Dark Matter - II

September 30, 2015

Guido Drexlin, Institut für Experimentelle Kernphysik

WIMP candidates

weak interaction

 $\sigma_{\rm EW}$ < 1 pb (= 10⁻³⁶ cm²) energy-dependent

Standard Model particles:

 $\begin{array}{l} \underline{\text{neutrino cross section:}} \\ \sigma_{v,\text{EW}} = 10^{-44} \ \dots \ 10^{-40} \ \text{cm}^2 \\ = 10^{-8} \ \dots \ 10^{-4} \ \text{pb} \end{array}$

supersymmetric particles:

 $\begin{array}{l} \underline{\text{neutralino cross section:}} \\ \sigma_{\chi} &= 10^{\text{-48}} \dots 10^{\text{-42}} \, \text{cm}^2 \\ &= 10^{\text{-12}} \dots 10^{\text{-6}} \, \text{pb} \\ &\sim 10^{\text{-2}} \, \sigma_{v,\text{EW}} \end{array}$

suppressed relative to $\sigma_{\nu,\text{EW}}$ due to mixing effects

WIMP candidates

outline of today's lecture

Dark Matter – 2: indirect searches for dark matter

- modelling of physics (signal)
- modelling of astrophysics (halo, background)
- messenger particles: gammas, positrons, anti-protons, neutrinos
 - FERMI gamma-ray observatory
 - GeV-excess @ GC: a model case for signal & background
 - gammas at the TeV-scale: Atmospheric Cherenkov Telescopes
 - charged messengers & neutrinos

experimental WIMP searches

KIT-IEKP

indirect detection methods

Indirect detection of CDM: observation of secondary particles from WIMP annihilation processes in the local group of galaxies
 gammas (γ), neutrinos (ν), antiprotons (p̄) & positrons (e⁺)

7

WIMP annihilation – modelling of signal

detection of WIMP annihilation requires precise modelling of

a) χ^0 -signal: particle physics (decay modes)

Neutralino annihilation processes

Gammas from WIMP annihilations

Neutralino annihilation $\tilde{\chi}^0 \tilde{\chi}^0 \rightarrow q \overline{q}$: fragmentation of quarks leads to ~30-40 gammas (GeV-energies) gamma spectrum depends on annihilation channel (\rightarrow bb, ZZ)

- decay channels depend on:
 a) WIMP mass M(χ⁰)
 b) WIMP flavour composition (bino, wino, higgsino)
- χ⁰-decays to light quarks u,d,...
 (and massless γ´s) are helicity suppressed

WIMP annihilation – modelling of signal

detection of WIMP annihilation requires precise modelling of a) χ⁰-signal: particle physics (decay modes) & astrophysics (halo model)

DMA-sources & halo profile

 $N_{Ann} \sim \int \rho_{CDM}^2 \cdot ds$

25

line-of-sight

number N_{Ann} of WIMP annihilations in DM-halo (per unit time/volume):

$$N_{Ann} \sim \langle \sigma_{Ann} \cdot \mathbf{v} \rangle \cdot n_{CDM}^{2}$$
$$\sim \langle \sigma_{Ann} \cdot \mathbf{v} \rangle \cdot \frac{\rho_{CDM}^{2}}{m_{CDM}^{2}}$$

ρ
cMDfrom NFW profile of the CDM haloVWIMP velocity profile in the haloσ
Anncross section from theoretical calculations

WIMP annihilation rate in DM halos: $\Gamma_{Ann} \sim \rho^2_{CDM}$ searching in **areas with DM overdensities**

- galactic centre
- sub-halo centres: dwarf galaxies, ...

DMA-sources & halo profile

WIMP-density profile in inner DM-halo strongly model-dependent!

