} , \widetilde{W} , \widetilde{H}_{d} , \widetilde{H}_{u}) $\rightarrow \widetilde{\chi}^{0}_{1,2,3,4}$

(M_1	0	$-m_Z c_\beta s_W$	$m_Z s_\beta s_W$	
	0	M_2	$m_Z c_\beta c_W$	$-m_Z s_\beta c_W$	
	$-m_Z c_\beta s_W$	$m_Z c_eta c_W$	0	$-\mu$	
	$m_Z s_\beta s_W$	$-m_Z s_\beta c_W$	$-\mu$	0	/

SUSY Mass Eigenstates

Mass eigenstates are calculated from gauge eigenstates, e.g. $f_1 = f_L \cos(M_f) + f_R \sin(M_f)$, where the mass matrix M_f depends on:

- M_1 , M_2 , tan β , μ : SUSY masses and breaking
- → m_Z , m_W , sin² $θ_W$: EWSB mixing: B,W → Z, γ

If the theory presenteds from a GUTs in the twees M_1 and M_2 : $M_2 \sim 2M_1$ 11

- → Dark matter → lightest SUSY particle → viable Dark Matter candidate
- Gravity \rightarrow can be included in SUSY
- ✤ Unification of forces at 10¹⁶ GeV:

Neutrino masses: expected in SUSY

Corrections to the Higgs Mass

Corrections to the Higgs mass by scalar partner particles

 $\begin{array}{ll} \mbox{Complete cancellation only if masses are exactly the same, if not:} \\ \delta M_h{}^2 \sim log(|M_B{}^2-M_F{}^2|) \\ \mbox{To solve the hierarchy problem, expect at least a few SUSY masses below 1 TeV} \\ \mbox{Isabell Melzer-Pellmann} & GK Workshop Bad-Liebenzell 22.-24.9.2014} \end{array}$

Corrections to the Higgs Mass

More SUSY particles protecting the Higgs mass:

Cornerstones of naturalness:

- Higgsino directly bound by Higgs mass parameter μ
- Top squark mass should not be heavier than 1 TeV (1-loop)
- Gluino can be a bit heavier (2-loops)

SUSY Breaking

Perfect symmetry: SUSY particles have same mass as SM particles **BUT:** experimentally not found \rightarrow broken symmetry can lead to higher masses Allow all possible mass terms and couplings which don't violate gauge couplings:

squark masses (e.g. m _Q ² : 3x3 matrix, 6 real + 3 phases)	$\mathcal{L}_{\text{soft}} = -\left[\tilde{Q}_{i}^{\dagger}\mathbf{m}_{\mathbf{Q}_{ij}}^{2}\tilde{Q}_{j} + \tilde{d}_{\mathbf{R}i}^{\dagger}\mathbf{m}_{\mathbf{D}_{ij}}^{2}\tilde{d}_{\mathbf{R}j} + \tilde{u}_{\mathbf{R}i}^{\dagger}\mathbf{m}_{\mathbf{U}_{ij}}^{2}\tilde{u}_{\mathbf{R}j} + \tilde{u}_{\mathbf{R}i}^{\dagger}\mathbf{m}_{\mathbf{U}_{ij}}^{2}\tilde{u}_{\mathbf{R}j} + \tilde{u}_{\mathbf{R}i}^{\dagger}\mathbf{m}_{\mathbf{U}_{ij}}^{2}\tilde{u}_{\mathbf{R}j} + \tilde{u}_{\mathbf{R}i}^{\dagger}\mathbf{m}_{\mathbf{U}_{ij}}^{2}\tilde{u}_{\mathbf{R}j}\right]$
slepton / Higgs m	$\frac{+\mathcal{L}_{i} \mathbf{m}_{Lij} \mathcal{L}_{j} + \mathbf{e}_{Ri} \mathbf{m}_{Eij} \mathbf{e}_{Rj} + m_{H_{u}} \mathbf{n}_{u} \mathbf{n}_{u} \mathbf{n}_{u} \mathbf{n}_{H_{d}} \mathbf{n}_{u} \mathbf{n}_{u}}{\mathbf{asses}}$
	$-\frac{1}{2}\left[M_1\bar{\lambda}_0\lambda_0+M_2\bar{\lambda}_A\lambda_A+M_3\bar{\tilde{g}}_B\tilde{g}_B\right]$
gaugino masses (M1,M2,M3) M': CP violation	$-\frac{i}{2} \left[M_1' \bar{\lambda}_0 \gamma_5 \lambda_0 + M_2' \bar{\lambda}_A \gamma_5 \lambda_A + M_3' \bar{\tilde{g}}_B \gamma_5 \tilde{g}_B \right]$
	+ $\left[(\mathbf{a}_{\mathbf{u}})_{ij} \epsilon_{ab} \bar{Q}_i^a H_u^b \tilde{u}_{Rj}^{\dagger} + (\mathbf{a}_{\mathbf{d}})_{ij} Q_i^a H_{da} d_{Rj}^{\dagger} + (\mathbf{a}_{\mathbf{e}})_{ij} L_i^a H_{da} \tilde{e}_{Rj}^{\dagger} + \text{h.c.} \right]$
qqH, IIH couplings	+ $\left[(\mathbf{c}_{\mathbf{u}})_{ij} \epsilon_{ab} \tilde{Q}^a_i H^{*b}_d \tilde{u}^{\dagger}_{\mathbf{R}j} + (\mathbf{c}_{\mathbf{d}})_{ij} \tilde{Q}^a_i H^{*}_{ua} \tilde{d}^{\dagger}_{\mathbf{R}j} + (\mathbf{c}_{\mathbf{e}})_{ij} \tilde{L}^a_i H^{*}_{ua} \tilde{e}^{\dagger}_{\mathbf{R}j} + \text{h.c.} \right]$
Higgs masses	$+ \begin{bmatrix} bH_u^a H_{da} + h.c. \end{bmatrix}, \qquad (8.1)$

