
From D=6 operators
to collider observables 
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Lagrangian is fully defined, so in principle it 
is trivial to find mass eigenstates, calculate 
vertices, and study phenomenology

In practice, at the level of D=6 Lagrangian 
some subtleties appear that require some 
effort to properly take into account 

Operators to Observables
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Operators to Observables
Difficulties in the presence of D=6 operators

Affect relations between couplings and 
input observables

Introduce non-standard higher-
derivative kinetic terms

Introduce kinetic mixing between 
photon and Z boson

e.g.

e.g.

e.g.

To simplify calculating physical predictions, one can map the theory with dimension-6 
operators onto the phenomenological effective Lagrangian
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Phenomenological effective Lagrangian is defined using mass 
eigenstates after electroweak symmetry breaking (photon,W,Z,Higgs 
boson, top). SU(3)xSU(2)xU(1) is not manifest but hidden in relations 
between different couplings  

Feature #1: In the tree-level Lagrangian, all kinetic terms are 
canonically normalized, and there’s no kinetic mixing between mass 
eigenstates. In particular, all oblique corrections from new physics 
are zero, except for a correction to the W boson mass 

Feature #2: Tree-level relation between the couplings in the 
Lagrangian and SM input observables is the same as in the SM.

Feature #3: Photon and gluon couple to matter as in the SM

Features #1-3 can always be obtained without any loss of 
generality, starting from any Lagrangian with D=6 operators, using 
integration by parts, fields and couplings  redefinition

Phenomenological effective Lagrangian
LHCHXSWG-INT-2015-001 
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Phenomenological effective Lagrangian
Problem Fix
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Once Lagrangian is brought to the form of 
phenomenological effective Lagrangian, 
studying collider effects becomes 
straightforward

In the following focus on 2 aspect: 
electroweak precision observables in LEP-1, 
and LHC Higgs observables

Any other process can be studied along the 
same lines 

Phenomenological effective Lagrangian
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By construction, photon and gluon couplings as in the SM. 
Only W and Z couplings are affected 

Effects of dimension-6 operators are parametrized by a set of vertex corrections

Z and W couplings to fermions 

Vertex corrections are probed by precision measurements at LEP and other colliders
Correction to W boson mass are also probed very precisely

Other precision measurements constraint 4-fermion and dipole operators that are also 
affected at the level of the D=6 EFT Lagrangian (not discussed here)
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Z and W couplings to fermions 

Bosonic CP-even

OH

⇥
@µ(H†H)

⇤2

OT

⇣
H† !DµH

⌘2

O6H (H†H)3

OGG g2sH
†H Ga

µ⌫G
a
µ⌫

OWW g2LH
†HW i

µ⌫W
i
µ⌫

OBB g2Y H
†H Bµ⌫Bµ⌫

OWB gLgY H†�iHW i
µ⌫Bµ⌫

O3W g3L✏
ijkW i

µ⌫W
j
⌫⇢W k

⇢µ

O3G g3sf
abcGa

µ⌫G
b
⌫⇢G

c
⇢µ

Bosonic CP-odd

OgGG
g2sH

†H eGa
µ⌫G

a
µ⌫

O]WW
g2LH

†H fW i
µ⌫W

i
µ⌫

OgBB
g2Y H

†H eBµ⌫Bµ⌫

OgWB
gLgY H†�iH fW i

µ⌫Bµ⌫

Og3W g3L✏
ijkfW i

µ⌫W
j
⌫⇢W k

⇢µ

Of3G g3sf
abc eGa

µ⌫G
b
⌫⇢G

c
⇢µ

Table 2: Bosonic d = 6 operators in the Warsaw basis.

Yukawa

[Oe]IJ �(H†H � v2

2 )
p
mImJ

v ecIH
†`J

[Ou]IJ �(H†H � v2

2 )
p
mImJ

v ucI
eH†qJ

[Od]IJ �(H†H � v2

2 )
p
mImJ

v dcIH
†qJ

Vertex

[OH`]IJ i¯̀I �̄µ`H† !DµH

[O0
H`]IJ i¯̀I�i�̄µ`H†�i !DµH

[OHe]IJ iecI�µē
c
JH

† !DµH

[OHq]IJ iq̄I �̄µqJH† !DµH

[O0
Hq]IJ iq̄I�i�̄µqJH†�i !DµH

[OHu]IJ iucI�µū
c
JH

† !DµH

[OHd]IJ idcI�µd̄
c
JH

† !DµH

[OHud]IJ iucI�µd̄
c
JH̃

†DµH

Dipole

[OeW ]IJ gL
p
mImJ

v ecI�µ⌫H
†�i`JW i

µ⌫

[OeB]IJ gY
p
mImJ

v ecI�µ⌫H
†`JBµ⌫

[OuG]IJ gs
p
mImJ

v ucI�µ⌫T
a eH†qJ Ga

µ⌫

[OuW ]IJ gL
p
mImJ

v ucI�µ⌫
eH†�iqJ W i

µ⌫

[OuB]IJ gY
p
mImJ

v ucI�µ⌫
eH†qJ Bµ⌫

[OdG]IJ gs
p
mImJ

v dcI�µ⌫T
aH†qJ Ga

µ⌫

[OdW ]IJ gL
p
mImJ

v dcI�µ⌫H̄
†�iqJ W i

µ⌫

[OdB]IJ gY
p
mImJ

v dcI�µ⌫H
†qJ Bµ⌫

Table 3: Two-fermion d=6 operators in the Warsaw basis. Here, I, J are the flavor
indices. For complex operators the complex conjugate operator is implicit.
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Observation: vertex correction obtained from Warsaw basis are not 
independent. Corrections to W vertices are determined by corrections to Z 
vertices

shift the W and Z couplings to fermions away from the SM Lagrangian of Eq. (2.4):243

�Lvertex =
gp
2

⇣
W+

µ ⌫̄L�µ�g
W `
L eL +W+

µ ū�µ�g
Wq
L dL +W+

µ ūR�µ�g
Wq
R dR + h.c.

⌘

+
p
g2 + g02Zµ

"
X

f2u,d,e,⌫

f̄L�µ�g
Zf
L fL +

X

f2u,d,e

f̄R�µ�g
Zf
R fR

#
, (4.12)

where all the �g are 3⇥ 3 Hermitian matrices in the generation space, except for �gWq
R244

which is a general 3 ⇥ 3 complex matrix. The vertex corrections to W and Z boson245

couplings to fermions are expressed by the Wilson coe�cients in the Warsaw basis as246

�gW `
L = c0H` + f(1/2, 0)� f(�1/2,�1),

�gZ⌫
L =

1

2
c0H` �

1

2
cH` + f(1/2, 0),

�gZe
L = �1

2
c0H` �

1

2
cH` + f(�1/2,�1),

�gZe
R = �1

2
cHe + f(0,�1), (4.13)

247

�gWq
L = c0HqVCKM + f(1/2, 2/3)� f(�1/2,�1/3),

�gWq
R = �1

2
cHud,

�gZu
L =

1

2
c0Hq �

1

2
cHq + f(1/2, 2/3),

�gZd
L = �1

2
V †
CKMc

0
HqVCKM � 1

2
V †
CKMcHqVCKM + f(�1/2,�1/3),

�gZu
R = �1

2
cHu + f(0, 2/3),

�gZd
R = �1

2
cHd + f(0,�1/3), (4.14)

where248

f(T 3, Q) = I3


�QcWB

g2g02

g2 � g02
+ (cT � �v)

✓
T 3 +Q

g02

g2 � g02

◆�
, (4.15)

14

add and subtract the following Lagrangian term:221

�L =

✓
2
h

v
+

h2

v2

◆
[Ladd � Ladd, eom]

Ladd =
gp
2

g2

g2 � g02
�
cT � �v � g02cWB

� �
W+

µ j�µ + h.c.
�

+
p
g2 + g02

1

g2 � g02
�
(cT � �v)(g2j3µ + g02jYµ )� g2g02cWB(j

3
µ + jYµ )

�
Zµ

(4.8)

where Ladd, eom is Ladd with the fermionic currents jµ eliminated in favor of bosonic222

terms using the equations of motion in Eq. (2.2). This step ensures the the coe�cients223

of the vertex-like Higgs contact interactions hV ff and h2V ff in the Lagrangian are224

proportional to the vertex correction to the SM V ff interactions.225

After all these transformations, the conditions #1-#4 are satisfied. We can proceed226

to listing the corrections to the SM in �Ld=6 in this representation. We will focus on227

interaction terms that are relevant for LHC phenomenology. Coe�cients of all interac-228

tion terms in �Ld=6 are O(1/⇤2) in the EFT expansion, and will ignore all O(1/⇤4)229

and higher contributions. To facilitate presentation, we split �Ld=6 into the following230

parts,231

�Ld=6 = �Lmass+�Lvertex+Ldipole+�Ltgc+�Lqgc+�Lh+Lhvff+Lhdvff+�Lh,self+�Lh2+Lother.
(4.9)

Below we define each term in order of appearance. In this section we give the Lagrangian232

in the unitary gauge when the Goldstone bosons eaten by W and Z are set to zero; see233

Appendix B for a generalization to the R⇠ gauge.234

4.1 Quadratic terms235

By construction, there are no corrections to quadratic terms of the SM mass eigenstates236

with the exception of the shift of the W boson mass in Eq. (2.3):237

�Lmass = 2�m
g2v2

4
W+

µ W�
µ . (4.10)

The relation between �m and the Wilson coe�cients in the Warsaw and SILH bases is238

given by239

�m =
1

g2 � g02
⇥�g2g02cWB + g2cT � g02�v

⇤

= � g2g02

4(g2 � g02)

✓
sW + sB + s2W + s2B � 4

g02
sT +

2

g2
[s0H`]22

◆
. (4.11)

4.2 Gauge boson interactions with fermions240

Two types of corrections to the SM gauge boson interactions with fermions may be241

introduced by dimension-6 operators. One is the so-called vertex corrections, which242

13
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Shift the SM Higgs couplings to 
matter

Introduce new 2-derivative 
couplings to gauge bosons that 
are not present in the SM at 
tree level

Introduce CP violating couplings 
to fermions and gauge bosons

 Higgs couplings to matter

LHCHXSWG-INT-2015-001 

Effects of D=6 operators:
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 Higgs couplings to matter
Map from Warsaw basis 

SILH basis by291

[�yf ]ij cos�
f
ij =

1p
2
Re[cf ]ij � �ij (cH + �v)

=
1p
2
Re[sf ]ij � �ij


sH +

1

2
[s0H`]22

�
,

[�yf ]ij sin�
f
ij =

1p
2
Im[cf ]ij

=
1p
2
Im[sf ]ij. (4.27)

The two-derivative Higgs couplings to gauge bosons are related to the Wilson coef-292

ficients in the Warsaw basis by293

cgg = cGG,

c�� = cWW + cBB � 4cWB,

czz =
g4cWW + g04cBB + 4g2g02cWB

(g2 + g02)2
,

cz2 = � 2

g2
(cT � �v) ,

cz� =
g2cWW � g02cBB � 2(g2 � g02)cWB

g2 + g02
,

c�2 =
2

g2 � g02
�
(g2 + g02)cWB � 2cT + 2�v

�
,

cww = cWW ,

cw2 =
2

g2 � g02
�
g02cWB � cT + �v

�
.

