

Search for ttH production in boosted topologies

GRK Plenary Workshop 2015, Freudenstadt

Karim El Morabit, Marco Harrendorf, Ulrich Husemann, Patricia Lobelle, Hannes Mildner, Tobias Pfotzer, Matthias Schröder, **Shawn Williamson** | September 30, 2015

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP)

www.kit.edu

ttH Production

Special: Top-Higgs Yukawa Coupling

- Also large contributions in loop processes (e.g. $gg \rightarrow H, H \rightarrow \gamma\gamma$)
 - \rightarrow Coupling disguised by other contributions
- Special for tt
 Fill: Direct access to the top-Higgs Yukawa coupling

Challenging: Search

- Predicted by SM, but not yet sensitive for discovery
- Higgs production channel with very small cross section
- Dominating background processes

13 TeV: ${\sim}4$ times higher cross section compared to 8 TeV

Final State Particle Decays

tī Decay: Semileptonic

- Hadronic top decay: Large branching fraction & background
- Leptonic top decay: Small branching fraction & background

Semileptonic tt decay: Compromise between clean signature and good statistics

Higgs Decay: $H \rightarrow b\overline{b}$

- Largest branching fraction at *m_{Higgs}* = 125 GeV (≈ 58 %)
- Overwhelming background in hadron collisions

Semileptonic tīH(H \rightarrow bb) Event Topology

Decay Signature

- Four bottom quarks (Higgs boson and top quarks)
- Two light quarks (hadronic W boson)
- Charged lepton + MET (leptonic W boson)

Resulting challenges:

- Dominating irreducible background processes (tt(+bb) production)

tī́H(H \rightarrow bb̄) Analysis

- Event selection

 Single lepton

 Event categorization based on
 - Jet multiplicity
 - b-tag multiplicity

- Event reconstruction
 - Assign jets to decay products
 - Minimize \(\chi^2\) based on particle masses
- ④ Final BDTs:
 - Discriminate ttH against backgrounds
 - Separately trained for each category

Boosted Semileptonic tttH(H \rightarrow bb) Event Topology

Plehn, Salam, Spannowsky (2009): Boosted kinematic regime Analysis of events containing top quarks and Higgs bosons with large transverse momenta

But Why?

- Production of three heavy particles → Small phase space
- Heavy particles only moderately boosted

- For ttH high p_T particles occur
 - more often compared to tt
 - a lot more compared to QCD, Electro-Weak
 - ightarrow Background reduction

Boosted Semileptonic tttH(H \rightarrow bb) Event Topology

The real Reason: Reconstruction

- Massive particles pass momentum to decay products
- Decay products are collimated → Simplified reconstruction

Approach:

- Cluster decay products with large distance parameters → fat jet
- Analyze jet substructure with dedicated algorithms
- Combine information for identification of top quarks and Higgs boson

Decay Products Distance

- Distance of decay products
 - Eff. ΔR: Hadronic top quark (upper left)
 - AR: Higgs boson (bottom right)
- Differential in massive particle momentum

- Distance required to cluster decay products into one jet
- Based on MC particle level information
- Larger distances for hadronic top due to higher mass

8/21

Boosted Hadronic Top Reconstruction

Fat Jets

• Cambridge-Aachen algorithm R = 1.5

Subjet Finding

- HEP Top Tagger Algorithm
- Declustering of fat jets
- Subjet finding based on mass drop
- Subsequent jet grooming
- Returns three subjets assigned to hadronic top decay products

Additional Substructure Information

- N-Subjettiness
- Optimal R
- Groomed jet masses

Boosted Hadronic Top Identification

Identification based on continuous discriminators for later optimization

Cut Based Discriminators

- Standard HEP Top Tagger (HEP): Cuts on invariant masses of subjet combinations
- b-tagging HEP Top Tagger (HEPCSV): HEP Top Tagger with b-tagging subjet assignment

Multivariate Discriminators

- Likelihood Top Tagger: Based on HEP-Top-Tagger variables
- BDT Top Tagger (BDT_Std):
 - BDT trained on substructure variables

Boosted Higgs Reconstruction

Fat Jets

• Cambridge-Aachen algorithm R = 1.2

Subjet Finding

- Subjet Filterjet Algorithm
- Declustering of fat jets
- Subjet finding based on mass drop
- Subsequent jet grooming
- Returns an arbitrary number of subjets

Additional Substructure Information

- N-Subjettiness
- Groomed jet masses

Boosted Higgs Identification

Higgs Discriminator

- Second highest b-tagging output value among filtered subjets
- \blacksquare Higgs mass unused \rightarrow final BDT
- 8 TeV studies → improvement by MVA Higgs Tagger

Future Improvements

- Increase fat jet cone size
- CMS Higgs Tagger being developed
 - Double secondary vertex reconstruction
 - N-Subjettiness
 - Groomed masses

Event Selection Double Boosted Category

- Exactly one selected lepton
- One selected hadronic top candidate

Lepton Selection (e/ μ)

- *p_T* > 30 GeV
- |η| < 2.1</p>
- Isolated

Had. Top Candidate Selection

- p_T > 200 GeV
- |η| < 2.0</p>
- Select top jet with highest top identification value

One selected Higgs candidate

Higgs Candidate Selection

- *p*_T > 200 GeV
- |η| < 2.0</p>
- Select Higgs jet with highest Higgs identification value
- Removing of overlap with hadronic top candidate:
 - Distance to hadronic top candidate ΔR > 1.5
 - No sharing of subjets with hadronic top candidate

