Electron contribution to the muon anomalous magnetic moment at four-loop order

Alexander Kurz, Tao Liu,

Peter Marquard, Alexander V. Smirnov, Vladimir A. Smirnov, Matthias Steinhauser

Outline

3

Anomalous magnetic moment

$$\vec{\mu} = g \frac{e}{2m} \vec{s} \qquad g = 2 \cdot (1+a)$$

3

Anomalous magnetic moment

$$\vec{\mu} = g \frac{e}{2m} \vec{s} \qquad g = 2 \cdot (1 + a)$$

$$\stackrel{q \geq}{\underset{P_1}{\longrightarrow}} = -ie \ \bar{\psi}(p_2) \left(\gamma^{\mu} F_E(q^2) + i \frac{\sigma^{\mu\nu} q_{\nu}}{2m} F_M(q^2) \right) \ \psi(p_1)$$

$$F_E(0) = 1, \qquad F_M(0) = a$$

3

Anomalous magnetic moment

3

イロン イヨン イヨン イヨン

Leptonic correction

 $\begin{array}{l} 2\ell \hspace{0.2cm} [\text{Elend 1966}] \\ 3\ell \hspace{0.2cm} [\text{Laporta, Remiddi 1993; Laporta 1993}] \\ 4\ell \hspace{0.2cm} [\text{Kinoshita, Nio 2003}] \hspace{0.2cm} [\text{Lee et al 2013}] \\ 5\ell \hspace{0.2cm} [\text{Aoyama et al 2011}] \end{array}$

Leptonic correction

-∢ ∃ ▶

Leptonic correction

 $a_{\mu}^{4\ell}(e) = 132.685 \left(rac{lpha}{\pi}
ight)^4 pprox 386 \cdot 10^{-11} > \Delta a_{\mu} = 286 \cdot 10^{-11}$

[Aoyama, Hayakawa, Kinoshita, Nio 2012]

Asymptotic expansion in m_e/m_μ

$$\ell_1^2pprox\ell_2^2pprox m_\mu^2=p^2$$

expansion in $m_e
ightarrow 0$

イロト イヨト イヨト

Asymptotic expansion in m_e/m_μ

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Asymptotic expansion in m_e/m_μ

Calculation of integrals

• treatment of tensor structure and $\gamma\text{-matrices}$ in FORM \Rightarrow only scalar integrals left

★ E ► < E ►</p>

Calculation of integrals

- treatment of tensor structure and γ -matrices in FORM \Rightarrow only scalar integrals left
- Integration-by-Parts (FIRE; crusher)

$$\int dk \, \frac{\partial}{\partial k_{i}^{\nu}} k_{j}^{\nu} f(k^{2}) = 0 \quad \Rightarrow \quad \text{arb.Integral} = \sum_{n} c_{n} \, \text{MasterIntegral}_{n}$$

< 3 > < 3 >

Calculation of integrals

- treatment of tensor structure and γ -matrices in FORM \Rightarrow only scalar integrals left
- Integration-by-Parts (FIRE; crusher)

$$\int dk \; \frac{\partial}{\partial k_{\rm i}^{\nu}} k_{\rm j}^{\nu} f(k^2) = 0 \quad \Rightarrow \quad {\rm arb.Integral} = \sum_n c_n \; {\rm MasterIntegral}_n$$

- Evaluation of master integrals
 - Sector decomposition (FIESTA)
 - Mellin-Barnes

$$a_{\mu}^{4\ell}(e) = \sum_{i} A^{i}(x) \cdot \left(\frac{\alpha}{\pi}\right)^{4}, \qquad x = \frac{m_{e}}{m_{\mu}}, \quad \ell_{x} = \log(x)$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国

$$a_{\mu}^{4\ell}(e) = \sum_{i} A^{i}(x) \cdot \left(\frac{\alpha}{\pi}\right)^{4}, \qquad x = \frac{m_{e}}{m_{\mu}}, \quad \ell_{x} = \log(x)$$

$$A^{IV(a0)} =$$

$$7.5018 \pm 0.0026 + 14.8808\ell_{x} + 6.5797\ell_{x}^{2}$$

$$+x[6.29 \pm 0.46 - 14.6216\ell_{x} + 8.7729\ell_{x}^{2}]$$

$$+x^{2}[-16.81 \pm 0.43 + 30.0172\ell_{x} - 6.5069\ell_{x}^{2}$$

$$+7.6489\ell_{x}^{3} - 0.8889\ell_{x}^{4}]$$

$$+x^{3}[-48.31 \pm 0.24 - 4.8739\ell_{x} + 13.1595\ell_{x}^{2}]$$

$$a_{\mu}^{4\ell}(e) = \sum_{i} A^{i}(x) \cdot \left(\frac{\alpha}{\pi}\right)^{4}, \qquad x = \frac{m_{e}}{m_{\mu}}, \quad \ell_{x} = \log(x)$$