(4.28)

and the same for the CP-odd couplings c̃gg, c̃��, c̃z� , c̃zz, c̃ww, with c ! c̃ on the right294

hand side. The analogous expressions for the SILH basis read295

cgg = sGG,

c�� = sBB,

czz = � 1

g2 + g02
⇥
g2sHW + g02sHB � g02s2✓sBB

⇤
,

cz2 =
1

2g2
⇥
g2(sW + sHW + s2W ) + g02(sB + sHB + s2B)� 4sT + 2[s0H`]22

⇤
,

cz� =
sHB � sHW

2
� s2✓sBB,

c�2 =
sHW � sHB

2
+

1

g2 � g02
⇥
g2(sW + s2W ) + g02(sB + s2B)� 4sT + 2[s0H`]22

⇤
,

cww = �sHW ,

cw2 =
sHW

2
+

1

2(g2 � g02)

⇥
g2(sW + s2W ) + g02(sB + s2B)� 4sT + 2[s0H`]22

⇤
, (4.29)

Next, couplings of the Higgs boson to a gauge field and two fermions (which are not296

present in the SM Lagrangian) can be generated by dimension-6 operators. The vertex-297
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Bosonic CP-even

OH

⇥
@µ(H†H)

⇤2

OT

⇣
H† !DµH

⌘2

O6H (H†H)3

OGG g2sH
†H Ga

µ⌫G
a
µ⌫

OWW g2LH
†HW i

µ⌫W
i
µ⌫

OBB g2Y H
†H Bµ⌫Bµ⌫

OWB gLgY H†�iHW i
µ⌫Bµ⌫

O3W g3L✏
ijkW i

µ⌫W
j
⌫⇢W k

⇢µ

O3G g3sf
abcGa

µ⌫G
b
⌫⇢G

c
⇢µ

Bosonic CP-odd

OgGG
g2sH

†H eGa
µ⌫G

a
µ⌫

O]WW
g2LH

†H fW i
µ⌫W

i
µ⌫

OgBB
g2Y H

†H eBµ⌫Bµ⌫

OgWB
gLgY H†�iH fW i

µ⌫Bµ⌫

Og3W g3L✏
ijkfW i

µ⌫W
j
⌫⇢W k

⇢µ

Of3G g3sf
abc eGa

µ⌫G
b
⌫⇢G

c
⇢µ

Table 2: Bosonic d = 6 operators in the Warsaw basis.

Yukawa

[Oe]IJ �(H†H � v2

2 )
p
mImJ

v ecIH
†`J

[Ou]IJ �(H†H � v2

2 )
p
mImJ

v ucI
eH†qJ

[Od]IJ �(H†H � v2

2 )
p
mImJ

v dcIH
†qJ

Vertex

[OH`]IJ i¯̀I �̄µ`H† !DµH

[O0
H`]IJ i¯̀I�i�̄µ`H†�i !DµH

[OHe]IJ iecI�µē
c
JH

† !DµH

[OHq]IJ iq̄I �̄µqJH† !DµH

[O0
Hq]IJ iq̄I�i�̄µqJH†�i !DµH

[OHu]IJ iucI�µū
c
JH

† !DµH

[OHd]IJ idcI�µd̄
c
JH

† !DµH

[OHud]IJ iucI�µd̄
c
JH̃

†DµH

Dipole

[OeW ]IJ gL
p
mImJ

v ecI�µ⌫H
†�i`JW i

µ⌫

[OeB]IJ gY
p
mImJ

v ecI�µ⌫H
†`JBµ⌫

[OuG]IJ gs
p
mImJ

v ucI�µ⌫T
a eH†qJ Ga

µ⌫

[OuW ]IJ gL
p
mImJ

v ucI�µ⌫
eH†�iqJ W i

µ⌫

[OuB]IJ gY
p
mImJ

v ucI�µ⌫
eH†qJ Bµ⌫

[OdG]IJ gs
p
mImJ

v dcI�µ⌫T
aH†qJ Ga

µ⌫

[OdW ]IJ gL
p
mImJ

v dcI�µ⌫H̄
†�iqJ W i

µ⌫

[OdB]IJ gY
p
mImJ

v dcI�µ⌫H
†qJ Bµ⌫

Table 3: Two-fermion d=6 operators in the Warsaw basis. Here, I, J are the flavor
indices. For complex operators the complex conjugate operator is implicit.
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SILH basis by291

[�yf ]ij cos�
f
ij =

1p
2
Re[cf ]ij � �ij (cH + �v)

=
1p
2
Re[sf ]ij � �ij


sH +

1

2
[s0H`]22

�
,

[�yf ]ij sin�
f
ij =

1p
2
Im[cf ]ij

=
1p
2
Im[sf ]ij. (4.27)

The two-derivative Higgs couplings to gauge bosons are related to the Wilson coef-292

ficients in the Warsaw basis by293

cgg = cGG,

c�� = cWW + cBB � 4cWB,

czz =
g4cWW + g04cBB + 4g2g02cWB

(g2 + g02)2
,

cz2 = � 2

g2
(cT � �v) ,

cz� =
g2cWW � g02cBB � 2(g2 � g02)cWB

g2 + g02
,

c�2 =
2

g2 � g02
�
(g2 + g02)cWB � 2cT + 2�v

�
,

cww = cWW ,

cw2 =
2

g2 � g02
�
g02cWB � cT + �v

�
.

(4.28)

and the same for the CP-odd couplings c̃gg, c̃��, c̃z� , c̃zz, c̃ww, with c ! c̃ on the right294

hand side. The analogous expressions for the SILH basis read295

cgg = sGG,

c�� = sBB,

czz = � 1

g2 + g02
⇥
g2sHW + g02sHB � g02s2✓sBB

⇤
,

cz2 =
1

2g2
⇥
g2(sW + sHW + s2W ) + g02(sB + sHB + s2B)� 4sT + 2[s0H`]22

⇤
,

cz� =
sHB � sHW

2
� s2✓sBB,

c�2 =
sHW � sHB

2
+

1

g2 � g02
⇥
g2(sW + s2W ) + g02(sB + s2B)� 4sT + 2[s0H`]22

⇤
,

cww = �sHW ,

cw2 =
sHW

2
+

1

2(g2 � g02)

⇥
g2(sW + s2W ) + g02(sB + s2B)� 4sT + 2[s0H`]22

⇤
, (4.29)

Next, couplings of the Higgs boson to a gauge field and two fermions (which are not296

present in the SM Lagrangian) can be generated by dimension-6 operators. The vertex-297
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4.4 Single Higgs couplings270

This part is the most relevant one from the point of view of the LHC Higgs phenomenol-271

ogy. First, we define the following single Higgs boson couplings to a pair of the SM272

fields:273

�Lh =
h

v

⇥
2�cwm

2
WW+

µ W�
µ + �czm

2
ZZµZµ

�
X

f2u,d,e

X

ij

p
mfimfj [�yf ]ij

h
cos�f

ij f̄ifj � i sin�f
ij f̄i�5fj

i

+cww
g2

2
W+

µ⌫W
�
µ⌫ + c̃ww

g2

2
W+

µ⌫W̃
�
µ⌫ + cw2g

2
�
W�

µ @⌫W
+
µ⌫ + h.c.

�

+cgg
g2s
4
Ga

µ⌫G
a
µ⌫ + c��

e2

4
Aµ⌫Aµ⌫ + cz�

e
p
g2 + g02

2
Zµ⌫Aµ⌫ + czz

g2 + g02

4
Zµ⌫Zµ⌫

+cz2g
2Zµ@⌫Zµ⌫ + c�2gg

0Zµ@⌫Aµ⌫

+c̃gg
g2s
4
Ga

µ⌫G̃
a
µ⌫ + c̃��

e2

4
Aµ⌫Ãµ⌫ + c̃z�

e
p
g2 + g02

2
Zµ⌫Ãµ⌫ + c̃zz

g2 + g02

4
Zµ⌫Z̃µ⌫

#
,

(4.25)

where all the couplings above are real. The terms in the first two lines shift the SM274

couplings in Eq. (2.5), while the remaining terms introduce Higgs couplings to matter275

with a tensor structure that is absent in the SM Lagrangian. Note that, using equations276

of motion, we could get rid of certain 2-derivative interactions between the Higgs and277

gauge bosons: hZµ@⌫Z⌫µ, hZµ@⌫A⌫µ, and hW±
µ @⌫W⌥

⌫µ. These interactions would then be278

traded for contact interactions of the Higgs, gauge bosons and fermions in Eq. (4.30).279

However, one of the defining features of our e↵ective Lagrangian is that the coe�cients of280

the latter couplings are equal to the corresponding vertex correction in Eq. (4.12). This281

form can be always obtained, without any loss of generality, starting from an arbitrary282

dimension-6 Lagrangian provided the 2-derivative hVµ@⌫V⌫µ are kept in the Lagrangian.283

Note that we work in the limit where the neutrinos are massless and the Higgs boson284

does not couple to the neutrinos. In the EFT context, the couplings to neutrinos induced285

by dimension-5 operators are proportional to neutrino masses, therefore they are far too286

small to have any relevance for LHC phenomenology.287

The shifts of the Higgs couplings to W and Z bosons are related to the Wilson288

coe�cients in the Warsaw and SILH basis by289

�cw = �cH � cWB
4g2g02

g2 � g02
+ 4cT

g2

g2 � g02
� �v

3g2 + g02

g2 � g02

= �sH � g2g02

g2 � g02


sW + sB + s2W + s2B � 4

g02
sT +

3g2 + g02

2g2g02
[s0H`]22

�
,

�cz = �cH � 3�v

= �sH � 3

2
[s0H`]22, (4.26)

The Yukawa interactions are related to the Wilson coe�cients in the Warsaw and290
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Bosonic CP-even

OH

⇥
@µ(H†H)

⇤2

OT

⇣
H† !DµH

⌘2

O6H (H†H)3

OGG g2sH
†H Ga

µ⌫G
a
µ⌫

OWW g2LH
†HW i

µ⌫W
i
µ⌫

OBB g2Y H
†H Bµ⌫Bµ⌫

OWB gLgY H†�iHW i
µ⌫Bµ⌫

O3W g3L✏
ijkW i

µ⌫W
j
⌫⇢W k

⇢µ

O3G g3sf
abcGa

µ⌫G
b
⌫⇢G

c
⇢µ

Bosonic CP-odd

OgGG
g2sH

†H eGa
µ⌫G

a
µ⌫

O]WW
g2LH

†H fW i
µ⌫W

i
µ⌫

OgBB
g2Y H

†H eBµ⌫Bµ⌫

OgWB
gLgY H†�iH fW i

µ⌫Bµ⌫

Og3W g3L✏
ijkfW i

µ⌫W
j
⌫⇢W k

⇢µ

Of3G g3sf
abc eGa

µ⌫G
b
⌫⇢G

c
⇢µ

Table 2: Bosonic d = 6 operators in the Warsaw basis.

