

Search for H ightarrow $bar{b}$ in association with Single Top Quarks

Workshop des Graduiertenkollegs - Freudenstadt-Lauterbad

Simon Fink | 28.09.2015

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK

28.09.2015 2/22

[10['] [d] (x)

 many different Higgs production mechanisms

Introduction I

- Higgs discovered in gluon-gluon fusion, evidence for VBF production
- looking for an increased cross section

- many different Higgs production mechanisms
- Higgs discovered in gluon-gluon fusion, evidence for VBF production
- looking for an increased cross section

Why even bother searching?

- many different Higgs production mechanisms
- Higgs discovered in gluon-gluon fusion, evidence for VBF production
- looking for an increased cross section

Why even bother searching?

two feynman diagram for the tHq production in SM

H

minn

W

• two feynman diagram for the tHq production in SM

- destructive interference in SM
- $\mathcal{A} \propto (\kappa_V \kappa_t)$

with anomalous coupling $(\kappa_t = -1)$ cross section increases to 234 fb

• two feynman diagram for the tHq production in SM

destructive interference in SM

•
$$\mathcal{A} \propto (\kappa_V - \kappa_t)$$

$$\kappa_x = \frac{y_x}{y_x^{SM}}$$

with anomalous coupling $(\kappa_t = -1)$ cross section increases to 234 fb

• two feynman diagram for the tHq production in SM

destructive interference in SM

•
$$\mathcal{A} \propto (\kappa_V - \kappa_t)$$
 $\kappa_x = \frac{y_x}{y_x^{SM}}$

with anomalous coupling $(\kappa_t = -1)$ cross section increases to 234 fb

interference can increase production cross section by ~ 13

Simon Fink tHq, $H \rightarrow b\bar{b}$

28.09.2015

3/22

- other enhancements possible due to:
 - Higgs mediated FCNC

heavy top partners

- other enhancements possible due to:
 - Higgs mediated FCNC

heavy top partners

- other enhancements possible due to:
 - Higgs mediated FCNC

heavy top partners

- 4 *b* quarks
- 1 isolated lepton
- 1 light forward jet
- missing energy

event topology:

• 4 *b* quarks

- 1 isolated lepton
- 1 light forward jet
- missing energy

- 4 *b* quarks
- 1 isolated lepton
- 1 light forward jet
- missing energy

- 4 *b* quarks
- 1 isolated lepton
- 1 light forward jet
- missing energy

- 4 *b* quarks
- 1 isolated lepton
- 1 light forward jet
- missing energy

- 4 *b* quarks
- 1 isolated lepton
- 1 light forward jet
- missing energy

- 4 b quarks
- 1 isolated lepton
- 1 light forward jet
- missing energy

- 3 b-tags (CSVT)
- # jets ≥ 4
- exactly one muon/electron
- 4 tag signal region
 - 4 b-tags (CSVT)
 - # jets \geq 5
 - exactly one muon/electron

- 4 *b* quarks
- 1 isolated lepton
- 1 light forward jet
- missing energy

0+

Simon Fink tHq, $H \rightarrow b\bar{b}$

jet assignment is a combinatorial problem

- use constraints to reduce number of possible permutations
- look at distributions for all possible assignments and all events
- use such variables to find right assignments

- jet assignment is a combinatorial problem
- use constraints to reduce number of possible permutations
- look at distributions for all possible assignments and all events
- use such variables to find right assignments

- jet assignment is a combinatorial problem
- use constraints to reduce number of possible permutations
- look at distributions for all possible assignments and all events
- use such variables to find right assignments

- jet assignment is a combinatorial problem
- use constraints to reduce number of possible permutations
- look at distributions for all possible assignments and all events
- use such variables to find right assignments

- jet assignment is a combinatorial problem
- use constraints to reduce number of possible permutations
- look at distributions for all possible assignments and all events
- use such variables to find right assignments

- jet assignment is a combinatorial problem
- use constraints to reduce number of possible permutations
- look at distributions for all possible assignments and all events
- use such variables to find right assignments

- jet assignment is a combinatorial problem
- use constraints to reduce number of possible permutations
- look at distributions for all possible assignments and all events
- use such variables to find right assignments

Neural Nets

assignment with highest NN output gets chosen

- build your new objects
- look at object distributions
- variables distinguish between signal and background

- assignment with highest NN output gets chosen
- build your new objects
- look at object distributions
- variables distinguish between signal and background

- assignment with highest NN output gets chosen
- build your new objects
- look at object distributions
- variables distinguish between signal and background

- assignment with highest NN output gets chosen
- build your new objects
- look at object distributions
- variables distinguish between signal and background

- assignment with highest NN output gets chosen
- build your new objects
- look at object distributions
- variables distinguish between signal and background

assignment with highest NN output gets chosen

- build your new objects
- look at object distributions
- variables distinguish between signal and background

- assignment with highest NN output gets chosen
- build your new objects
- look at object distributions
- variables distinguish between signal and background

- assignment with highest NN output gets chosen
- build your new objects
- look at object distributions
- variables distinguish between signal and background