$$A^{IV(a0)} =$$

$$7.5018 \pm 0.0026 + 14.8808\ell_{x} + 6.5797\ell_{x}^{2}$$

$$+x[6.29 \pm 0.46 - 14.6216\ell_{x} + 8.7729\ell_{x}^{2}]$$

$$+x^{2}[-16.81 \pm 0.43 + 30.0172\ell_{x} - 6.5069\ell_{x}^{2}]$$

$$+7.6489\ell_{x}^{3} - 0.8889\ell_{x}^{4}]$$

$$+x^{3}[-48.31 \pm 0.24 - 4.8739\ell_{x} + 13.1595\ell_{x}^{2}]$$

 $= [115.1986 \pm 0.0026] + [1.6135 \pm 0.0022] \\ + [-0.052378 \pm 0.000010] + [0.000040] = 116.7598 \pm 0.0034$

通 ト イヨ ト イヨ ト

$$a_{\mu}^{4\ell}(e) = \sum_{i} A^{i}(x) \cdot \left(\frac{\alpha}{\pi}\right)^{4}, \qquad x = \frac{m_{e}}{m_{\mu}}, \quad \ell_{x} = \log(x)$$

$$A^{IV(a0)} =$$
7.5018 \pm 0.0026 + 14.8808\ell_{x} + 6.5797\ell_{x}^{2}
$$+x[6.29 \pm 0.46 - 14.6216\ell_{x} + 8.7729\ell_{x}^{2}]$$

$$+x^{2}[-16.81 \pm 0.43 + 30.0172\ell_{x} - 6.5069\ell_{x}^{2}$$

$$+7.6489\ell_{x}^{3} - 0.8889\ell_{x}^{4}]$$

$$+x^{3}[-48.31 \pm 0.24 - 4.8739\ell_{x} + 13.1595\ell_{x}^{2}]$$

$$= [115.1986 \pm 0.0026] + [1.6135 \pm 0.0022]$$

 $+[-0.052378\pm0.000010]+[0.000040]=116.7598\pm0.0034$

 $\Rightarrow A^{\mathsf{IV}(\mathsf{a0})} = 116.76 \pm 0.02$

 $\begin{array}{l} 111.1\pm8.1 \hspace{0.1 cm} \hbox{[Calmet, Peterman 1975]} \\ 117.4\pm0.5 \hspace{0.1 cm} \hbox{[Chlouber, Samuel 1977]} \end{array}$

(4回) (4回) (4回)

A(x)	our work ^(*)	$literature^{(+)}$
IV(a0)	116.76 ± 0.02	116.759183 ± 0.000292
IV(a1)	2.69 ± 0.14	2.697443 ± 0.000142
IV(a2)	4.33 ± 0.17	4.328885 ± 0.000293
IV(b)	-0.38 ± 0.08	-0.4170 ± 0.0037
IV(c)	2.94 ± 0.30	2.9072 ± 0.0044

(*) [Kurz, Liu, Marquard, Smirnov, Smirnov, Steinhauser 2015]

(+) [Aoyama, Hayakawa, Kinoshita, Nio 2012] [Kinoshita, Nio 2004]

3

A(x)	our work ^(*)	$literature^{(+)}$
IV(a0)	116.76 ± 0.02	116.759183 ± 0.000292
IV(a1)	2.69 ± 0.14	2.697443 ± 0.000142
IV(a2)	$\textbf{4.33} \pm \textbf{0.17}$	4.328885 ± 0.000293
IV(b)	-0.38 ± 0.08	-0.4170 ± 0.0037
IV(c)	2.94 ± 0.30	2.9072 ± 0.0044

(*) [Kurz, Liu, Marquard, Smirnov, Smirnov, Steinhauser 2015]

(+) [Aoyama, Hayakawa, Kinoshita, Nio 2012] [Kinoshita, Nio 2004]

- uncertainty: 0.4 $(\alpha/\pi)^4 \approx 1.2 \cdot 10^{-11} \ll \Delta a_\mu^{\text{unc.}} = 80 \cdot 10^{-11}$
- other diagram classes will be published soon \Rightarrow full $a^{4\ell}_{\mu}(e)$

イロト 不得下 イヨト イヨト 二日

Conclusions

- calculation of electron contribution to a_{μ} at $\mathcal{O}\left(\alpha^{4}\right)$
- very good agreement with the known result
- dominant part already published (light-by-light)
- other parts will be published soon