Yukawa

[Oe]IJ �(H†H � v2

2 )
p
mImJ

v ecIH
†`J

[Ou]IJ �(H†H � v2

2 )
p
mImJ

v ucI
eH†qJ

[Od]IJ �(H†H � v2

2 )
p
mImJ

v dcIH
†qJ

Vertex

[OH`]IJ i¯̀I �̄µ`H† !DµH

[O0
H`]IJ i¯̀I�i�̄µ`H†�i !DµH

[OHe]IJ iecI�µē
c
JH

† !DµH

[OHq]IJ iq̄I �̄µqJH† !DµH

[O0
Hq]IJ iq̄I�i�̄µqJH†�i !DµH

[OHu]IJ iucI�µū
c
JH

† !DµH

[OHd]IJ idcI�µd̄
c
JH

† !DµH

[OHud]IJ iucI�µd̄
c
JH̃

†DµH

Dipole

[OeW ]IJ gL
p
mImJ

v ecI�µ⌫H
†�i`JW i

µ⌫

[OeB]IJ gY
p
mImJ

v ecI�µ⌫H
†`JBµ⌫

[OuG]IJ gs
p
mImJ

v ucI�µ⌫T
a eH†qJ Ga

µ⌫

[OuW ]IJ gL
p
mImJ

v ucI�µ⌫
eH†�iqJ W i

µ⌫

[OuB]IJ gY
p
mImJ

v ucI�µ⌫
eH†qJ Bµ⌫

[OdG]IJ gs
p
mImJ

v dcI�µ⌫T
aH†qJ Ga

µ⌫

[OdW ]IJ gL
p
mImJ

v dcI�µ⌫H̄
†�iqJ W i

µ⌫

[OdB]IJ gY
p
mImJ

v dcI�µ⌫H
†qJ Bµ⌫

Table 3: Two-fermion d=6 operators in the Warsaw basis. Here, I, J are the flavor
indices. For complex operators the complex conjugate operator is implicit.
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Observation: there’s 15 bosonic Higgs couplings in phenomenological effective 
Lagrangian, but they depend only on 11 distinct combination of Wilson coefficients 
in the Warsaw basis 

Actually, one of this combination is the same as the one determining the 
correction to the W mass.

Similar situation was for vertex corrections, where correction to W are related to 
corrections to Z

This is true in any basis: although expression for Higgs couplings,  δg and δm in 
terms of Wilson coefficients will be different in different bases, they will always 
depend on the same number of distinct combinations of Wilson coefficients

Introducing Higgs basis
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Higgs basis

Connection between operators and observables a bit obscured in Warsaw or SILH 
basis. Also, in Warsaw basis EW precision constraints look complicated

h-basis proposed  by LHCHXSWG2 to separate combinations of Wilson coefficients 
strongly constrained by EWPT from those relevant for LHC  Higgs studies 

Rotation of any other D=6 basis such that one isolates linear combinations affecting 
Higgs observables and  not constrained severely by precision  tests

LHCHXSWG-INT-2015-001 Similar “EFT Primaries” of Gupta et al 1405.0181 

2499x2499 dimensional
transformation matrix

Linear 
transformation

2499 dimensional
vector of 

Wilson coefficients

2499 parameters
defining Higgs Basis

Relevant
for LHC Higgs

Very constrained
parameters

Irrelevant
for LHC Higgs
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By construction, photon and gluon couplings as in the SM. 
Only W and Z couplings are affected 

Effects of dimension-6 operators are parametrized by a set of vertex corrections

Z and W couplings to fermions 

Dependent Couplings:
Relations enforced by 

linearly realized SU(3)xSU(2)xU(1) symmetry
at the level of dimension-6 operators
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In HB, Higgs couplings to gauge 
bosons described  by 6 CP even 
and 4 CP odd parameters that 
are unconstrained by LEP-1

D=6 EFT with linearly realized 
SU(3)xSU(2)xU(1) enforces 
relations between Higgs 
couplings to gauge bosons 
(otherwise, more parameters) 

Corrections to Higgs Yukawa 
couplings to fermions are also 
unconstrained by EWPT

Apart from δm and δg, 
additional 6+3x3x3 CP-even 
and 4+3x3x3 CP-odd 
parameters to parametrize
LHC Higgs physics

 Higgs couplings to matter

relative correction to W mass

LHCHXSWG-INT-2015-001 
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Constraints from
Electroweak Precision 

Observables
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Z-pole observables 
Observable Experimental value Ref. SM prediction Definition

�Z [GeV] 2.4952± 0.0023 [21] 2.4950
P

f �(Z ! ff̄)

�had [nb] 41.541± 0.037 [21] 41.484 12⇡
m2

Z

�(Z!e+e�)�(Z!qq̄)
�2
Z

Re 20.804± 0.050 [21] 20.743
P

q �(Z!qq̄)

�(Z!e+e�)

Rµ 20.785± 0.033 [21] 20.743
P

q �(Z!qq̄)

�(Z!µ+µ�)

R⌧ 20.764± 0.045 [21] 20.743
P

q �(Z!qq̄)

�(Z!⌧+⌧�)

A0,e
FB 0.0145± 0.0025 [21] 0.0163 3

4
A2

e

A0,µ
FB 0.0169± 0.0013 [21] 0.0163 3

4
AeAµ

A0,⌧
FB 0.0188± 0.0017 [21] 0.0163 3

4
AeA⌧

Rb 0.21629± 0.00066 [21] 0.21578 �(Z!bb̄)P
q �(Z!qq̄)

Rc 0.1721± 0.0030 [21] 0.17226 �(Z!cc̄)P
q �(Z!qq̄)

AFB
b 0.0992± 0.0016 [21] 0.1032 3

4
AeAb

AFB
c 0.0707± 0.0035 [21] 0.0738 3

4
AeAc

Ae 0.1516± 0.0021 [21] 0.1472
�(Z!e+Le�L )��(Z!e+Re�R)

�(Z!e+e�)

Aµ 0.142± 0.015 [21] 0.1472
�(Z!µ+

Lµ�
L )��(Z!e+µ µ�

R)

�(Z!µ+µ�)

A⌧ 0.136± 0.015 [21] 0.1472
�(Z!⌧+L ⌧�L )��(Z!⌧+R ⌧�R )

�(Z!⌧+⌧�)

Ab 0.923± 0.020 [21] 0.935 �(Z!bLb̄L)��(Z!bRb̄R)

�(Z!bb̄)

Ac 0.670± 0.027 [21] 0.668 �(Z!cLc̄L)��(Z!cRc̄R)
�(Z!cc̄)

As 0.895± 0.091 [22] 0.935 �(Z!sLs̄L)��(Z!sRs̄R)
�(Z!ss̄)

Ruc 0.166± 0.009 [23] 0.1724 �(Z!uū)+�(Z!cc̄)
2
P

q �(Z!qq̄)

µttZ 0.81± 0.24 [24,25] 1.00
(gZt

L )2+(gZt
R )2

(gZu
L,SM)2+(gZu

R,SM)2

Table 1: Z boson pole observables. The experimental errors of the observables between the
double lines are correlated, which is taken into account in the fit. The results for Ae,µ,⌧ listed above
come from the combination of leptonic polarization and left-right asymmetry measurements at the
SLD; we also include the results A⌧ = 0.1439± 0.0043, Ae = 0.1498± 0.0049 from tau polarization
measurements at LEP-1 [21]. For the theoretical predictions we use the best fit SM values from
GFitter [20]. We also include the model-independent measurement of on-shell Z boson couplings
to light quarks in D0 [26].
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W-pole observables 

Observable Experimental value Ref. SM prediction Definition

mW [GeV] 80.385± 0.015 [27] 80.364 gLv
2

(1 + �m)

�W [GeV] 2.085± 0.042 [23] 2.091
P

f �(W ! ff 0)

Br(W ! e⌫) 0.1071± 0.0016 [28] 0.1083 �(W!e⌫)P
f �(W!ff 0)

Br(W ! µ⌫) 0.1063± 0.0015 [28] 0.1083 �(W!µ⌫)P
f �(W!ff 0)

Br(W ! ⌧⌫) 0.1138± 0.0021 [28] 0.1083 �(W!⌧⌫)P
f �(W!ff 0)

RWc 0.49± 0.04 [23] 0.50 �(W!cs)
�(W!ud)+�(W!cs)

R� 0.998± 0.041 [29] 1.000 gWq3
L /gWq3

L,SM

Table 2: W-boson pole observables. Measurements of the 3 leptonic branching fractions are
correlated. For the theoretical predictions of mW and �W , we use the best fit SM values from
GFitter [20], while for the leptonic branching fractions we take the value quoted in [28].

where ��2
ij = [�Oi⇢ij,exp�Oj]�1 is calculated from the known experimental errors �Oi and their

correlations ⇢ij,exp (whenever they are quoted). Minimizing �2 with respect to �g we obtain the
following central values and 1 � errors:

[�gWe
L ]ii =

0

@
�1.01± 0.64
�1.37± 0.59
1.95± 0.79

1

A·10�2, [�gZe
L ]ii =

0

@
�0.22± 0.28
0.1± 1.2
0.18± 0.58

1

A·10�3, [�gZe
R ]ii =

0

@
�0.33± 0.27
0.0± 1.4
0.42± 0.62

1

A·10�3,

(3.4)

[�gZu
L ]ii =

0

@
�0.8± 3.1
�0.17± 0.31
�0.3± 3.8

1

A · 10�2, [�gZu
R ]ii =

0

@
1.3± 5.1

�0.37± 0.52
8± 14

1

A · 10�2, (3.5)

[�gZd
L ]ii =

0

@
�1.0± 4.4
0.9± 2.8
0.33± 0.17

1

A · 10�2, [�gZd
R ]ii =

0

@
2± 16

3.4± 4.9
2.30± 0.87

1

A · 10�2. (3.6)

The 21⇥ 21 correlation matrix ⇢ is shown in Fig 1.
Using these central values �g0, uncertainties �g� and the correlation matrix ⇢ one can re-

construct the dependence of the global �2 function on the vertex corrections: �2 =
P

ij[�g �
�g0]i�

�2
ij [�g � �g0]j, where ��2

ij = [[�g�]i⇢ij[�g�]j]�1. In concrete extensions of the SM, the vertex
corrections will be functions of a (typically smaller) number of the model parameters. In this case
the global �2 function can be minimized with respect to the new parameters, and thus limits on
this particular model can be obtained.

