

Preparing for the Future Upgrades of the CMS Pixel Detector

Benedikt Freund GRK 1694 Workshop, Freudenstadt, 26.09.2016

Institut für Experimentelle Kernphysik (EKP), KIT

Reminder:

Module Production for the Phase I Upgrade

- Current CMS Pixel Detector will be replaced in early 2017
- KIT produced significant number of detector modules
- Production at KIT finished June 2016
- Link to KSETA Plenary Talk 2016

CMS pixel detector module

Compact Muon Solenoid (CMS)

LHC Schedule

- Two upgrades planned for CMS:
 - Phase 1: Replacement of pixel detector, new readout for calorimeters, ...
 - Phase 2: Replacement of complete silicon tracker, new L1 trigger system, new forward calorimeters, extension of muon system, ...

Why the CMS tracker needs to be upgraded?

- LHC luminosity will be increased successively which in turn leads to an increased number of collisions per bunch crossing
- Phase I Upgrade (2 × design luminosity 2016/17)
 - New readout chip with larger on-chip buffers and faster readout to avoid data loss
- Phase II Upgrade (5-7 × design luminosity 2022/23)
 - Higher granularity (smaller pixels) to compensate higher track density
 - New sensors and readout chips with higher radiation tolerance

Semiconductor Detectors

- 10⁹ free charge carriers in a standard silicon sensor used in high enery physiscs
- Only 2 × 10⁴ electrons are generated by a charged particle
 - ~70 electron-hole pairs per μm silicon
 - Signal would be lost in the amount of free charge carriers
 - Free charge carriers need to be removed to identify charged particles traversing the detector

Working principle: diode → exploit depletion region of pn junction which is extended by reverse biasing

CMS Pixel Detector

- Pixel array with 80 rows × 52 columns = 4160 pixels (pn junctions) in total
- Pixel size: 150 μm × 100 μm
- Each pixel (sensor side) has its own readout channel
- Test samples to investigate the performance of the next CMS pixel detector (for 2017) and for R&D on its successor (for 2024)

cross section of a pixel detector

Test Beam Measurements

- Energy of electron test beam at DESY is sufficiently high, so particles penetrate several detector layers
- Telescope with 6 detector planes to reconstruct tracks of electrons
- Tracks are extrapolated to (tiltable) Device Under Test (DUT)
- To be measured:
 - Charge collection efficiency
 - Tracking eff. = $\frac{Tracks with DUT entry}{Telescope Tracks through DUT}$
 - Charge cluster size
 - Hit resolution

Test Beam Measurements

- Energy of electron test beam at DESY is sufficiently high, so particles penetrate several detector layers
- Telescope with 6 detector planes to reconstruct tracks of electrons
- Tracks are extrapolated to (tiltable) Device Under Test (DUT)
- To be measured:
 - Charge collection efficiency
 - Tracking eff. = $\frac{Tracks with DUT entry}{Telescope Tracks through DUT}$
 - Charge cluster size
 - Hit resolution

Test Beam Measurements

- Energy of electron test beam at DESY is sufficiently high, so particles penetrate several detector layers
- Telescope with 6 detector planes to reconstruct tracks of electrons
- Tracks are extrapolated to (tiltable) Device Under Test (DUT)
- To be measured:
 - Charge collection efficiency
 - Tracking eff. = $\frac{Tracks with DUT entry}{Telescope Tracks through DUT}$
 - Charge cluster size
 - Hit resolution

Magnet

Spill Counter

Converter

Fiber

DESY II

Collimator

e+

Phase I Upgrade

Karlsruher Institut für Technologie

Irradiation

- Samples are irradiated (at Zyklotron AG KIT CN) to final radiation dose expected in 2022
 - Different values for each layer of the pixel detector
 - The CMS pixel detector is the subdetector which suffers most from radiation damage

Benedikt Freund Institut für Experimentelle Kernphysik (EKP), KIT

Preparing for the Future – Part II Upgrades of the CMS Pixel Detector

Irradiation

- Unexpected feature due to carrier board related effect during irradiation
- Different radiation dose at areas where the carrier board has holes
- Hitmaps show more hits at holes
- Take into account for analysis
 Analysis with and without these
 - Analysis with and without these areas

Benedikt Freund Institut für Experimentelle Kernphysik (EKP), KIT

row

Charge Collection Efficiency

- Signal height (lab measurement) decreases due to radiation damage
 - Additional energy levels are created within the energy band structure because of radiation damage, some of them can trap electrons
 - Increasing the bias voltage recovers the signal partially

Charge Collection Efficiency

- Signal height (test beam) also depends on region where charged particles traverse the sensor
- Less efficient region due to geometry (e.g. "bias dot")

Note: If a particle deposits charge in more then one pixel, the pixel with the highest signal is the seed pixel of this cluster

Tracking Efficiency

- Tracking efficiency (test beam) drops in "hole regions"
- Impact of these regions reduced at higher tilt angles due to multiple pixel clusters
 - a single missing pixel does not cause an ineffiency

Benedikt Freund Institut für Experimentelle Kernphysik (EKP), KIT

Tracking Efficiency

- Tracking efficiency (test beam) drops at "hole regions"
- Impact of these regions reduced at higher angles due to multiple pixel clusters
 - a single missing pixel does not cause an ineffiency

Benedikt Freund Institut für Experimentelle Kernphysik (EKP), KIT

Tracking Efficiency

- Compare tracking efficiency (test beam) for different irradiation doses / angles / voltages / thresholds
 - Threshold determines the amount of electrons required to detect a hit
- Example (below): tracking efficiency over irradiation dose for different sensor technologies

test beam results of former study

Charge Cluster Size

- Charge cluster size (test beam) depends on penetration point
 - One pixel clusters are most likely if the particle hits the sensor in the pixel center
 - Between pixels the cluster size increases, especially at pixel corners

Charge Cluster Size / Hit Resolution

- Detectors which exploit charge sharing have an improved resolution by calculating the charge center of multiple pixel clusters
- Possible drawback: bigger clusters lead to more data which needs to be processed by the readout chip

cluster size distribution for different angles

Preparing for the Future – Part II Upgrades of the CMS Pixel Detector Benedikt Freund Institut für Experimentelle Kernphysik (EKP), KIT

Phase II Upgrade

New Sensor Designs

New readout chips required to investigate sensors with smaller pixels

- New readout chips available end of this year
 - Meanwhile: use available readout chips and "intermediate" sensor designs

New Sensor Designs

New readout chips required to investigate sensors with smaller pixels

- New readout chips available end of this year
 - Meanwhile: use available readout chips and "intermediate" sensor designs

New Sensor Designs

New readout chips required to investigate sensors with smaller pixels

- New readout chips available end of this year
 - Meanwhile: use available readout chips and "intermediate" sensor designs

Summary

- LHC luminosity will be increasing in the coming years
 - Two upgrades for CMS to cope with harsher environment
- Phase I Upgrade
 - Test beam to investigate "lifetime-performance" of new CMS Pixel Detector done, data analysis next
 - Charge collection efficiency
 - Tracking efficiency
 - Charge cluster size
 - Hit resolution

Phase II Upgrade

- Additional test beam measurements to evaluate new sensor designs
 - Investigate same criteria as for Phase I Upgrade but smaller pixels

Thank you.