WIMP annihilation: line-of-sight

energy-dependent flux $\Phi_{AP,i}$ of WIMP annihilation products (γ , ν) is given by the integration along the line-of-sight:

WIMP annihilation: line-of-sight

energy-dependent flux $\Phi_{AP,i}$ of WIMP annihilation products (γ , ν) is given by the integration along the line-of-sight:

$$\Phi_{AP,i}(E) \sim \langle \sigma_{Ann} \cdot v \rangle \cdot \frac{1}{4\pi m_{CDM}^2} \cdot \frac{dN_i}{dE} \cdot \int_{lne-of-sight} \rho^2 ds \qquad \text{dN/dE: energy spectrum}$$

$$\int_{10^5} \frac{1}{10^6} \int_{0}^{10^6} \frac{1}{10^6} \int_{0}^{$$

WIMP annihilation – modelling of background

detection of WIMP annihilation requires precise modelling of b) astrophysical background (sources, background mechanism)

WIMP annihilation: gamma background

astrophysical background processes for γ's

- are generated by the production and reactions of the (non-thermal) cosmic radiation
- various galactic sources:
 - a) SN-shock waves in SNRs (SuperNova Remnant)
 - b) pulsar winds, ms-pulsars
 - c) processes in the interstellar medium (ISM),
- extragalactic
 - a) active galactic nuclei

WIMP annihilation – modelling of transport

detection of WIMP annihilation requires precise modelling of c) propagation of (anti-)protons & electron/positrons in galactic B-fields

DMA – detection: uncertainties

systematic effects from astrophysics & particle physics in detecting DMA:

DM halo profile (sub-Halos?)

ASTRO

background
 sources (pulsars,
 SNR,...)

WIMP-properties:

SUSY

- mass
- flavour (\tilde{B}^0 , \tilde{W}^0)
- σ_{Ann} · V
- decay channels

DM propagation (energy losses, B-fields)

WIMP annihilation: modelling of signal

modelling of different contributions to DMA signal

DMA: antiprotons, positrons

e+

DM annihilation in galactic centre, in CDM sub-halos

antiprotons, positrons:

 $\chi_1^0 + \chi_1^0 \rightarrow \gamma, \overline{p}, e^+, \nu, \dots$

- deflection in galactic B-field
- energy losses (e+: local origin only)
- rather small backgroud (antiprotons) & well-defined (e/m) signal
- atmosphere shields p and e⁺:
 satellites with strong B-field (GeV)

DMA: Gammas

DMA: Gammas

extra-galactic: good statistics ☺ diffuse background ⊗

galactic centre: very good statistics ☺ many bright sources ☺ galactic halo: good statistics ☺ diffuse background ⊗

Fermi-Gamma-Observatory

Fermi-γ**-Observatory**

- principle: pair conversion
- successor of Compton-GRO with major improvements:
 - larger effective area
 - better angular resolution
 - higher γ -energies

Fermi key parameters	
data taking	since mid-2008
altitude	560 km
dimensions	2.8 m(h) × 2.5 m(Ø)
weight	4.3 t
γ-energy interval	20 MeV – 300 GeV
effective area	1 m²
angular resolution	~ 1`

Gamma-ray Space Telescope

Fermi – Large Area Telescope LAT

LAT: large area \Rightarrow covered solid angle d $\Omega \sim 20\%$ (at any time)

- 4π coverage every 3 hours
- 16 single towers

FERMI – results after 3 years

3-year data taking with FERMI – galactic chart in multi-GeV gammas energy spectrum shows no clear hints for DM annihilation

Fermi – results after 3.7 years

Data taking from 8/2008 – 4/2012: gamma map from 2.6 – 541 GeV

- more than 500 point sources eliminated from dat

- definition of ROIs around galactic centre R3 - 3° / R16 - 6° / R41 - 41°
- Likelihood analyses to search for line sources

Fermi – results after 3.7 years

Data taking from 8/2008 – 4/2012: gamma map from 2.6 – 541 GeV

- no significant γ -line in overall dat-set \otimes

- weak hints for γ -line at $E_{\gamma} = 133 \text{ GeV}$ (most prominent in R3)

- signal also observed (but weaker) in direction of earth horizon!
- actual significance $1.5 3.2 \sigma$ (depends on interval & model)

 \odot

 $\overline{\bigcirc}$

 \bigcirc

Fermi – 2014 update on results

excess of γ**-events** in energy range 1-3 GeV, extending up to 1.5 kpc from GC

- interpreted as decay of WIMP with M = 31-40 GeV \rightarrow bb quarks (the "hooperon": lead author Dan Hooper, Fermilab)