From Eq. (3.4), corrections to the Z boson couplings to charged leptons are constrained at the
level of O(10�3). We stress that these stringent constraints are completely model independent, in
particular they are independent on whether or not flavor universality is assumed. On the other
hand, W couplings to leptons are somewhat less tightly constrained - at the level of O(10�2)
- than in the flavor universal case. Due to the relation in Eq. (2.4), the Z boson couplings to
neutrinos are constrained with the same precision. For the Z boson couplings to quarks the
situation is more complicated. Some of these couplings, specifically the ones to charm and bottom,

7

79Wednesday, September 30, 15



Z coupling to charged leptons constrained at 0.1% level

W couplings to leptons constrained at 1% level

Some couplings to quarks (bottom, charm) also constrained at 1% level 

Some couplings very weakly constrained in a model-independent way, in particular 
Z couplings to light quarks (though their combination affecting *total* hadronic Z-
width is strongly constrained) 

Some off-diagonal vertex corrections can also be constrained

Pole observables - constraints
All diagonal vertex corrections except for δgWqR and δgZtR 

 simultaneously constrained in a completely  model-independent way

Efrati,AA,Soreq
1503.07872

• The electroweak parameters (that we need to evaluate new physics corrections) are extracted
at tree-level from the muon lifetime ⌧µ = 384⇡3v4/m5

µ (equivalently, from the Fermi constant

GF = 1/
p
2v2), the electromagnetic constant ↵(mZ) = e2/4⇡, and the Z boson mass mZ =p

g2L + g2Y v/2. With this choice, the tree-level values of the electroweak parameters are
gL = 0.648, gY = 0.358, and v = 246.2 GeV.

• We work at the level of dimension-6 operators and we neglect possible contributions of
dimension-8 operators. Consistently, for observables where the SM contribution is non-zero,
we only include the leading corrections that are formally O(v2/⇤2) in EFT counting. These
come from interference terms between new physics and SM contributions to the amplitudes
of relevant processes, and they are linear in �m and �g. Quadratic corrections in �g and �m
are in this case neglected, since they are formally of order O(v4/⇤4), much as contributions
from neglected dimension-8 operators. On the other hand, for observables where the SM
contribution vanishes (such as lepton- or quark-flavor violating Z decays), we take into ac-
count quadratic corrections in �g because they are the leading ones. In these case, possible
corrections from dimension-8 operators are of order O(v6/⇤6).

• We ignore all loop-suppressed e↵ects proportional to �g and �m. In particular, we only take
into account the interference terms between tree-level new physics corrections and tree-level
SM contributions, while we ignore the interference with loop-level SM contributions. This is
the largest source of uncertainty on the central values and standard deviations of �g and �m
that we quote below. From the magnitude of the k-factors between the tree-level and NNLO
SM predictions, we estimate this uncertainty to be of order 15%.

• All the observables in Table 1 and Table 2 are measured for Z or W boson close to the
mass shell. Thanks to that, we can ignore the contribution of 4-fermion operators, which is
suppressed by �Z/mZ or �W/mW . For a longer discussion of this point see Ref. [16].

First, from the measurement of the W mass we can directly derive the constraint on �m:

�m = (2.6± 1.9) · 10�4. (3.1)

The constraints on �g’s are far more entangled. We take into account only the corrections to the
pole observables that are linear in �g, while quadratic terms, formally higher-order in the e↵ective
theory expansion, are neglected. We also neglect CKM-suppressed corrections. This way, the pole
observables depend only on diagonal elements of �g. Furthermore, corrections proportional to �gWq

R

do not interfere with the SM amplitudes; therefore they enter only quadratically and are neglected.
All in all, at the tree level, the pole observables depend linearly on 3 ⇥ 7 = 21 diagonal elements
of �gZe

L , �gZe
R , �gW `

L , �gZu
L , �gZu

R , �gZd
L , �gZd

R . All these couplings are simultaneously constrained by
the the observables Oi listed in Table 1 and Table 2. To construct a global �2 function, we write
the observables as

Oi,th = ONNLO
i,SM + ~�g · ~OLO

i,BSM (3.2)

The state-of-art SM predictions ONNLO
i,SM are provided in the literature, while the tree-level new

physics corrections ~�g ~OLO
i,BSM linear �g is computed analytically. Then we construct the �2 function

as
�2 =

X

ij

[Oi,exp �Oi,th] �
�2
ij [Oj,exp �Oj,th] , (3.3)

5

Next, we derive the constraints on the δg’s when all of them are simultaneously present and
a-priori unrelated by the UV theory. Minimizing our χ2 function with respect to δg we obtain the
following central values and 1σ errors:

[δgWe
L ]ii =




−1.00± 0.64
−1.36± 0.59
1.95± 0.79



× 10−2, (4.5)

[δgZe
L ]ii =




−0.26± 0.28
0.1± 1.1
0.16± 0.58



× 10−3, [δgZe
R ]ii =




−0.37± 0.27
0.0± 1.3
0.39± 0.62



× 10−3, (4.6)

[δgZu
L ]ii =




−0.8± 3.1
−0.16± 0.36
−0.28± 3.8



× 10−2, [δgZu
R ]ii =




1.3± 5.1
−0.38± 0.51

×



× 10−2, (4.7)

[δgZd
L ]ii =




−1.0± 4.4
0.9± 2.8
0.33± 0.16



× 10−2, [δgZd
R ]ii =




2.9± 16
3.5± 5.0
2.30± 0.82



× 10−2. (4.8)

The corresponding 20× 20 correlation matrix is given in Appendix B.
As for the off diagonal couplings, we find:

√
|[δgZe

L ]12|2 + |[δgZe
R ]12|2 < 1.2× 10−3,

√
|[δgZe

L ]13|2 + |[δgZe
R ]13|2 < 4.3× 10−3,

√
|[δgZe

L ]23|2 + |[δgZe
R ]23|2 < 4.8× 10−3, (4.9)

where the measured central value of the Z width is used and

√
|[δgZu

L ]13|2 + |[δgZu
R ]13|2 + |[δgZu

L ]23|2 + |[δgZu
R ]23|2 < 1.6× 10−2

(
Γt

1.35GeV

)1/2

, (4.10)

at the 95% CL. Here we take ΓSM
t # 1.35GeV for mt = 173 GeV [53].

Using the above central values δg0, uncertainties δgσ and the correlation matrix ρ one can
reconstruct the dependence of the global χ2 function on the vertex corrections:

χ2 =
∑

ij

[δg − δg0]iσ
−2
ij [δg − δg0]j , (4.11)

where σ−2
ij = [[δgσ]iρij [δgσ]j]−1. In specific extensions of the SM, the vertex corrections will be

functions of a (typically smaller) number of the model parameters. In this case, the global χ2

function can be minimized with respect to the new parameters, and thus limits on this particular
model can be obtained. This way our results can be used to obtain the constraints on any specific
UV model.

From our results for the vertex corrections, Eq. (4.5)–Eq. (4.8), we learn the following:

• Globally, the fit is in a very good agreement with the SM, corresponding to the p-value of
order 40%.

9
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Pole constraints - recast to Warsaw basis

DictionaryResults

measurements in hadron collider, and Fabio Maltoni for a comment on the model dependence of
constraints from the ttZ production at the LHC. AF is supported by the ERC Advanced Grant
Higgs@LHC.

A Warsaw basis

In this appendix we discuss the relation between the vertex and mass corrections in our effective
Lagrangian, and the Wilson coefficients of SU(3) × SU(2) × U(1) D = 6 operators. We consider
the effective Lagrangian LWB

eff = LSM + 1
v2

∑
i ciOWB

6,i , where a complete non-redundant basis of
D = 6 operators OWB

6,i is given in Table 4. This basis is, up to small modifications, the same as in
Ref. [2,18], often referred to as the Warsaw basis.2 In order to relate the two descriptions, we need
to bring LWB

eff to the same form as the effective Lagrangian considered in Section 2. In particular,
we need to get rid of the kinetic mixing and non-canonical normalization induced by OWB

6,i . This is
achieved by application of equations of motion, and field and coupling redefinitions, as described
in Ref. [20]. When the dust settles, the shift of the W boson mass is given by

δm =
1

g2L − g2Y

[
−g2Lg2Y cWB + g2LcT − g2Y δv

]
, (A.1)

where δv = ([c′H!]11 + [c′H!]22)/2 − c′!!, and c′!! is defined as the coefficient of the 4-fermion term
−4c′!!(ν̄µσ̄ρµ)(ēσ̄ρνe) in the effective Lagrangian that arises from a linear combination of D = 6
operators O!!. The leptonic vertex corrections are given by

δgW !
L = c′H! + f(1/2, 0)− f(−1/2,−1),

δgZν
L =

1

2
(c′H! − cH!) + f(1/2, 0),

δgZe
L = −

1

2
(c′H! + cH!) + f(−1/2,−1),

δgZe
R = −

1

2
cHe + f(0,−1), (A.2)

where

f(T 3, Q) = I

[
−QcWB

g2Lg
2
Y

g2L − g2Y
+ (cT − δv)

(
T 3 +Q

g2Y
g2L − g2Y

)]
. (A.3)

2The normalization of operators and notation are different than in the original references. We replaced the
operator |H†DµH |2 by (H†DµH − DµH†H)2. For Yukawa-type operators Of we subtracted v2 so that these
operators do not contribute to off-diagonal mass terms. This way we avoid tedious rotations of the fermion fields
to bring them back to the mass eigenstate basis. Starting with the Yukawa couplings −Hf̄ ′

R(Y
′
f + c′fH

†H/v2)f ′
L we

can bring them to the form in Table 4 by defining f ′
L,R = UL,RfL,R, cf = U †

Rc
′
fUL, Yf = U †

R(Y
′
f + c′f/2)UL, where

UL,R are unitary rotations to the mass eigenstate basis.
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Finally, the shifts of the SM W and Z boson couplings to quarks are given by

δgWq
L = c′HqV + f(1/2, 2/3)V − f(−1/2,−1/3)V,

δgWq
R = cHud,

δgZu
L =

1

2

(
c′Hq − cHq

)
+ f(1/2, 2/3),

δgZd
L = −

1

2
V †
(
c′Hq + cHq

)
V + f(−1/2,−1/3),

δgZu
R = −

1

2
cHu + f(0, 2/3),

δgZd
R = −

1

2
cHd + f(0,−1/3). (A.4)

We can insert these relation into the global χ2 functions, so as to obtain constraints on the Wilson
coefficients in the Warsaw basis. Clearly, the vertex corrections constrained by pole observables
map to a combination of a larger number of the Wilson coefficients ci. Therefore, only certain
combinations of the latter can be constrained by the pole observables. We define

[ĉ′H!]ij = [c′HL]ij +

(
g2LcWB −

g2L
g2Y

cT

)
δij ,

[ĉH!]ij = [cHL]ij − cT δij,

[ĉHe]ij = [cHE ]ij − 2cT δij,

[
ĉ′Hq

]
ij

=
[
c′HQ

]
ij
+

(
g2LcWB −

g2L
g2Y

cT

)
δij,

[ĉHq]ij = [cHQ]ij +
1

3
cT δij ,

[ĉHu]ij = [cHU ]ij +
4

3
cT δij ,

[ĉHd]ij = [cHD]ij −
2

3
cT δij . (A.5)