SUSY Breaking

We know SUSY is a broken symmetry – but how? Different theories about the hidden sector on the market:

Most known are:

SUGRA:

→ Mediating interactions are gravitational → LSP is usually χ_1^0 GMSB:

- Mediating interactions are ordinary electroweak and QCD gauge interactions → LSP is usually the gravitino
- AMSB, Gaugino-mediation:
 - SUSY breaking happens on different brane in a higher-dimensional theory

Soft Supersymmetry Breaking: Give different masses to SM particles and their superpartners but preserve the structure of couplings of the theory

Gravitino in SUSY

- ♦ When standard symmetries are broken spontaneously → a massless boson appears for every broken generator
- If the symmetry is local, this boson is absorbed into the longitudinal components of the gauge boson, which becomes massive
- The same is true in SUSY → here, a massless fermion appears, called the Goldstino
- In the case of local supersymmetry, this Goldstino is absorbed into the Gravitino
- ◆ Coupling of the Goldstino (gravitino) to matter → proportional to $1/\sqrt{m_{\tilde{G}}M_{Pl}}$
- Mass of the gravitino in GMSB:

$$m_{\tilde{G}} \sim \frac{F}{M_{Pl}} \simeq 10^{-6} - 10^{-9} \text{GeV}$$

SUSY Parameter Space

 $\frac{1}{2}M_Z^2 = \frac{m_{H_d}^2 - m_{H_u}^2 \tan^2 \beta}{\tan^2 \beta} - \mu^2 \approx -m_{H_u}^2 - \mu^2$

MSSM \rightarrow 105 free parameters (masses, couplings, phases) **Key parameters** are:

- μ = SUSY version of the SM Higgs mass
- $tan\beta$ = Ratio of vacuum expectation values of H_u/H_d
- $m_h = Mass of h^0$ $m_h^2 \le M_Z^2 + \Delta m_{rad}^2 (A_t, tan\beta, \mu, m_{\tilde{t} 1,2}, m_t, v^{**})$

•
$$m_A = Mass of A^0$$

- $m_{H^+} = Mass of H^{+/-}$
- m_{Hu²}, m_{Hd²} from SUSY breaking
- M₀² = Squark 3x3 mass term

$$-=m_0^2$$
 at GUT scale*

- M_{12} = Slepton 3x3 mass term
- M_1 = Bino mass term
- M_2 = Wino mass term

•
$$M_3$$
 = gluino mass term

- $A_{u,d,e}$ ~Yukawa-like 3x3 matrix = A_0 at GUT scale*
- = m_{1/2} at GUT scale*

 - In Planck-scale mediated SUSY breaking models like mSUGRA *

**
$$v = \sqrt{(v_u^2 + v_d^2)}$$

Isabell Melzer-Pellmann GK Workshop Bad-Liebenzell 22.-24.9.2014

SUSY Models

MSSM \rightarrow 105 free parameters (masses, couplings, phases)

pMSSM \rightarrow 19 free parameters (first two sfermion generations degenerate, and with negligible Yukawa couplings)

Full vs. simplified Model

Past: interpretation in CMSSM

Present: try to make it more easier for theorists to compare their model to our result \rightarrow use simplified model!