Fermi – 2014 update on results

Fit to FERMI data by Hooper et al. for galactic NFW profile: **a hooperon?**

Fermi – 2014 update on results

Fit to FERMI data by Hooper et al. for galactic NFW profile: centered on GC

Fit to FERMI data by Hooper et al. for galactic NFW profile: the parameters

Fermi – 2014/15 update on results

• excess of γ -events in energy range 1-3 GeV, extending up to 1.5 kpc from GC

- could also stem from much more massive (200 GeV) neutralinos in MSSM
- annihilation cross section σ v = (1.4 2.0) \cdot 10⁻²⁶ cm³ s⁻¹
- **conventional scenario** based on unresolved population of **ms-pulsars** (Weniger et al, arxiv:1506.05104)
 - ms-pulsars emit γ 's with E_{γ} ~ 2 GeV, distinct sources give a better fit

Fermi – 2015 results from KIT

excess of γ-events in energy range 1-3 GeV disappears by proper modelling

- γ-excess in galactic plane correlates with regions of Al-26 production (SNR)
- scenario: excess due to "old CRs" in dense environment of GMCs
- hard component with E^{-2.1} slope from "fresh CRs" shows same morphology
- conclusion by de Boer/Gebauer: "excess at GC disappears when GMC with high column density are correctly described" arXiV:1509.0531 (17.9.15)

WIMP annihilation: IACTs & satellites

IACT sensitivity is ideal for high γ -energies in the multi-TeV-region

atmospheric Cherenkov telescopes

 ground-based gamma astronomy at TeV-scale with IACTs: Imaging Atmospheric Cherenkov Telescope search for TeV-gammas from DMA at galactic centre (GC)
 range of TeV-γ's: ~ 100 Mpc - 1Gpc (o.k. for χ⁰-annihilation)

- telescope operation: only in clear moonless nights (~ 1000 h / year)

atmospheric Cherenkov telescopes

- Ground-based gamma astronomy at TeV-scale with IACTs:
 - TeV gammas initiate airshower cascades & generate charged particles
 - cascade process: $\gamma \rightarrow e^+e^-$ (pair production) $\rightarrow \gamma$ (bremsstrahlung) $\rightarrow \dots$
 - relativistic e⁺e⁻ emit Cherenkov-photons into a narrow cone (~1°)

TeV – Gamma-observatories

H.E.S.S. – galactic centre in TeV gammas

- HESS observes a clear TeV γ-signal from the galactic centre Sgr A*
- after subtraction of this source extended regions of TeV-γ-emission are visible: interactions of CR protons with giant molecular clouds

H.E.S.S. – galactic centre in TeV light

search for mono-energetic DMA-line from 0.5 – 25 TeV in central 1° around galactic centre (avoiding galactic plane) over t = 112 h

 In inner regions @GC increased γ-rate due to HE cosmic rays
 ♦ supernova explosions
 ♦ activity of central SMBH

 phenomenological description G(x), P(x) of γ-energy spectrum
 No signal

CTA observatory

CTA : world-wide flagship project of TeV gamma astronomy

Cherenkov Telescope Array CTA: (10 GeV – 100 TeV)

- new observatory: 1 × southern, 1 × northern hemisphere
- more than 100 Cherenkov telescopes of different size
- commissioning and first data-taking ~ 2020, will look for DMA

CTA observatory

search for DMA in specific target regions:

- galactic centre
- galactic halo
- dwarf spheroidal galaxies

- diffuse emission focus on high energies ~ 1-10 TeV

CTA observatory

10-21 search for DMA in Pass 8 Observed Limit (5 years) Preliminary Pass 8 Median Limit (5 years) specific target regions: 10-22 Pass 8 Median Limit (10 years) - galactic centre Pass 8 Median Limit (10 years, 3x Dwarfs) Abramowski+ 2011 H.E.S.S. GC Halo (95% C.L.) - galactic halo Wood+ 2013 CTA GC Halo 500h (95% C.L.) 10⁻²³ - dwarf spheroidal galaxies Current Fermi LAT limits 10⁻²⁴ σv (cm³ s⁻¹ - diffuse emission Future CTA Limits 10⁻²⁵ Natural Dark Matter Cross Section 10⁻²⁶ 10⁻²⁷ $b\overline{b}$ 10⁻²⁸ 10⁰ 10^{1} 10² 10³ 10^{4} Mass (GeV)