The pole observable constrain all diagonal elements of ĉ except for [ĉHU ]33.
For these combinations, we obtain the following central values and 1-sigma errors:

[ĉ′H!]ii =




−1.09± 0.64
−1.45± 0.59
1.87± 0.79



× 10−2, [ĉH!]ii =




1.03± 0.63
1.32± 0.62
−2.01± 0.80



× 10−2, (A.6)

[ĉHe]ii =




0.22± 0.66
−0.6± 2.6
−1.4± 1.3



× 10−3, c′!! = (−1.21± 0.41)× 10−2, (A.7)

[
ĉ′Hq

]
ii
=




0.1± 2.7
−1.2± 2.8
−0.7± 3.8



× 10−2, [ĉHq]ii =




1.8± 7.0
−0.8 ± 2.9
0.0± 3.8



× 10−2, (A.8)
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Finally, the shifts of the SM W and Z boson couplings to quarks are given by

δgWq
L = c′HqV + f(1/2, 2/3)V − f(−1/2,−1/3)V,

δgWq
R = cHud,

δgZu
L =

1

2

(
c′Hq − cHq

)
+ f(1/2, 2/3),

δgZd
L = −

1

2
V †
(
c′Hq + cHq

)
V + f(−1/2,−1/3),

δgZu
R = −

1

2
cHu + f(0, 2/3),

δgZd
R = −

1

2
cHd + f(0,−1/3). (A.4)

We can insert these relation into the global χ2 functions, so as to obtain constraints on the Wilson
coefficients in the Warsaw basis. Clearly, the vertex corrections constrained by pole observables
map to a combination of a larger number of the Wilson coefficients ci. Therefore, only certain
combinations of the latter can be constrained by the pole observables. We define

[ĉ′H!]ij = [c′HL]ij +

(
g2LcWB −

g2L
g2Y

cT

)
δij ,

[ĉH!]ij = [cHL]ij − cT δij,

[ĉHe]ij = [cHE ]ij − 2cT δij,

[
ĉ′Hq

]
ij

=
[
c′HQ

]
ij
+

(
g2LcWB −

g2L
g2Y

cT

)
δij,

[ĉHq]ij = [cHQ]ij +
1

3
cT δij ,

[ĉHu]ij = [cHU ]ij +
4

3
cT δij ,

[ĉHd]ij = [cHD]ij −
2

3
cT δij . (A.5)

The pole observable constrain all diagonal elements of ĉ except for [ĉHU ]33.
For these combinations, we obtain the following central values and 1-sigma errors:
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


−1.09± 0.64
−1.45± 0.59
1.87± 0.79



× 10−2, [ĉH!]ii =
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1.32± 0.62
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

× 10−2, (A.6)
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


0.22± 0.66
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−1.4± 1.3



× 10−3, c′!! = (−1.21± 0.41)× 10−2, (A.7)
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ĉ′Hq

]
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=




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−1.2± 2.8
−0.7± 3.8
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18[ĉHu]ii =




−3 ± 10
0.8± 1.0
×



× 10−2, [ĉHd]ii =




−6 ± 32
−7 ± 10
−4.6± 1.6



× 10−2. (A.9)

We stress that only the combinations in Eq. (A.5) are constrained by the pole observables. Con-
versely, the pole observables calculated in the Warsaw basis are completely independent on the
Wilson coefficients along the flat directions defined by [ĉHf ]ij = 0. Therefore, individually, cHf ,
cWB, and cT cannot be constrained by the pole observables alone. To this end, the input from
off-pole and/or Higgs observables has to be included. For example, including the LEP-2 WW
production data breaks the degeneracy and allows one to separately constrain cHf , cWB, and
cT [7, 16].

B Correlation matrix

Here we quote the various correlation matrices described in Sec. 4.
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Finally, the shifts of the SM W and Z boson couplings to quarks are given by
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2
V †
(
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2
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1

2
cHd + f(0,−1/3). (A.4)
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Note in Warsaw basis only 
combinations of Wilson coefficients 
are constrained by pole observables
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Higgs signal strength observables

4

they are allowed to be much bigger than their SM values
is more complicated (see e.g. Refs. [25–27]). Notice that
large values are not incompatible with the EFT frame-
work (as long as no flavor symmetry is assumed), which
in principle predicts natural values of order v2/⇤2 that
easily exceed the small Yukawas. Remarkably, even when
light Yukawa couplings are as large as the bottom Yukawa
(which would almost double the total Higgs width), our
TGC bounds given in Eq. (2) qualitatively hold.

As a final comment, we note that the tight bounds
we obtain via the combination of LEP-2 WW and LHC
Higgs data strongly constrain deviations in the h ! 4`
distributions, which will be investigated in the LHC
Run-2. These decays can be described experimentally
through a set of pseudo-observables [28], which can then
be matched to the D=6 operators in the EFT at tree-
level [29]. The strong bounds we obtain on the pseudo-
observables from our fit, see Eq. (A.12), are very similar
to those presented in Ref. [29] using only LEP2 data with
�z = 0. Therefore, to a good approximation, the analysis
performed in that work for such specific case holds now
in full generality. In particular, the very strong bounds
on the contact terms ✏Z`L,R imply small deviations in the
h ! 4` spectrum [29].

To conclude, by working atO(⇤�2) in the EFT and un-
der the MFV assumption, we obtained strong and model-
independent bounds on the aTGCs via the combination
of LEP-2 WW and LHC Higgs signal-strength data. The
combination of the two datasets lifts the flat direction
a↵ecting each of them taken separately, thus showing
the importance of performing global analysis in the EFT
framework. Combined with the W - and Z-pole observ-
ables analysis of Ref. [12], the results of this work can be
used to set strong constraints on a wide class of possible
new physics scenarios.
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its financial support within the program ANR-11-IDEX-
0007 of the French government.

Appendix A: Fit results

In the SM extended by D=6 operators, assuming
MFV, there are 9 combinations of Wilson coe�cients
that a↵ect the Higgs signal strength measured at the
LHC and are weakly constrained by electroweak preci-
sion tests. Furthermore, to describe electroweak gauge
bosons pair production, one more independent combina-
tion is needed. In the Higgs basis [30] these 10 parameters
are [13]:

�cz, czz, cz⇤, c�� , cz� , cgg, �yu, �yd, �ye, �z. (A.1)

The relation of these parameters to the interaction terms
in the e↵ective Lagrangian can be found in Ref. [30].
We constrain these parameters using the available LHC
Higgs data and WW data, as described above Eq. (2).

Channel µ Production Ref.

�� 1.16+0.20
�0.18 2D [31]

1.0+1.6
�1.6 Wh [34]

0.1+3.7
�0.1 Zh [34]

0.58+0.93
�0.81 Vh [33]

1.30+2.62
�1.75 & 2.7+2.4

�1.7 tth [33, 34]

Z� 2.7+4.5
�4.3 & �0.2+4.9

�4.9 total [34, 35]

ZZ⇤ 1.31+0.27
�0.14 2D [31]

WW ⇤ 1.11+0.18
�0.17 2D [31]

2.1+1.9
�1.6 Wh [36]

5.1+4.3
�3.1 Zh [36]

0.80+1.09
�0.93 Vh [33]

⌧⌧ 1.12+0.25
�0.23 2D [31]

0.87+1.00
�0.88 Vh [33]

bb 1.11+0.65
�0.61 Wh [32]

0.05+0.52
�0.49 Zh [32]

0.89+0.47
�0.44 Vh [33]

2.8+1.6
�1.4 VBF [37]

1.5+1.1
�1.1 & 1.2+1.6

�1.5 tth [38, 39]

µµ �0.7+3.7
�3.7 & 0.8+3.5

�3.4 total [34, 40]

multi-` 2.1+1.4
�1.2 & 3.8+1.4

�1.4 tth [41, 42]

TABLE I. The LHC Higgs results used in the fit. 2D
stands for the likelihood functions in the plane µggh+tth-
µVBF+Vh, whereas in the diphoton channel (cats.) we use the
five-dimensional likelihood function in the space spanned by
(µggh, µtth, µVBF, µWh, µZh). Notice that in these two cases
µ is quoted for illustration only, since more information is
included in the analysis. Correlations among di↵erent pro-
duction classes in this table are ignored. See Ref. [13] for a
more detailed discussion of our Higgs dataset.

In the Gaussian approximation near the best fit point
we find the following constraints:

0

BBBBBBBBBBBBB@

�cz
czz
cz⇤
c��
cz�
cgg
�yu
�yd
�ye
�z

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

�0.02± 0.17
0.69± 0.42
�0.32± 0.19
0.009± 0.015
0.002± 0.098

�0.0052± 0.0027
0.57± 0.30
�0.24± 0.35
�0.12± 0.20
�0.162± 0.073

1

CCCCCCCCCCCCCA

, (A.2)

where the uncertainties correspond to 1�. The correla-

Including 2D likelihoods from 
recent ATLAS+CMS combination

ATLAS-CONF-2015-044
CMS-PAS-HIG-15-002
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• Vector boson associated production (Vh), qq̄ → V h, where V = W,Z,

σWh

σSM
Wh

" 1 + 2δcw +




6.39
6.51
6.96



 cw! +




1.49
1.49
1.50



 cww

→ 1 + 2δcz +




9.26
9.43
10.08



 cz! +




4.35
4.41
4.63



 czz −




0.81
0.84
0.93



 czγ −




0.43
0.44
0.48



 cγγ

σZh

σSM
Zh

" 1 + 2δcz +




5.30
5.40
5.72



 cz! +




1.79
1.80
1.82



 czz +




0.80
0.82
0.87



 cγ! +




0.22
0.22
0.22



 czγ,

→ 1 + 2δcz +




7.61
7.77
8.24



 cz! +




3.31
3.35
3.47



 czz −




0.58
0.60
0.65



 czγ +




0.27
0.28
0.30



 cγγ.

(4.7)

The numbers in the columns refer to the LHC collision energy of
√
s =7, 8, and 13 TeV.

• Top pair associated production, gg → htt̄:

σtth

σSM
tth

" 1 + 2δyu. (4.8)

Decay

• h → f f̄ . Higgs boson decays into 2 fermions occur at the tree level in the SM via the
Yukawa couplings in Eq. (2.17). In the presence of D = 6 operators they are affected via the
corrections to the Yukawa couplings in Eq. (3.5):

Γcc

ΓSM
cc

" 1 + 2δyu,
Γbb

ΓSM
bb

" 1 + 2δyd,
Γττ

ΓSM
ττ

" 1 + 2δye, (4.9)

where I abbreviate Γ(h → Y ) ≡ ΓY .