CMSSM

Future: ???

Isabell Melzer-Pellmann GK Workshop Bad-Liebenzell 22.-24.9.2014

SUSY Production (Squarks and Gluinos)

Colored production has highest cross section at the LHC (if colored particles are not too heavy)

GK Workshop Bad-Liebenzell 22.-24.9.2014

SUSY Production (3rd Generation and Chargino-Neutralino)

In the MSSM, **proton could decay** through SUSY particle exchange with new couplings $W = \lambda' LQD + \lambda LLE + \lambda'' UDD$:

Solution: *R*-parity conservation, with *R* defined as:

 $R = (-1)^{2s+3B+L}$ with s: Spin, B: baryon number, L: lepton number

R=1: SM particle

R=-1: SUSY particle

If *R*-parity is conserved (RPC):

- → Single SUSY particle cannot decay into just SM particles
- → Lightest SUSY particle (LSP) absolutely stable
- → LSP candidates are: lightest neutralino, gravitino

Other option: **small violation of B or L** (aka **RPV** models)

Summary: Introduction to Supersymmetry

SUSY: a beautiful and straight-forward extension of the SM...

- Only possible extension of the Poincare group
- Solves most SM questions (Includes gravity, Dark Matter, unification of the forces
- Predicts a light Higgs
- Perturbative → predictive

- Predicts many new scalar particles
- We don't know their masses
- Hard to find (at least up to now...)
- Adds new quantum number to prevent p decay, but otherwise not theoretically motivated...

- Escaped 30 years of searches!
- SUSY breaking not understood (soft breaking in hidden sector?)
- We are flowed by 105 new parameters...

Isabell Melzer-Pellmann GK Workshop Bad-Liebenzell 22.-24.9.2014

Where we are...

- Open questions of the Standard Model
- Introduction to Supersymmetry

-----> Challenges in data analysis <-----

- Tools for SUSY searches
- Detailed example for a SUSY search
- Outlook

How to find direct evidence of (weak-scale) SUSY at LHC?

- SUSY cross-section is weak (pb-fb) and SM background is huge
- SUSY mass spectrum is a priori unknown (well, we can use naturalness as guide...)
- SUSY signatures can be numerous and (more or less) striking
- Long decay chains difficult to reconstruct

Experimental challenges = systematics = search sensitivity

- Changing LHC conditions (especially pile-up) and experiments
- Trigger can kill the signal ...
- Object reconstruction in hadronic environment
- Detector understanding (timing, ...) crucial for non-standard SUSY
- Data/Monte-Carlo (dis-)agreement in hadronic environment

Event Selection needed!

Problem: Signals much smaller than background!

Big challenge to find the rare exciting events!!

Introduction to Supersymmetry

Challenges in data analysis

Tools for SUSY searches

Detailed example for a SUSY search

Open questions of the Standard Model

Outlook

Where we are...

Need to find variables that **distinguish BSM from SM** signatures!

- Missing transverse energy (expected for only weakly interacting neutral particles leaving the detector)
 - Calculated from all energies in calorimeter or all Particle Flow objects: E_T^{miss} (or MET)
 - Calculated from all jets: H_T^{miss} (or MHT)
- $\Delta \Phi$: angle between E_T^{miss} and leading jet(s)
- → M_{T2}, Razor: two heavy particles in two hemispheres decaying to LSP
- **Transverse mass** calculated from lepton p_T and E_T^{miss} : M_T
- Sum of transverse energies of all jets above certain p_T threshold:

$$H_T = \sum_{jets} p_T^{jet}$$

Effective mass of all objects: M_{eff}

$$M_{eff} = \sum_{jets} p_T^{jet} + p_T^{lepton} + E_T^{miss}$$
(typically peaks at 1.8(M²_{SUSY} - M²_{LSP})/M_{SUSY}

Crucial for all SUSY searches (and experimentally very challenging)

- Real MET: Presence of a neutral weakly interacting particle in the event (i.e. v)
- Fake MET: Mismeasurement + detector malfunctions, poorly instrumented regions

→ Agreement data – Monte Carlo key for SUSY searches

High MET might be caused by **high** p_T **mismeasured jets** $\rightarrow \Delta \Phi$: angle between E_T^{miss} and leading jet(s)

 $\Delta \Phi$ (jet, MET)_{min}>0.2-0.5 (0-lepton events)

QCD sample (0.5<p_T<1.1 TeV)

Reverting this cut provides a very nice QCD enriched sample for background studies...