- assignment with highest NN output gets chosen
- build your new objects
- look at object distributions
- variables distinguish between signal and background

- assignment with highest NN output gets chosen
- build your new objects
- look at object distributions
- variables distinguish between signal and background

MVA input variables

 $\eta_{a\prime}$

- obtain variables dependent on the reconstruction, e.g.:
 - pseudorapidity of the light forward jet
 - mass of the hadronically decaying top quark
- additionalyl reconstruction-independent lepton charge used
- train MVA to separate signal from background

MVA input variables

 $\eta_{a'}$

m_{thad}

- obtain variables dependent on the reconstruction, e.g.:
 - pseudorapidity of the light forward jet
 - mass of the hadronically decaying top quark
- additionalyl reconstruction-independent lepton charge used
- train MVA to separate signal from background

Classification MVA

- fit both signal regions and both channels simultaneously
- systematic uncertainties implemented either as rate or shape uncertainties
 - largest impact from Q² scale and jet energy scale

Limits

- set limits on tHq with $H \rightarrow b\bar{b}$ and $\kappa_t = -1$
- exclude production cross section larger than 1.77 pb at 95% C.L.

	Expected*	Observed*
MC-driven	$5.14^{+2.14}_{-1.44}$	7.57

* in units of $\sigma/\sigma_{y_t=-1}$

Simon Fink tHq, $H \rightarrow b\bar{b}$

- \blacksquare $\tau_{lep}\tau_{had}$
 - using the $e\mu\tau_{had}$ or $\mu\mu\tau_{had}$ channel
 - expects \approx 10 events each

- $\tau_{lep}\tau_{had}$
 - using the $e\mu\tau_{had}$ or $\mu\mu\tau_{had}$ channel
 - expects \approx 10 events each

• $H \rightarrow WW/\tau_{lep}\tau_{lep}$

- 3 channels: SS $e\mu$, SS $\mu\mu$ and 3 leptons
- large non-prompt lepton background

- $\tau_{lep}\tau_{had}$
 - using the $e\mu\tau_{had}$ or $\mu\mu\tau_{had}$ channel
 - expects \approx 10 events each

• $H \rightarrow WW/\tau_{lep}\tau_{lep}$

- 3 channels: SS $e\mu$, SS $\mu\mu$ and 3 leptons
- large non-prompt lepton background

• $H \rightarrow \gamma \gamma$

- almost entirely background-free
- would expect 0.67 signal events, observes none

aulepauhad

- using the $e\mu\tau_{had}$ or $\mu\mu\tau_{had}$ channel
- expects \approx 10 events each

• $H \rightarrow WW/\tau_{lep}\tau_{lep}$

- 3 channels: SS $e\mu$, SS $\mu\mu$ and 3 leptons
- large non-prompt lepton background

• $H \rightarrow \gamma \gamma$

- almost entirely background-free
- would expect 0.67 signal events, observes none

Conclusions

- presented search for tHq with H \rightarrow bb and $\kappa_t = -1$
- presented pioneering use of reconstruction techniques
- excluded production cross section larger than 1.77 pb at 95% C.L.
- results public under HIG-14-015
- combination paper submitted to journal

tHq input variables

Electric charge of b-quark jet from decay of top quark, multiplied by lepton's charge. The jet charge is defined as in Eq. (1) in Ref. [37], with $\kappa = 1$

 ΔR between the two jets from decay of Higgs boson

 ΔR between b-quark jet and W boson from decay t \rightarrow bW

 ΔR between reconstructed top quark and Higgs boson

Pseudorapidity of recoil jet

Invariant mass of b-quark jet from decay of top quark and charged lepton

Mass of reconstructed Higgs boson

Pseudorapidity of the most forward jet from decay of H

Tranverse momentum of the softest jet from decay of H

Number of b-tagged jets among the two jets from decay of H

Boolean variable that equals 1 if the b-quark jet from decay of t is b-tagged, 0 otherwise

Relative H_{T} , $(p_T(t) + p_T(H))/H_T$

tt input variables

Difference of electric charges of b-quark jets from decays of t_{had} and $t_{lep\prime}$ multiplied by lepton's charge

 ΔR between the two light-flavor jets from decay of t_{had}

 ΔR between b-quark jet and W boson from decay $t_{had} \rightarrow bW$

 ΔR between b-quark jet and W boson from decay $t_{lep} \rightarrow bW$

Difference between masses of thad and W from decay of thad

Pseudorapidity of thad

Invariant mass of b-quark jet from decay of tlep and charged lepton

Mass of W from decay of thad

Number of b-tagged jets among the two light-flavor jets from decay of thad

Boolean variable that equals 1 if the b-quark jet from decay of $t_{had}\xspace$ is b-tagged, 0 otherwise

Boolean variable that equals 1 if the b-quark jet from decay of $t_{\rm lep}$ is b-tagged, 0 otherwise

Transverse momentum of thad

Transverse momentum of tlep

Relative H_{T} , $(p_T(t_{had}) + p_T(t_{lep}))/H_T$

Sum of electric charges of the two light-flavor jets from decay of $t_{had\prime}$ multiplied by lepton's charge