• h → VV. In the SM, Higgs decays into on-shell gauge bosons: gluon pairs gg, photon pairs
γγ, and Zγ occur only at the one-loop level. In the presence of D = 6 operators these decays
are corrected already at the tree level by the 2-derivative contact interactions of the Higgs
boson with two vector bosons in Eq. (3.3). The relative decay widths are given by

ΓV V

ΓSM
V V

"
∣∣∣∣1 +

ĉvv
cSMvv

∣∣∣∣
2

, vv ∈ {gg, γγ, zγ}, (4.10)

where

ĉγγ = cγγ , cSMγγ " −8.3× 10−2,

ĉzγ = czγ, cSMzγ " −5.9× 10−2, (4.11)
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Production

For the relevant partonic processes of Higgs production at the LHC, the cross section relative
to the SM one depends on the effective theory parameters as follows:

• Gluon fusion (ggh), gg → h:
σggh

σSM
ggh

"
∣∣∣∣1 +

ĉgg
cSMgg

∣∣∣∣
2

, (4.2)

where

ĉgg " cgg +
1

12π2

[
δyuAf

(
m2

h

4m2
t

)
+ δydAf

(
m2

h

4m2
b

)]
,

cSMgg "
1

12π2

[
Af

(
m2

h

4m2
t

)
+ Af

(
m2

h

4m2
b

)]
,

Af(τ) ≡
3

2τ 2
[(τ − 1)f(τ) + τ ] ,

f(τ) ≡

{
arcsin2√τ τ ≤ 1

−1
4

[
log 1+

√
1−τ−1

1−
√
1−τ−1

− iπ
]2

τ > 1
. (4.3)

As discussed in Ref. [88], in this case it is appropriate to calculate cSMgg at the leading order
in QCD because then the large k-factors, approximately common for cgg and δyu, cancel in
the ratio.7 Numerically,

ĉgg " cgg + (8.7δyu − (0.3− 0.3i)δyd)× 10−3, cSMgg " (8.4 + 0.3i)× 10−3, (4.4)

σggh

σSM
ggh

" 1 + 237cgg + 2.06δyu − 0.06δyd. (4.5)

• Vector boson fusion (VBF), qq → hqq:

σV BF

σSM
V BF

" 1 + 1.49δcw + 0.51δcz −




1.08
1.11
1.23



 cw! − 0.10cww −




0.35
0.35
0.40



 cz!

−0.04czz − 0.10cγ! − 0.02czγ
→ 1 + 2δcz − 2.25cz! − 0.83czz + 0.30czγ + 0.12cγγ. (4.6)

The numbers in the columns multiplying cw! and cz! refer to the LHC collision energy of√
s =7, 8, and 13 TeV; for other parameters the dependence is weaker. The expression

after the arrow arises due to replacing the dependent couplings by the independent ones in
Eq. (3.2). Each LHC Higgs analysis uses somewhat different cuts to isolate the VBF signal,
and the relative cross section slightly depends on these cuts. The result in Eq. (4) has been
computed numerically by simulating the parton-level process in MadGraph5 [90] at the tree
level with the cuts pT,q > 20 GeV, |ηq| < 5 and mqq > 250 GeV. Replacing the last cut by
mqq > 500 GeV affects the numbers at the level of 5%.

7Accidentally, with the SM parameters used in this review, the dependence on δyd is also captured with a decent
accuracy by this procedure. One can compare Eq. (4.5) to NLO QCD results in Ref. [89], where the coefficient in
front of δyd is found to be −0.06 for

√
s = 8 TeV, and −0.05 for

√
s = 14 TeV.
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Higgs production in the Higgs basis
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For the relevant partonic processes of Higgs production at the LHC, the cross section relative
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As discussed in Ref. [88], in this case it is appropriate to calculate cSMgg at the leading order
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The numbers in the columns multiplying cw! and cz! refer to the LHC collision energy of√
s =7, 8, and 13 TeV; for other parameters the dependence is weaker. The expression

after the arrow arises due to replacing the dependent couplings by the independent ones in
Eq. (3.2). Each LHC Higgs analysis uses somewhat different cuts to isolate the VBF signal,
and the relative cross section slightly depends on these cuts. The result in Eq. (4) has been
computed numerically by simulating the parton-level process in MadGraph5 [90] at the tree
level with the cuts pT,q > 20 GeV, |ηq| < 5 and mqq > 250 GeV. Replacing the last cut by
mqq > 500 GeV affects the numbers at the level of 5%.

7Accidentally, with the SM parameters used in this review, the dependence on δyd is also captured with a decent
accuracy by this procedure. One can compare Eq. (4.5) to NLO QCD results in Ref. [89], where the coefficient in
front of δyd is found to be −0.06 for

√
s = 8 TeV, and −0.05 for
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• Vector boson associated production (Vh), qq̄ → V h, where V = W,Z,

σWh

σSM
Wh

" 1 + 2δcw +




6.39
6.51
6.96



 cw! +




1.49
1.49
1.50



 cww

→ 1 + 2δcz +




9.26
9.43
10.08



 cz! +




4.35
4.41
4.63



 czz −




0.81
0.84
0.93



 czγ −
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0.43
0.44
0.48



 cγγ

σZh
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" 1 + 2δcz +
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
5.30
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5.72



 cz! +




1.79
1.80
1.82



 czz +




0.80
0.82
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

 cγ! +




0.22
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

 czγ,

→ 1 + 2δcz +


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7.77
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
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


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3.35
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
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


0.58
0.60
0.65



 czγ +




0.27
0.28
0.30



 cγγ.

(4.7)

The numbers in the columns refer to the LHC collision energy of
√
s =7, 8, and 13 TeV.

• Top pair associated production, gg → htt̄:

σtth

σSM
tth

" 1 + 2δyu. (4.8)

Decay

• h → f f̄ . Higgs boson decays into 2 fermions occur at the tree level in the SM via the
Yukawa couplings in Eq. (2.17). In the presence of D = 6 operators they are affected via the
corrections to the Yukawa couplings in Eq. (3.5):

Γcc

ΓSM
cc

" 1 + 2δyu,
Γbb

ΓSM
bb

" 1 + 2δyd,
Γττ

ΓSM
ττ

" 1 + 2δye, (4.9)

where I abbreviate Γ(h → Y ) ≡ ΓY .

• h → VV. In the SM, Higgs decays into on-shell gauge bosons: gluon pairs gg, photon pairs
γγ, and Zγ occur only at the one-loop level. In the presence of D = 6 operators these decays
are corrected already at the tree level by the 2-derivative contact interactions of the Higgs
boson with two vector bosons in Eq. (3.3). The relative decay widths are given by

ΓV V

ΓSM
V V

"
∣∣∣∣1 +

ĉvv
cSMvv

∣∣∣∣
2

, vv ∈ {gg, γγ, zγ}, (4.10)

where

ĉγγ = cγγ , cSMγγ " −8.3× 10−2,

ĉzγ = czγ, cSMzγ " −5.9× 10−2, (4.11)
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Higgs decay in the Higgs basis

• Vector boson associated production (Vh), qq̄ → V h, where V = W,Z,
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(4.7)

The numbers in the columns refer to the LHC collision energy of
√
s =7, 8, and 13 TeV.

• Top pair associated production, gg → htt̄:

σtth

σSM
tth

" 1 + 2δyu. (4.8)

Decay

• h → f f̄ . Higgs boson decays into 2 fermions occur at the tree level in the SM via the
Yukawa couplings in Eq. (2.17). In the presence of D = 6 operators they are affected via the
corrections to the Yukawa couplings in Eq. (3.5):

Γcc

ΓSM
cc

" 1 + 2δyu,
Γbb

ΓSM
bb

" 1 + 2δyd,
Γττ

ΓSM
ττ

" 1 + 2δye, (4.9)

where I abbreviate Γ(h → Y ) ≡ ΓY .

• h → VV. In the SM, Higgs decays into on-shell gauge bosons: gluon pairs gg, photon pairs
γγ, and Zγ occur only at the one-loop level. In the presence of D = 6 operators these decays
are corrected already at the tree level by the 2-derivative contact interactions of the Higgs
boson with two vector bosons in Eq. (3.3). The relative decay widths are given by

ΓV V

ΓSM
V V

"
∣∣∣∣1 +

ĉvv
cSMvv

∣∣∣∣
2

, vv ∈ {gg, γγ, zγ}, (4.10)

where

ĉγγ = cγγ , cSMγγ " −8.3× 10−2,

ĉzγ = czγ, cSMzγ " −5.9× 10−2, (4.11)
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while ĉgg and cSMgg are defined in Eq. (4.3). Note that contributions to Γγγ and Γzγ arising
due to corrections to the SM Higgs couplings to the W bosons and fermions are not included
in Eq. (4.11), unlike in Eq. (4.3). The reason is that, for these processes, corrections from
D = 6 operators are included at the tree level only. If these particular one-loop corrections
were included, one should also consistently include all one-loop corrections to this process
arising at the D = 6 level, some of which are divergent and require renormalization. The net
result would be to redefine ĉγγ = cren.γγ − 0.11δcw + 0.02δyu + . . . , and ĉzγ = cren.zγ − 0.06δcw +
0.003δyt + . . . . Here ”ren.” stands for “renormalized” and the dots stand for a dependence
on other Lagrangian parameters (cww, cw!, and corrections to triple gauge couplings). A
full next-to-leading order computation of these processes have not been yet attempted in the
literature.

• h → 4f . The decay process h → 2"2ν (where " here stands for charged leptons) proceeds via
intermediate W bosons. The relative width is given by

Γ2"2ν

ΓSM
2"2ν

# 1 + 2δcw + 0.46cw! − 0.15cww

→ 1 + 2δcz + 0.67cz! + 0.05czz − 0.17czγ − 0.05cγγ. (4.12)

In the SM, the decay process h → 4" proceeds at the tree-level via intermediate Z bosons. In
the presence D = 6 operators, intermediate photon contributions may also arise at the tree
level. If that is the case, the decay width diverges due to the photon pole. Below I quote
the relative width Γ̄(h → 4") regulated by imposing the cut m"" > 12 GeV on the invariant
mass of same-flavor lepton pairs:

Γ̄4"

Γ̄SM
4"

# 1 + 2δcz +

(
0.41
0.39

)
cz! −

(
0.15
0.14

)
czz +

(
0.07
0.05

)
czγ −

(
0.02
0.02

)
cγ! +

(
< 0.01
0.03

)
cγγ

→ 1 + 2δcz +

(
0.35
0.32

)
cz! −

(
0.19
0.19

)
czz +

(
0.09
0.08

)
czγ +

(
0.01
0.02

)
cγγ . (4.13)

The numbers in the columns correspond to the 2e2µ and 4e/µ final states, respectively.
The difference between these two is numerically irrelevant in the total width, but may be
important for differential distributions, especially regarding the cγγ dependence [91]. The
dependence on the m"" cut is weak; very similar numbers are obtained if m"" > 4 GeV is
imposed instead.