Isabell Melzer-Pellmann

GK Workshop Bad-Liebenzell 22.-24.9.2014

In W \rightarrow Iv decay, transverse mass M_T has an **endpoint at the true W mass**:

$$\begin{split} m_W^2 &= m_l^2 + m_\nu^2 + 2(E_T^l E_T^\nu \cosh \Delta \eta - \mathbf{p}_T^l \cdot \mathbf{p}_T^\nu) \ge \\ m_T^2 &= m_l^2 + m_\nu^2 + 2(E_T^l E_T^\nu - \mathbf{p}_T^l \cdot \mathbf{p}_T^\nu) \end{split}$$

In **RPC SUSY: two decay chains** with an unobserved child (c1 and c2) at each end. The "stransverse" mass M_{T2} : extension of M_T for the SUSY case of two unobserved particles:

$$M_{T2}(m_c) = \min_{p_T^{c(1)} + p_T^{c(2)} = p_T^{miss}} \left[\max\left(m_T^{(1)}, m_T^{(2)}\right) \right]$$

If m_c were known, the endpoint of M_{T2} could be used to calculate the parent mass M_p Simpler, but with similar efficiency: M_{CT}

$$m_{\rm CT}^2(v_1, v_2) = [E_{\rm T}(v_1) + E_{\rm T}(v_2)]^2 - [\mathbf{p}_{\rm T}(v_1) - \mathbf{p}_{\rm T}(v_2)]^2$$

Isabell Melzer-Pellmann

Interesting Variables: M_{T2}

• Simplest case: no extra jets (ISR/FSR); $m_c=0$:

$$(M_{T2})^2 = 2p_T^{vis(1)}p_T^{vis(2)}(1 + cos\phi_{12})$$

- For signal with symmetric systems, $p_T^{vis(1)} = p_T^{vis(2)}$:
 - → M_{T2} ~ MET
- For background:

Isabell Melzer-Pellmann

- Well-measured back-to-back dijets: $M_{T_2} \sim 0$
- Mis-measured events: $M_{T2} < E_T^{miss}$
- Multi-jet events \rightarrow divided into 2 pseudo-jets

CMS, vs = 7 TeV, L = 4.73 fb

QCD W+iet Z+iets

M_{ro} Analysis

200

400

10 Events

10^t

10⁴

10³

600

M_{T2} [GeV]

Main Backgrounds

CMS

 $\widetilde{\chi}_{1}^{0}$

a

р

ã

ĝ

ã

 \widetilde{X}_{2}^{0}

р

Background differ depending on the final state:

Z(→vv)+ jets

(W,t)+jets; $W \rightarrow \tau v$

q

 \widetilde{X}_{1}^{0}

D

Isabell Melzer-Pellmann GK Workshop Bad-Liebenzell 22.-24.9.2014

Where we are...

- Open questions of the Standard Model
- Introduction to Supersymmetry
- Challenges in data analysis
- Tools for SUSY searches

Detailed example for a SUSY search

Outlook

Example: Inclusive All-Hadronic Search Event Display

Inclusive All-Hadronic Search: Introduction

 $\tilde{\chi}_1^0$

Signature: Many jets and large missing transverse energy

- Least model-dependent analysis
- Large backgrounds:
 - Z+jets with $Z \rightarrow vv$ (irreducible)
 - W+jets and ttbar with W \rightarrow Iv and lost lepton or $\tau \rightarrow$ hadrons + v
 - QCD multijet events with large missing transverse momentum due to:
 - Leptonic decays of heavy flavor hadrons inside jets
 - Jet energy mismeasurement
 - Instrumental noise
 - Non-functioning detector components

Inclusive All-Hadronic Search: Event Selection

Baseline selection

- At least 3 jets with $p_T^{jet} > 50$ GeV and $|\eta| < 2.5$
- ✤ H_T > 350 GeV
- $H_T^{miss} > 200 \text{ GeV}$
- ↓ $|\Delta \Phi (J_{1,2}, H_T^{miss})| > 0.5$ and $|\Delta \Phi (J_3, H_T^{miss})| > 0.3$ to veto events where H_T^{miss} is aligned in transverse plane with one of the 3 leading jets
- Veto on isolated muons and electrons

Inclusive All-Hadronic Search: Background Estimation for $Z \rightarrow vv$

Background estimation with γ **+jets :**

Strategy:

- Declare photon invisible to emulate neutrinos
- Then re-calculate H_T^{miss} for this event
- Correct for the photon reconstruction efficiency and neutrino branching ratio
- Then scale the result with the production cross section ratio R_{Z/y}

SUSY signals could bias the prediction!

