

Search for anomalous couplings in semileptonic WW and WZ decays in the CMS experiment

Matthias Mozer, Thomas Müller, Christoph Renner, <u>Ivan Shvetsov</u>

Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology

Introduction

- Search for anomalous triple gauge couplings at \sqrt{s} = 13 TeV is presented using full 2015 dataset (L= 2.3 fb⁻¹).
- Search is based on the effective field theory approach (EFT)
- Semileptonic channel.
- Events with boosted topology (boosted AK8 jet) are used → jetsubstructure techniques used for V-tagging.
- Limits are extracted from diboson mass distribution modelled by analytical functions.

Effective field theory approach

 Standard Model Lagrangian is extended with 3 CP-conserving dimension 6 operators:

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_{WWW}}{\Lambda^2} \mathcal{O}_{WWW} + \frac{c_W}{\Lambda^2} \mathcal{O}_W + \frac{c_B}{\Lambda^2} \mathcal{O}_B$$

• Assumption: $E/\Lambda \ll 1$

Event signature

Semileptonic channel

Event selection

cut	electron channel	muon channel
lepton $p_T >$	$50~{ m GeV}$	$53~{ m GeV}$
lepton $ \eta <$	2.5	2.4
$E_T^{miss} >$	$80 { m GeV}$	$40 \mathrm{GeV}$
$ au_{21} <$	0.6	0.6
$M_{WV} >$	$900 \mathrm{GeV}$	$900 { m GeV}$
$W_{lep} p_T >$	$200 { m ~GeV}$	$200 { m ~GeV}$
fat jet $p_T >$	$200 { m ~GeV}$	$200 { m ~GeV}$
fat jet $ \eta <$	2.4	2.4
$\Delta R(lepton, jet) >$	$\frac{\pi}{2}$	$\frac{\pi}{2}$
$\Delta\Phi(jet, E_T^{miss}) >$	2.0	2.0
$\Delta \Phi(jet, Wlep) >$	2.0	2.0
m_{pruned} window	[40., 150.] GeV	[40., 150.] GeV

- Exactly 1 electron or muon passing quality criteria
- No additional loose leptons
- at least 1 AK8 jet passing quality requirements
- AK4 jets are used for btag veto, cleaned from AK8 ΔR=0.8)

Backgrounds

- top pair production (ttbar)
- W+jets
- Diboson production (WW, WZ)
- Single top

Control regions

 3 control regions are defined to validate modelling of main backgrounds

ttbar control region

Ivan Shvetsov

W+jets control region

Ivan Shvetsov

Signal region

Analysis strategy

GK workshop, 28.09.2016

Ivan Shvetsov

Mpruned fit

- Range [40., 150] GeV is used.
- ttbar normalization is constrained with Gaussian with uncertainty 20%
- W+jets normalization is floated freely + c_{EE0} in shape
- Diboson (SM) is constrained with 100% (possible enhancements from aTGC): number is not used later.
- single top is fixed to Monte-Carlo prediction.
- ttbar and W+jets normalizations are extracted from the fit.

Mpruned fit

• Data vs Monte-Carlo after the fit:

M_{wv} shapes

sideband region

signal region

• Normalization is taken from M_{pruned} fit.

M_{wv} shapes

Final background shapes for M_{WV}

cut on $M_{WV} < 3.5 \text{ TeV}$

Ivan Shvetsov

Signal regions

- Signal is divided into 2 categories: WW and WZ
- This provides discrimination c_B vs. c_W and c_{WWW}

Muon channel

Signal modelling

Diboson contribution (SM + aTGC):

$$F_{WV} = N_{SM} \cdot e^{a_0 x} + \sum_{i} \left(N_{c_i,1} \cdot c_i^2 \cdot e^{a_{i,1} x} \cdot \frac{1 + \operatorname{Erf}((x - a_{o,i})/a_{w,i})}{2} + N_{c_i,2} \cdot c_i \cdot e^{a_{i,2} x} \right)$$

SM contribution
$$+ \sum_{i \neq j}^{i < j} \left(N_{c_i,c_j} \cdot c_i \cdot c_j \cdot e^{a_{ij} x} \right)$$

aTGC-aTGC interference

- a_0 fit to MC sample, c_i set to 0.
- $a_{i,1}$, $a_{o,i}$, $a_{w,i}$ fit to MC sample, c_i set to non-zero.
- a_{ij} fit to generator level, c_i and c_j set to non-zero.

Signal modelling

/Λ²=-10 TeV⁻²

/∆²=-3.5 TeV⁻⁄

/Λ²=0 TeV⁻²

c_b positive WW muon channel 10² arbitrary units arb. units u channel c.../Λ²=-20 TeV⁻² 10 10c_w/Λ²=-1,...,-19 TeV⁻² 10 10⁻² 3500 M_{wv} (GeV) 1500 2000 2500 3000 1000 10⁻² MC-Fit error 10^{-3} 1000 1500 2500 3500 2000 3000 M_{wz} (GeV)

lines represent signal function \rightarrow working at lower aTGC

Ivan Shvetsov

GK workshop, 28.09.2016

c_w negative WZ muon channel

generator level

٠

Limits on aTGCs

Limits are extracted in a simultaneous **unbinned maximum likelihood fit** in WW and WZ category, muon and electron channel.