Given the partial widths, the branching fractions can be computed as BrY = ΓY /Γ(h → all),
where the total decay width is given by

Γ(h → all)

Γ(h → all)
#

Γbb

ΓSM
bb

BrSMbb +
Γcc

ΓSM
cc

BrSMcc +
Γττ

ΓSM
ττ

BrSMττ +
ΓWW ∗

ΓSM
WW ∗

BrSMWW ∗ +
ΓZZ∗

ΓSM
ZZ∗

BrSMZZ∗ +
Γgg

ΓSM
gg

BrSMgg . (4.14)

Note that, in line with the basic assumption of no new light particles, there is no additional
contributions to the Higgs width other than from the SM decay channels. In particular, the
invisible Higgs width is absent in this EFT framework (except for the small SM contribution
arising via h → ZZ∗ → 4ν).
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h h

• Vector boson associated production (Vh), qq̄ → V h, where V = W,Z,

σWh

σSM
Wh

" 1 + 2δcw +




6.39
6.51
6.96



 cw! +




1.49
1.49
1.50



 cww

→ 1 + 2δcz +




9.26
9.43
10.08



 cz! +




4.35
4.41
4.63



 czz −




0.81
0.84
0.93



 czγ −




0.43
0.44
0.48



 cγγ

σZh

σSM
Zh

" 1 + 2δcz +




5.30
5.40
5.72



 cz! +




1.79
1.80
1.82



 czz +




0.80
0.82
0.87



 cγ! +




0.22
0.22
0.22



 czγ,

→ 1 + 2δcz +




7.61
7.77
8.24



 cz! +




3.31
3.35
3.47



 czz −




0.58
0.60
0.65



 czγ +




0.27
0.28
0.30



 cγγ.

(4.7)

The numbers in the columns refer to the LHC collision energy of
√
s =7, 8, and 13 TeV.

• Top pair associated production, gg → htt̄:

σtth

σSM
tth

" 1 + 2δyu. (4.8)

Decay

• h → f f̄ . Higgs boson decays into 2 fermions occur at the tree level in the SM via the
Yukawa couplings in Eq. (2.17). In the presence of D = 6 operators they are affected via the
corrections to the Yukawa couplings in Eq. (3.5):

Γcc

ΓSM
cc

" 1 + 2δyu,
Γbb

ΓSM
bb

" 1 + 2δyd,
Γττ

ΓSM
ττ

" 1 + 2δye, (4.9)

where I abbreviate Γ(h → Y ) ≡ ΓY .

• h → VV. In the SM, Higgs decays into on-shell gauge bosons: gluon pairs gg, photon pairs
γγ, and Zγ occur only at the one-loop level. In the presence of D = 6 operators these decays
are corrected already at the tree level by the 2-derivative contact interactions of the Higgs
boson with two vector bosons in Eq. (3.3). The relative decay widths are given by

ΓV V

ΓSM
V V

"
∣∣∣∣1 +

ĉvv
cSMvv

∣∣∣∣
2

, vv ∈ {gg, γγ, zγ}, (4.10)

where

ĉγγ = cγγ , cSMγγ " −8.3× 10−2,

ĉzγ = czγ, cSMzγ " −5.9× 10−2, (4.11)

12

Decays to 2 fermions

Decays to 4 fermions

Decays to 2 gauge bosons

 2e2μ
4e(  ) 
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independent couplings in Eq. (3.2) arise from D = 6 operators, they are formally of order v2/Λ2.
The rule of thumb is that the EFT approach to Higgs physics is valid if Λ ! v, which translates
to |ci| " 1 and δyf " v/mf for the independent couplings. However, a detailed analysis of this
issue is much more tricky and depends on the kinematic region probed by a given observable.
For example, for observables probing the high

√
s or high pT tail of differential distributions the

validity range will be different than for inclusive observables. See Ref. [42] for a more in-depth
discussion of these issues. In this review I restrict to the Higgs signal strength observables in
various production modes, which are typically dominated by

√
s ∼ mh. Moreover, I am dodging

the question of the validity range because it is assumed from the onset that higher-dimensional
operators provide small corrections on top of SM contributions. Consequently, I will only take
into account corrections to the observables that are linear in the parameters in Eq. (3.2), which
corresponds to retaining only O(Λ−2) effects in the EFT expansion.5 Incidentally, the LHC so far
confirms that the SM is a decent first approximation of the Higgs sector, and deviations due to
new physics are small.

4 Observables

Consider the Higgs boson produced at the LHC via the process X , and subsequently decaying
to the final state Y . It is possible, to an extent, to isolate experimentally different Higgs boson
production modes and decays channels. The LHC collaborations typically quote the Higgs signal
strength relative to the SM one in a given channel, here denoted as µX;Y . Thanks to the narrow
width of the Higgs boson, the production and decay can be separated:6

µX;Y =
σ(pp → X)

σ(pp → X)SM

Γ(h → Y )

Γ(h → Y )SM

Γ(h → all)SM
Γ(h → all)

. (4.1)

Below I summarize how the Higgs production and decays depend on the parameters in the
effective Lagrangian. These formulas allow one to derive experimental constraints on the EFT pa-
rameters. This kind of approach to LHC Higgs data was pioneered in Refs. [48, 49] and perfected
in Refs. [50–87]. As discussed at the end of Section 3, only linear corrections in the independent
couplings are kept, while quadratic corrections are ignored. For this reason only CP-even cou-
plings appear in these formulas (the CP-odd ones enter inclusive observables only at the quadratic
level). Moreover, I only include D = 6 corrections at the tree level and I ignore new physics effects
suppressed by a loop factor. The exception is the gluon fusion production process which is com-
puted at the next-to-leading order in the D = 6 parameters. Unless noted otherwise, I give the
inclusive production and decay rates. Note that the signal strength quoted by experiments may
depend on analysis-specific cuts, which may slightly change the dependence on the effective theory
parameters.

5Typically, O(Λ−4) effects should be neglected in the context of D = 6 effective Lagrangian, as they may receive
contributions from D = 8 operators. The exception is the observables where the SM contribution is suppressed or
vanishes, in which case D = 6 operators contribute at O(Λ−4), while contributions of higher-order operators are
suppressed by more powers of Λ. One example is the lepton-flavor violating Higgs decays into 2 fermions where the
SM contribution is exactly zero. In this review I focus on the observables where the SM contribution is dominant.

6Except in off-shell Higgs processes [43]. However, given the current precision, these processes do not impose
any meaningful constraints within the EFT framework [44–47].

10

Higgs observables in the Higgs basis

Signal  strength

In EFT, assuming no other degrees of freedom,
 so total width is just sum of partial width into SM particle

no invisible width in this analysis

One can express all measured signal strength in 
terms of the 9 EFT parameters  

Using available LHC signal strength data one can 
obtain constraints on most of these parameters 
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Higgs constraints on EFT

2 Higgs limits

2.1 The e↵ect of quadratic terms on the fit

In Ref. [1] the fit to the Higgs data is done at the linear level, that is only leading
order D = 6 corrections are kept. This is because quadratic and higher corrections
are formally equivalent to contributions of D > 6 operators, and should be consistently
neglected in the D = 6 EFT approach. Unfortunately, this assumption is currently
not fully consistent because the Higgs data by itself cannot yet constrain the D = 6
operators to be small in a model independent way. This shows itself as a sensitivity
to the corrections to the Higgs observable that are quadratic in the D = 6 parameters.
Below is a comparison of the limits in the linearized (L) and non-linear (NL) case1

L (x0 ± 1 �) NL (x0 ± 1 �) NL (95% CL range)
�cz �0.12± 0.20 �0.10+0.14

�0.10 [-0.42, 0.15]
czz 0.6± 1.9 �0.4+1.6

�0.5 [-1.0, 1.7]
cz2 �0.25± 0.83 �0.07+0.65

�0.76 [-2.5, 0.7]
c�� 0.015± 0.029 �0.41+1.56

�0.45

cz� 0.01± 0.10
cgg �0.0056± 0.0028
�yu 0.55± 0.30
�yd �0.42± 0.45 �0.36+0.24

�0.20 [-0.74, 0.28]
�ye �0.18± 0.36

(I haven’t computed all the NL limits, but clearly there’s a large sensitivity to the
non-linear terms.)

The situation changes for the better when Higgs and WW data are combined. Here’s
my results (the numerics is a bit unstable in some cases so i don’t vouchsafe for the 2nd
significant digit, but it should be approximately ok).

L (x0 ± 1 �) NL (x0 ± 1 �) L (95% CL range) NL (95% CL range)
�cz �0.15± 0.19 �0.13+0.12

�0.10 [-0.52, 0.22] [-0.33,0.13]
c�� 0.017± 0.016 0.016+0.012

�0.016 [-0.014, 0.048] [-0.016,0.037]
cz� 0.007± 0.098 0.003+0.157

�0.054 [-0.19, 0.20] [-0.09,0.20]
cgg �0.0056± 0.0027 �0.0048+0.0020

�0.0019 [-0.011, 0.000] [-0.009, -0.001]
�yu 0.55± 0.30 0.49+0.29

�0.24 [-0.04, 1.14] [-0.01, 1.32]
�yd �0.48± 0.39 �0.39+0.25

�0.20 [-1.24, 0.28] [-0.75, 0.15]
�ye �0.21± 0.21 �0.200.21�0.19 [-0.63, 0.20] [-0.52, 0.19]
�g1,z 0.028± 0.033 0.030+0.049

�0.036 [-0.04, 0.09] [-0.03, 0.13]
�� 0.137± 0.084 0.099+0.079

�0.100 [-0.03, 0.30] [-0.07, 0.27]
�z �0.146± 0.074 �0.098+0.058

�0.065 [-0.29,0.00] [-0.22,0.02]
Although both Higgs and WW data separately are very sensitive to the quadratic

terms, together they force the D=6 parameters to be small, such that the linearized
approximation works much better. This is first of all due to breaking up the flat direction
between czz and cz2 by the WW data; however other D = 6 parameters also profit
from that and their errors shrink. We can see that most of the constraints are pretty

1In the non-linear case, one also has higher than quadratic terms entering in the analysis because
the signal strength µ depends on the total Higgs width entering in the denominator. In my analysis,
the denominator is expanded in the linearized case, and kept unexpanded in the non-linear case.

3

 Not all parameters yet constrained enough that EFT approach is valid 

Results sensitive to including corrections to Higgs observables quadratic in EFT 
parameters which are formally O(1/Λ^4). Thus, in general, results may be 
sensitive to including dimension-8 operators  

Flat direction

Needs more data
on  differential distributions

in h->4f decays

AA
1505.00046
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In Higgs basis formalism, all but 2 TGCs are dependent couplings and can be expressed 
by Higgs couplings to gauge bosons 

Therefore constraints on δg1z and δκγ imply constraints on Higgs couplings 

But for that, all TGCs have to be simultaneously constrained in multi-dimensional fit, 
and correlation matrix should be given

Note that c_zγ c_zz and c_zBox are difficult to access experimentally in Higgs physics

Important to combine Higgs and TGC data! 

TGC - Higgs Synergy

Linearly realized SU(3)xSU(2)xU(1) at D=6 level enforces relations
 between TGC and Higgs couplings in the Higgs basis

HiggsTGC
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Higgs constraints on EFT

Flat direction  between c_zz and c_zBox lifted to large extent by WW data! 