MVA input variables

Electric charge of the lepton

Pseudorapidity of the recoil jet

Number of b-tagged jets among the two jets from the Higgs boson decay

Transverse momentum of the Higgs boson

Transverse momentum of the recoil jet

 ΔR between the two light-flavor jets from the decay of t_{had}

Mass of t_{had}

Number of b-tagged jets among the two light-flavor jets from the decay of $t_{\rm had}$

impact of systematic sources

Courses	Туре	impact as exclusive	improvement of final limit
Source		source on final limit [%]	after removal [%]
JES	shape	17	3
JER	shape	< 1	< 1
BTag light flavor	shape	13	< 1
BTag heavy flavor	shape	17	< 1
Pile up	normalization	< 1	< 1
Unclustered energy	shape	3	1
Lepton efficiency	normalization	5	< 1
Luminosity	normalization	10	< 1
Cross section (PDF)	normalization	8	< 1
Cross section (Scale)	normalization	9	< 1
MC Bin-by-Bin unc.	shape	< 1	< 1
Q^2 scale $(tHq + t\bar{t})$	shape	20	4
Matching	shape	2	2
Top p_T reweighting	shape	19	2
$t\bar{t}$ HF rates (b)	normalization	13	< 1
$t\bar{t}$ HF rates ($b\bar{b}$)	normalization	15	< 1
$t\bar{t}$ HF rates ($c / c\bar{c}$)	normalization	13	1

post-fit electron channel

tHq, H $ightarrow \gamma\gamma$

Н

Exactly one muon or electron

INTRODUCTION

background

BR by $\times 2.4$

Event selection:

Analysis looking for an excess in the $m_{\gamma\gamma}$ distribution at \sim 125 GeV

Very low event numbers - signal and

• $\kappa_t = -1$ would also increase decay

- One untagged jet with $|\eta| > 1$
- At least one b-tagged jet

$extsf{H} o \gamma \gamma$ backgrounds

Dealing with two different types of backgrounds

- Resonant backgrounds
 - BGs with ${\rm H} \to \gamma \gamma$
 - Appear under the signal peak
 - Dominated by ttH
 - Suppression of tTH with a 5-variable likelihood product discriminant
 - Small VH contribution
 - Taken from simulation
- Non-resonant backgrounds
 - Main backgrounds: γγ+jets, γ+jets, tγγ, ttγγ
 - Evaluated from data in the m_{γγ} sidebands

Process	Yield
tHq ($\kappa_t = -1$)	0.67
tīH	0.03 + 0.05 [†]
VH	0.01 + 0.01†
other H	0

 Careful treatment of non-resonant background results in a 33% rate uncertainty

RESULTS

- Shape taken from control regions
- Dominant systematic
- Other systematics included as pure rate systematics
- No data observed in signal region
 - Observed (and expected) limit of 4.1 $\sigma/\sigma_{\kappa_l=-1}$

Н·

tHq, H ightarrow WW, $au_{\textit{lep}} au_{\textit{lep}}$

${ m H} ightarrow { m WW}, au_{\it lep} au_{\it lep}$ topology

- Performed in two channels
 - Two same-sign leptons, $\mu^{\pm}\mu^{\pm}$ or $e^{\pm}\mu^{\pm}$
 - Three leptons, $\mu\mu\mu$, $\mu\mu e$, μee or eee

SS leptons

- Two same-sign leptons > 20GeV
- At least one central jet
- At least one *b*-tagged jet
- At least one untagged, forward jet $|\eta| > 1$
- Reject events with \(\tau_{had}\)

Three leptons

- Three leptons > 20/10/10 GeV
- Exactly one b-tagged jet
- One untagged, forward jet with $|\eta| > 1.5$
- Missing Energy in the event
- Z veto for leptons

$extsf{H} o extsf{WW}, au_{ extsf{lep}} au_{ extsf{lep}}$ backgrounds

Background dominated by non-prompt leptons

- Mostly $t\overline{t} \rightarrow \ell + jets$, where a b jet fakes a lepton
- Perform a data-driven estimation of this background
- Apply a likelihood product discriminator to suppress backgrounds
 - Trained to discriminate against both irreducible and non-prompt backgrounds
- Input variables vary in the different channels

• Fit is performed in the output of the likelihood

Outlook for Run II PRIVATE WORK

- In Run II at 13 TeV $\sigma_{\mathrm{tHq}_{\kappa_t=-1}}$ will increase by factor 4
- Simple scaling for first 20 fb ⁻¹ of Run II results in these limits for $\sigma/\sigma_{\kappa_l=-1}$

	${\rm H}{\rightarrow}\gamma\gamma$	$\rm H{\rightarrow} b\bar{b}$	$H \rightarrow WW$
Exp.	\sim 1.0	\sim 2.1	\sim 2.1

- Dedicated projection study only for bb
- Naive combination results in an upper limit of ~ 0.8
- Will be sensitive to $\kappa_t = -1$ soon in Run II