- \rightarrow Cross check with Z \rightarrow µµ+jets:
- Drawback: Low statistics in signal region, but comparable result in baseline selection

Inclusive All-Hadronic Search: W and Top Background Estimation

Lost Lepton Background Estimation

• Muon control sample with $M_T < 100 \text{ GeV}$ with $M_T = \sqrt{(2p_T^{\mu} E_T^{\text{miss}} (1-\cos \phi))}$ used to model:

- Non-isolated (but identified) leptons
- Non-identified leptons (ratio id/nonid taken from Monte Carlo)

τ Background Estimation

- Determined with a muon control sample
- Substitute μ with τ jet using response template to model the fraction of visible momentum
- Recalculate all quantities like H_T, H_T^{miss}

Inclusive All-Hadronic Search: QCD Background Estimation

SUS-13-012 JHEP 06 (2014) 055 arXiv:1402.4770

Most difficult background, derived here by '**Rebalance & Smear**' method:

- Rebalance all jets to overall p_T balance (=kind of `generator level jet', robust against seed jet mismeasurements and non-QCD processes)
- Smear p_T of each seed jet by a factor derived from jet resolution distribution (from simulation, and corrected for data/MC differences)

Smearing of the jets results in artificially created E_T^{miss} used to estimate the real E_T^{miss} distribution

Inclusive All-Hadronic Search: QCD Background Estimation

Most difficult background, derived here by '**Rebalance & Smear**' method:

- Rebalance all jets to overall p_T balance (=kind of `generator level jet', robust against seed jet mismeasurements and non-QCD processes)
- Smear p_T of each seed jet by a factor derived from jet resolution distribution (from simulation, and corrected for data/MC differences)

Smearing of the jets results in artificially created E_{T}^{miss} used to estimate the real E_{T}^{miss} distribution

Inclusive All-Hadronic Search: Results

Result measured in bins of H_T, H_T^{miss} and Njets Different search regions sensitive to different signals

GK Workshop Bad-Liebenzell 22.-24.9.2014

⁵⁰

Recap

Today we discussed:

- Introduction to Supersymmetry
- Challenges in data analysis
- Tools for SUSY searches
- Detailed example for a SUSY search

Next:

- Overview over other SUSY searches
- Outlook

Event selection done – but still some backgrounds left Reconstruction of physics objects [e.g. muons]

- Suppose SUSY Model XYZ implies that we should be looking for a signature of one muon, plus 3 jets to do:
 - Use a combination of Monte Carlo simulation of all known processes [e.g. W+3 jets with W→µv] that give this signature plus data events with 1µ+3jets
 - But what about another background: Z+3 jets, for which we lose one lepton from the $Z \rightarrow \mu\mu$ decay?!

Problem: we can only get a feeling for the size of the effect from Monte Carlo and detector simulation, MC+simulation will never get the answer completely right

- One needs to find a way of calculating this efficiency from the only source that speaks the absolute truth: the **data**!
- → Need to apply "data-driven" methods / techniques

Obtaining (in)efficiencies from data

Tag-and-probe method, e.g. with $Z \rightarrow \mu\mu$ events:

- Make a selection based on one muon that "tags" the type of event (e.g. passes tight cuts; or passes the trigger)
- Then demand that second muon does the same

Basic Variables

- Number (N) of ÷
 - ↓ Jets

- Model dependence, e.g. mean N_{jet} can vary from 0 to 4 for 1-lepton events in mSUGRA (CMS LM points)
- Leptons
- Transverse momentum (p_T) of
 - ↓ Jets
 - Leptons
- Model dependence (softer or harder spectra possible)
- Angle ϕ : no (large) ϕ dependence expected good crosscheck
- Pseudorapidity $\eta = -\ln(\tan \theta/2)$
- Relative isolation within a cone ΔR defined as:

