Dark Matter – I

GRK 1694: Elementarteilchenphysik bei höchster Energie und höchster Präzision Workshop Freudenstadt 2015

Guido Drexlin, Institut für Experimentelle Kernphysik

dark matter - Whyme!

DARWIN-LXe: a future large dark matter and neutrino observatory at LNGS

R&D and design: Infrastructure and Detectors

5. Electric field simulations: study and optimise E-field configurations in the drift and extraction regions, focused on 3D boundary element methods (KEMField) developed for KATRIN

The DARWIN Consortium

- Subatech (France): group of Dominique Thers
- University of Münster (Germany): group of Christian Weinheimer
- MPIK Heidelberg (Germany): group of Manfred Lindner
- University of Karlsruhe (Germany): group of Guido Drexlin
- University of Mainz (Germany): group of Uwe Oberlack
- TU Dresden (Germany): group of Kai Zuber
- Imperial College London (Great Britain): group of Roberto Trotta
- INFN (Italy), Sezione LNGS: group of Walter Fulgione
- INFN (Italy), Sezione di Bologna: group of G. Sartorelli
- Weizmann Institute of Science (Israel): group of Amos Breskin
- Nikhef, Amsterdam (The Netherlands): group of Patrick Decowski
- University of Coimbra (Portugal): group of Jose Matias Lopes
- Stockholm University (Sweden): group of Jan Conrad
- University of Zürich I (Switzerland): group of Laura Baudis (DARWIN project coordinator)
- University of Zürich II (Switzerland): group of Ben Kilminster
- University of Bern (Switzerland): group of Marc Schumann
- Columbia University (USA): group of Elena Aprile
- University of Calfornia at Los Angeles (UCLA, USA): group of Hanguo Wang
- Arizona State University (USA): group of Lawrence Krauss
- Purdue University (USA): group of Rafael Lang
- Rice University (USA): group of Peter Shagin

plus: keV-scale v_r @KATRIN

30-50 t Lxe TPC $\emptyset > 2 m$

DARWIN

KIT-IEKP

outline of lectures

Dark Matter – 1

- introduction
- astrophysical evidences for DM
- thermal relics & freeze-out
- non-thermal relics: sterile v's
- WIMP candidates
- experimental searches

Dark Matter – 2

- indirect searches: principles & (selected) results

Dark Matter – 3

direct detection: experiments & (selected) results

introduction - a brief history of dark matter

a buzz of excitement or the final round?

see 2014 lectures by I. Melzer-Pellmann, DESY Hamburg : "SUSY Searches at the LHC"

Reserve DARK MATTER >

LHC searches not covered here

signal to background April 29, 2015 Photo by Claudia Marcelloni De Oliveira, CERN

Natural SUSY's last stand

Either Supersymmetry will be found in the next years of research at the Large Hadron Collider, or it isn't exactly what theorists hoped it was.

a buzz of excitement or the final round?

Facility

Sept. 15, 2015: MiniCLEAN – starting up

Sept. 10, 2015: XMASS - new results

XENONIT inauguration Reserve DARK MATTER ?

Sept. 28, 2015 G. Drexlin – DM1

6

a buzz of excitement or the final round?

(too?) many astrophysical evidences for dark matter keV – MeV – GeV …

dark matter – galactic halo

flat rotation curves imply extended dark matter halos (V. Rubin) :

- DM halos contain 80-90% of entire mass of a galaxy
- detailed modelling gives 'universal' NFW-profile

dark matter – galactic halo

flat rotation curves imply extended dark matter halos (V. Rubin) :

- DM halos contain 80-90% of entire mass of a galaxy
- detailed modelling gives 'universal' NFW-profile
- clumpy sub-structure (DM simulations)

dark matter – galactic halo

- flat rotation curves imply extended dark matter halos (V. Rubin) :
 - DM halos contain 80-90% of entire mass of a galaxy
 - detailed modelling gives 'universal' NFW-profile
 - clumpy sub-structure (DM simulations)
 - $\rho_{DM}(r) = \frac{\rho_0}{\frac{r}{R_S} \cdot \left(1 + \frac{r}{R_S}\right)^2}$ - DM halos from virialization of dissipation-less WIMPs & tidal disruption of 'primoridal' DM halos

dark matter - rotation curve of Milky Way

local DM density

Iocal DM density much higher than cosmological mean DM density

setimate: from solar rotation speed v_{rot} to ρ_{local}

 $\frac{\mathbf{v}_{rot}^2}{r} = \frac{GM_r}{r^2} \quad \text{with} \quad M_r = \frac{4}{3}\pi r^3 \cdot \rho$ $\rho_{local} = \frac{3 v_{rot}^2}{4 \pi r^2 G} \qquad \clubsuit \rho_{DM,local} \sim 0.3 \text{ GeV/cm}^3$

$$\rho_{\rm DM, \, lokal} \approx 10^5 \langle \rho_{\rm DM} \rangle$$

Iocal DM-density p: important parameter for directe WIMP searches

 $\rho_{\text{WIMP}} = 50 \text{ GeV}/150 \text{ cm}^3$

dark matter – galaxy clusters

first postulation of dark matter (F. Zwicky, 1933) :

- DM: non-luminous matter, interacts only via gravitational forces
 - explains the very high peculiar velocities of single galaxies in the Coma galaxy cluster

virial theorem:
$$\langle E_{kin} \rangle = -\frac{1}{2} \langle U_{pot} \rangle$$

non-lumínous matter ~ 90% of the mass </ in Coma cluster...

×

F. Zwicky *Helv. Phys. Acta* **6** 110-127 (1933) ´Die Rotverschiebung von extragalaktischen Nebeln´

Dark matter – galaxy cluster 1E 0657-556

mapping of dark matter - Abell 901/902

distribution of dark matter (weak lensing) & baryonic matter

2015 update: DM map from DE survey

Dark Energy Survey:

- large-scale weak lensing studies

520 Megapixel CCD

4 m Blanco telescope at Cerro Tololo

2015 update: DM map from DE survey

Dark Energy Survey:

- large-scale weak lensing studies DM forms large filaments

Lee-Weinberg curve for HDM & CDM

Lee-Weinberg curve for HDM & CDM

Lee-Weinberg curve for HDM & CDM

CDM/HDM: only two narrow regions remain for thermal relics from Big Bang very light neutrals (meV-eV neutrinos), heavy neutralinos (TeV)

WIMPs in radiation-dominated universe

WIMP 'miracle' & annihilation rate

• the WIMP 'miracle': WIMP density $\Omega_{\chi}(0)$ today & σ_{Ann} :

for $\mathbf{v} \sim 0.3 \mathbf{c}$ at WIMP decoupling one obtains for $\Omega_{\chi} \sim 0.27$

 $\sigma_{Ann} \sim 10^{-36} \text{ cm}^2$

weak interaction

WIMP decoupling – non-relativistic

time of WIMP-freeze-out: t ~ few ns non-relativisitic propagation

$$x_{fr} = \frac{M_{\chi}}{T_{fr}} \sim 20 \qquad T_{fr} \sim \frac{M_{\chi}}{20}$$

CDM: $M_{\chi}c^2 \gg k_B T_{\text{freeze out}}$

WIMPs after freeze-out act as CDM (cold dark matter)

structure formation with CMD, WDM, HDM

dark matter: hot, warm or cold?

comparison of DM-models with observations (<ρ_{DM}> ~ 1 keV/cm³): wash-out on different length scales (λ_{free-streaming})

Hot Dark Matter HDM	Warm Dark Matter WDM	Cold Dark Matter CDM
particles:	particles:	particles:
<i>active</i> neutrinos ν _{e,μ,τ}	<i>sterile</i> neutrinos ν _s	SUSY neutralinos χ ⁰
m ~ 0.05 – 2 <u>eV</u>	m ~ 1 – 20 <u>keV</u>	m ~ 10 – 1000 <u>GeV</u>
number density:	number density:	Number density:
N(active): $339/cm^3$	N(sterile): ~0.1-1/cm ³	$N(\chi^{0}): 10^{-7}-10^{-9}/cm^{3}$
decoupling:	decoupling:	decoupling:
T = 2 - 3 MeV	none, produced via	T = 0.5 - 50 GeV
$T/m \sim 10^6 - 10^7$	v-oscillations	$T/m \sim 1/20$
LSS implication:	LSS implication:	LSS implication:
wash-out on scales	wash-out on scales	wash-out on scales
$\lambda < 1$ Gpc	$\lambda < 100 \text{ kpc}$	λ < 0.1 pc

dark matter: hot, warm or cold?

comparison of DM-models with observations (<ρ_{DM}> ~ 1 keV/cm³): wash-out on different length scales (λ_{free-streaming})

Hot Dark Matter HDM

particles:

active neutrinos $v_{e,\mu,\tau}$ m ~ 0.05 – 2 <u>eV</u>

LSS implication: wash-out on scales $\lambda < 1$ Gpc

Warm Dark Matter WDM

particles:

sterile neutrinos v_s

m ~ 1 − 20 <u>keV</u>

LSS implication: wash-out on scales $\lambda < 100 \text{ kpc}$ Cold Dark Matter CDM

particles: SUSY neutralinos χ⁰ m ~ 10 – 1000 <u>GeV</u>

LSS implication: wash-out on scales $\lambda < 0.1 \text{ pc}$

intermission: keV-scale sterile neutrinos

keV-scale sterile neutrinos would be produced via non-thermal processes and act as CDM/WDM in evolustion of LSS

KATRIN – a novel detector system for v_s

KATRIN – a novel detector system for WDM

- need detectors with energy resolution of $\Delta E \sim 300 \text{ eV}$ for kink identification

TRISTAN – R&D on detector technology

TRISTAN – TRitium beta decay Investigation on Sterile To Active Neutrino mixing

- promising differential read-out technology:
 - p-type point contact detectors array with 10⁴ pixels

KATRIN – sensitivity to keV-scale sterile v's

sensitivity estimates for 3 full KATRIN years

- investigation of systematics (detector, weak interactions)