13/21

Event Selection Performance

Full Event selection except for the cuts on the discriminator values

Benchmark variables

- Signal selection efficiency
- Background selection efficiency
- Signal over background (S/B)
- Signal Significance (S/\sqrt{B})
- Event reconstruction efficiency

Performance Analysis

- Performance evaluated for all combinations of
 - Higgs discriminator cut
 - Hadronic top discriminator cut
- Analyzed for ttH (signal) and tt (main background)

Event Selection Optimization

Receiver Operating Characteristics (ROCs)

- Selection performance analysis for each cut combination
- Various cut combinations with same signal efficiency → Broad ROC space

Selection Optimization

- Search for best performing cuts
- Choose cut combination with lowest background efficiency for given signal efficiency
 → Continuous line in two dimensional cut space

Boosted Event Selection Working Point

- Working points close to line of best cuts deliver best performance
- Choice of working point ambiguous \rightarrow Optimization for best limits

Example: High Purity Working Point

• Top Identification Value ≥ -0.53

Signal Eff.	Background Eff.	S/B	S/√B
0.00170	0.00004	0.014	0.26

Signal efficiency \approx 40 times higher than background efficiency

Top Rec. Eff.	Higgs Rec. Eff.	Event Rec. Eff.
69%	57%	45%

Very high reconstruction efficiency compared to standard analysis (\approx 20 %)

16/21

Event Categorization

- Boosted category covers phase space with only few events
- Reconstruction of events not resolved by standard jet analysis
- Combination of boosted analysis category with standard analysis categories

- Boosted event category overlaps with standard analysis categories
- Assign overlapping events to boosted category
 - ightarrow Better reconstruction efficiency

Event Yields

Expected event yields for $\int \mathcal{L} dt = 10 f b^{-1}$:

Boosted category features

- Signal event yields comparable to standard categories
- Large fraction of selected background from tt + light flavor
- Comparably strong tt + bb background suppression

- Large tt + 2b background contribution
 - Radiated bb pair merged into one jet
 - Very likely to fake boosted Higgs boson

Background Discrimination

Variable Examples

- Event reconstruction variables: Mass of reconstructed Higgs candidate (upper plot)
- Std. jet b-tagging variables: Average b-tagging output of all standard jets (right plot)

- Further background discrimination achieved by
 - Additional selection cuts
 - Final BDTs
- Variables benefit from high reconstruction efficiency

Conclusion

Subsequent Analysis Steps

Training of final BDT, fit, limit calculation and optimization in progress

The boosted ttH analysis features:

- Boosted jet reconstruction specialized on tt
 t
 H search
- Optimized selection for signatures with a boosted Higgs boson and a boosted hadronic top
- High reconstruction efficiency brings further background discrimination

Outlook

- MVA Higgs tagger
- Larger cone size

- Additional boosted categories
- Full analysis

The End

Thank you for your attention!

Sources:

- V. Khachatryan *et al.* [CMS Collaboration], "Search for the associated production of the Higgs boson with a top-quark pair", JHEP **1409** (2014) 087
- T. Plehn, G. P. Salam and M. Spannowsky, "Fat Jets for a Light Higgs", Phys. Rev. Lett. **104** (2010) 111801
- CMS Collaboration, "Boosted Top Jet Tagging at CMS," CMS-PAS-JME-13-007
- D. E. Kaplan, K. Rehermann, M. D. Schwartz and B. Tweedie, "Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks", Phys. Rev. Lett. **101** (2008) 142001

Backup

Analysis Strategy

- 1. Clustering of fat jet collections:
 - Separate jet collections for top and Higgs identification → Algorithms tailored to top/Higgs decay kinematics
 - Independently clustered from all particles
- 2. Event categorization based on boosted object selections:
 - Double boosted category → boosted Higgs & top candidate
 - Single boosted top categories
 → boosted top candidate & anti-k_T jets
 - Single boosted Higgs categories
 - \rightarrow boosted Higgs candidate & anti-k_{\mathcal{T}} jets
- 3. Training of BDT against background processes
- 4. Fit to data and limit calculation

Event Yields

	4j3t	4j4t	5j3t	5j≥4t	\geq 6j2t	\geq 6j3t	\geq 6j \geq 4t	Boost
ttH	21.8	2.6	31.9	7.6	55.0	45.9	16.7	4.9
$t\bar{t} + lf$	4404.8	35.1	2428.5	36.0	16842.9	1435.3	31.8	184.8
$t\bar{t} + b$	578.5	15.9	579.7	33.9	1265.6	512.0	47.7	26.7
$t\bar{t} + b\bar{b}$	232.0	22.2	382.9	82.8	720.6	579.7	208.6	38.0
$t\bar{t} + 2b$	257.9	9.2	279.2	17.6	603.6	343.6	35.5	45.6
$t\bar{t} + c\bar{c}$	964.3	17.1	944.7	29.7	5682.5	999.9	67.3	57.7
Total bkg	6437.5	99.5	4615.0	199.8	25115.2	3870.5	390.9	352.8

Expected event yields for $\mathcal{L} = 10 f b^{-1}$:

Boosted Category yields comparable with 4 jet 4 b-tag category:

Much more tt + light flavor background

 \rightarrow Can be separated from signal by also taking anti-kt b-tagging information into account

- Less tt + bb background
- More tt + 2b backgound \rightarrow Merged b jets misidentified as Higgs
- Small signal overlap with best performing categories

Selection Performance 1

Selection Performance 2

ttHBDT Analysis Boosted Topologies