Much better constraints on some parameters. 
Most parameters (marginally) within the EFT regime

Lower sensitivity to the quadratic terms (though still not completely negligible, 
especially  for δcz and δyd)  

4

they are allowed to be much bigger than their SM values
is more complicated (see e.g. Refs. [25–27]). Notice that
large values are not incompatible with the EFT frame-
work (as long as no flavor symmetry is assumed), which
in principle predicts natural values of order v2/⇤2 that
easily exceed the small Yukawas. Remarkably, even when
light Yukawa couplings are as large as the bottom Yukawa
(which would almost double the total Higgs width), our
TGC bounds given in Eq. (2) qualitatively hold.

As a final comment, we note that the tight bounds
we obtain via the combination of LEP-2 WW and LHC
Higgs data strongly constrain deviations in the h ! 4`
distributions, which will be investigated in the LHC
Run-2. These decays can be described experimentally
through a set of pseudo-observables [28], which can then
be matched to the D=6 operators in the EFT at tree-
level [29]. The strong bounds we obtain on the pseudo-
observables from our fit, see Eq. (A.12), are very similar
to those presented in Ref. [29] using only LEP2 data with
�z = 0. Therefore, to a good approximation, the analysis
performed in that work for such specific case holds now
in full generality. In particular, the very strong bounds
on the contact terms ✏Z`L,R imply small deviations in the
h ! 4` spectrum [29].

To conclude, by working atO(⇤�2) in the EFT and un-
der the MFV assumption, we obtained strong and model-
independent bounds on the aTGCs via the combination
of LEP-2 WW and LHC Higgs signal-strength data. The
combination of the two datasets lifts the flat direction
a↵ecting each of them taken separately, thus showing
the importance of performing global analysis in the EFT
framework. Combined with the W - and Z-pole observ-
ables analysis of Ref. [12], the results of this work can be
used to set strong constraints on a wide class of possible
new physics scenarios.
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Appendix A: Fit results

In the SM extended by D=6 operators, assuming
MFV, there are 9 combinations of Wilson coe�cients
that a↵ect the Higgs signal strength measured at the
LHC and are weakly constrained by electroweak preci-
sion tests. Furthermore, to describe electroweak gauge
bosons pair production, one more independent combina-
tion is needed. In the Higgs basis [30] these 10 parameters
are [13]:

�cz, czz, cz⇤, c�� , cz� , cgg, �yu, �yd, �ye, �z. (A.1)

The relation of these parameters to the interaction terms
in the e↵ective Lagrangian can be found in Ref. [30].
We constrain these parameters using the available LHC
Higgs data and WW data, as described above Eq. (2).

Channel µ Production Ref.

�� 1.16+0.20
�0.18 2D [31]

1.0+1.6
�1.6 Wh [34]

0.1+3.7
�0.1 Zh [34]

0.58+0.93
�0.81 Vh [33]

1.30+2.62
�1.75 & 2.7+2.4

�1.7 tth [33, 34]

Z� 2.7+4.5
�4.3 & �0.2+4.9

�4.9 total [34, 35]

ZZ⇤ 1.31+0.27
�0.14 2D [31]

WW ⇤ 1.11+0.18
�0.17 2D [31]

2.1+1.9
�1.6 Wh [36]

5.1+4.3
�3.1 Zh [36]

0.80+1.09
�0.93 Vh [33]

⌧⌧ 1.12+0.25
�0.23 2D [31]

0.87+1.00
�0.88 Vh [33]

bb 1.11+0.65
�0.61 Wh [32]

0.05+0.52
�0.49 Zh [32]

0.89+0.47
�0.44 Vh [33]

2.8+1.6
�1.4 VBF [37]

1.5+1.1
�1.1 & 1.2+1.6

�1.5 tth [38, 39]

µµ �0.7+3.7
�3.7 & 0.8+3.5

�3.4 total [34, 40]

multi-` 2.1+1.4
�1.2 & 3.8+1.4

�1.4 tth [41, 42]

TABLE I. The LHC Higgs results used in the fit. 2D
stands for the likelihood functions in the plane µggh+tth-
µVBF+Vh, whereas in the diphoton channel (cats.) we use the
five-dimensional likelihood function in the space spanned by
(µggh, µtth, µVBF, µWh, µZh). Notice that in these two cases
µ is quoted for illustration only, since more information is
included in the analysis. Correlations among di↵erent pro-
duction classes in this table are ignored. See Ref. [13] for a
more detailed discussion of our Higgs dataset.

In the Gaussian approximation near the best fit point
we find the following constraints:

0

BBBBBBBBBBBBB@

�cz
czz
cz⇤
c��
cz�
cgg
�yu
�yd
�ye
�z

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

�0.07± 0.14
0.65± 0.42
�0.29± 0.21
�0.005± 0.014
�0.005± 0.095

�0.0053± 0.0027
0.55± 0.30
�0.44± 0.24
�0.22± 0.18
�0.152± 0.080

1

CCCCCCCCCCCCCA

, (A.2)

where the uncertainties correspond to 1�. The correla-

Correlation matrix
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Corollary: constraints on TGCs

TGC
Higgs
TGC+Higgs

!1.5 !1.0 !0.5 0.0
!1.0

!0.5

0.0

0.5

1.0

∆g1,z

∆ΚΓ

LHC Higgs and LEP-2 WW data by itself do 
not constrain TGCs robustly due to each 
suffering from 1 flat direction in space of 
3 TGCs 

However, the flat directions are orthogonal 
and combined constraints lead to robust 
O(0.1) limits on aTGCs

2

and couplings to electrons. However, given the model-
independent electroweak precision constraints [12], these
measurements can e↵ectively constrain 3 linear combina-
tions of Wilson coe�cients of D=6 operators that cor-
respond to the aTGCs [5]. We use this dependence
to construct the 3D likelihood function �2

WW (�g1,z, �� ,
�z). For the LHC Higgs data, we use the signal strength
observables (µ) listed in Table I, separated according to
the final state and the production mode. The e↵ect of
D=6 operators on µ was calculated for each channel and
production mode in Ref. [13] and independently cross-
checked here. After imposing electroweak precision con-
straints, 9 linear combinations of D=6 operators can af-
fect µ in an observable way [8, 14]. The crucial point
is that 2 of these combinations correspond to the aT-
GCs �g1,z, �� . Therefore, the likelihood function con-
structed from LHC Higgs data, �2

h(�g1,z, �� , . . . ), may
lead to additional constraints on aTGCs. Indeed, com-
bining the likelihoods �2

comb. = �2
h + �2

WW we obtain
strong constraints on the aTGCs at the level of O(0.1).
After marginalizing over the remaining seven Wilson co-
e�cients, we find the following central values, 1 � errors,
and the correlation matrix for the aTGCs:

0

@
�g1,z
��

�z

1

A =

0

@
0.037± 0.041
0.133± 0.087
�0.152± 0.080

1

A ,

⇢ =

0

@
1 0.62 �0.84

0.62 1 �0.85
�0.84 �0.85 1

1

A .

(2)

These constraints hold in any new physics scenario pre-
dicting approximately flavor blind coe�cients of D=6
operators and in which D > 6 operators are sublead-
ing. Appendix A contains a technical description of our
fit and the constraints for all the 10 combinations of Wil-
son coe�cients entering the analysis. They are given in
di↵erent bases for reader’s convenience.

Let us discuss here qualitatively the most important
elements of our fit. Higgs data are sensitive to �g1,z and
�� primarily via their contribution to electroweak Higgs
production channels. However, only 1 combination of
these 2 aTGCs is strongly constrained, while the bound
on the direction �� ⇡ 3.8�g1,z is very weak. Analo-
gously, as already discussed, also LEP-2 bounds present
an approximate blind direction. This is illustrated in
Fig. 1, where the WW and Higgs constraints in the �g1,z–
�� plane are shown separately [15]. Since the flat direc-
tions are nearly orthogonal, combining LHC Higgs and
LEP-2 WW data leads to the non-trivial constraints on
aTGCs displayed in Eq. (2).

One could further strengthen the constraints on aT-
GCs by considering the process of single on-shell W bo-
son production in association with an electron and a neu-
trino [3], as in Ref. [5]. That process probes mostly ��

but it also a↵ects limits on the remaining aTGCs due to
the highly correlated nature of the constraints from WW
and Higgs data. Indeed, we find that adding single W

TGC
Higgs
TGC+Higgs

!1.5 !1.0 !0.5 0.0
!1.0

!0.5
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0.5
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FIG. 1. Allowed 68% and 95% CL region in the �g1,z-��

plane after considering LEP-II WW production data (TGC),
Higgs data, and the combination of both datasets.

data to the combined likelihood roughly halves the con-
fidence intervals for the aTGCs: �g1,z = 0.017 ± 0.023,
�� = 0.047± 0.034, �z = �0.089± 0.042. However, we
choose to highlight the more conservative result in Eq. (2)
as we consider it more robust. The reason is that the ex-
perimental extraction of the single W cross section from
fiducial measurements could be altered in a non-trivial
way in the presence of the aTGC �� , which a↵ects the
photon t-channel contribution to the production ampli-
tude. A more careful analysis is needed to render the
single W constraint more robust.

In the following we discuss whether the assumptions
employed in our analysis can be relaxed without conflict-
ing experimental data and, if yes, how this a↵ects our
results.

We begin by considering the possible impact of D=8
operators, contributing at O(⇤�4). Since the experimen-
tal precision at the LHC is currently moderate, O(20%)
at best, only higher-dimensional operators with ⇤ . few
hundred GeV can be constrained by Higgs physics. For
such a low ⇤ it is not a priori obvious that the D=8
operators are subleading. One way to estimate their ef-
fect is to include in the analysis corrections to Higgs and
WW observables that are quadratic in the Wilson coe�-
cients of D=6 operators, as they are also of O(⇤�4). If
the constraints on the aTGCs are severely a↵ected by
including the quadratic contributions, that would sig-
nal a potential sensitivity to D=8 operators [16]. In
fact, constraints from Higgs or from WW data alone
are completely changed after including the quadratic
terms. However, the combined data are only moder-
ately sensitive. Once the quadratic contributions are
included we find the constraints �g1,z = 0.032+0.043

�0.035,
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Take away
EFT approach is an important tool that allows one to place constraints on large 
classes of new physics models in a model independent way

It is currently possible to study LHC and precision data without unnecessarily 
constraining assumptions, allowing all D=6 operators to be present simultaneously

There are strong constraints on certain combinations of dimension-6 operators from 
the pole observables measured at LEP-1 and other colliders. These can be 
conveniently presented as correlated constraints on vertex corrections and W mass 
corrections. 

Assuming MFV, these constraints allow one to describe LO EFT deformations of 
single Higgs signal strength LHC observables by just 9 parameters 

There are non-trivial constraints on all of these 9 parameters 
from Higgs and WW data  

Synergy of TGC and Higgs coupling measurements is crucial for deriving meaningful 
bounds 
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