Ivan Shvetsov

GK workshop, 28.09.2016

• Results presented in terms of EFT and LEP parametrization:

	aTGC	expected limit	observed limit
ц.	$\frac{c_{WWW}}{\Lambda^2}$ (TeV ⁻²)	[-8.73 , 8.70]	[-9.46 , 9.42]
EF	$\frac{\tilde{c}_W}{\Lambda^2}$ (TeV ⁻²)	[-11.7 , 11.1]	[-12.6 , 12.0]
ď	$\frac{\tilde{c}_B}{\Lambda^2}$ (TeV ⁻²)	[-54.9 , 53.3]	[-56.1, 55.4]
m.	λ	[-0.036 , 0.036]	[-0.039 , 0.039]
ert	Δg_1^Z	[-0.066 , 0.064]	[-0.067 , 0.066]
Þg	$\Delta \kappa_Z$	[-0.038 , 0.040]	[-0.040 , 0.041]

Limits on aTGCs

• 2 dimensional limits:

GK workshop, 28.09.2016

0

0.05

 λ_{Z}

-0_1 -0.05

Conclusions and outlook

- Search for anomalous triple gauge couplings using semileptonic WV decays was presented.
- Full 2015 dataset with integrated luminosity 2.3 fb⁻¹ is used.
- Results were approved by the CMS experiment in August and shown at QCD@LHC conference in Zürich: SMP-16-012.
- First aTGC result from CMS at 13 TeV.
- We plan to update results with 2016 dataset.

Backup

Ivan Shvetsov

Signal sample

- Signal generated with madgraph using EWdim6 model, Madgraph 2.2.3 →LO sample
- 9 points are generated (roughly correspond to sensitivity):

$c_{WWW}/\Lambda^2 [TeV^{-2}]$	$c_W/\Lambda^2 [TeV^{-2}]$	$c_B/\Lambda^2 [TeV^{-2}]$
± 12.0	± 20.0	± 60.0
± 12.0	0.0	0.0
0.0	± 20.0	0.0
0.0	0.0	± 60.0
0.0	0.0	0.0

MET cut

dim 6 operators

$$\mathcal{O}_{WWW} = \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$$
$$\mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi)$$
$$\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi)$$

Ivan Shvetsov

Mpruned fit

• Results of the fit:

DAC	electron			muon		
FAS	pre-fit	post-fit	scale factor	pre-fit	post-fit	scale-factor
W+jets	584	538 ± 56	0.92 ± 0.10	767	814 ± 72	1.06 ± 0.09
tī	243 ± 49	256 ± 46	1.1 ± 0.2	318 ± 64	313 ± 60	1.0 ± 0.2
single top	37	37	1	52	52	1
diboson	34 ± 34	41 ± 27	1.2 ± 0.8	45 ± 45	61 ± 35	1.4 ± 0.8
Total expected	898	872 ± 30	0.97 ± 0.03	1182	1240 ± 35	1.05 ± 0.03
Data		874	$\backslash \rangle \vdash$		1241	

α -function

WW, electron channel

WZ, electron channel

WW, muon channel

Summary of background extraction

- Normalisation of ttbar and W+jets are extracted from M_{pruned} fit, other backgrounds → from theory prediction.
- W+jets shape is extracted from sideband data and corrected with alpha-function.
- Fit was verified with closure test.

Signal and background yields

- Yields in the signal region
- W+jets uncertainty: statistical uncertainty from M_{pruned} fit and alternative function.

	elec	ctron	mı	ion
	WW	WZ	WW	WZ
W+jets	124 ± 17	103 ± 16	192 ± 20	164 ± 20
tī	73 ± 17	58 ± 13	90 ± 21	71 ± 17
single top	10.9 ± 1.4	9.8 ± 1.2	17.8 ± 2.3	10.6 ± 1.4
diboson (SM)	15.8 ± 2.2	9.3 ± 1.3	20.6 ± 3.0	12.2 ± 1.8
Total expected (SM)	-224 ± 24	180 ± 21	320 ± 29	258 ± 26
diboson $\frac{c_{WWW}}{\Lambda^2} = 12 \text{TeV}^{-2}$	36.2 ± 5.1	39.9 ± 5.7	50.8 ± 7.3	55.4 ± 8.0
diboson $\frac{c_W}{\Lambda^2} = 20 \text{TeV}^{-2}$	51.6 ± 7.4	69 ± 10	72 ± 10	91 ± 13
diboson $\frac{\tilde{c}_B}{\Lambda^2} = 60 \text{TeV}^{-2}$	41.5 ± 5.9	20.1 ± 2.9	57.0 ± 8.2	26.8 ± 3.9
Data	234	183	340	265

Systematics uncertainties: normalization

- b-tagging/mis-tagging (ttbar and WZ)
- Jet energy scale and resolution
- Lepton energy scale and resolution
- Missing E_T uncertainty
- PDF uncertainty → PDF4LHC recommendations
- Q_2 uncertainty (Scale) \rightarrow envelope

process	b-tag	jet en.	lept. en.	lept. id	PDF	scale	$ ot\!$	lumi	V-tag
			electron	n channel					
tĪ	0.8	2.8	< 0.05	1.0	2.5	19	0.5	2.7	12
WZ	0.1	1.7	< 0.05	1.0	2.5	3.6	0.5	2.7	12
WW	< 0.05	2.4	0.6	1.0	1.9	6.0	0.6	2.7	12
Single Top	< 0.05	1.6	0.5	1.0	0.3	2.0	1.2	2.7	12
			muon	channel					
tī	0.8	2.6	1.6	3.2	2.6	19	0.1	2.7	12
WZ	< 0.05	1.6	1.4	3.8	2.3	3.5	0.3	2.7	12
WW	< 0.05	2.3	1.7	3.9	1.8	6.0	0.2	2.7	12
Single Top	< 0.05	0.6	1.9	3.6	0.4	1.9	0.5	2.7	12

Systematics uncertainties: shapes

- Fit done varying MC up/down
- Uncertainties on slopes of the signal function (without interference):

category	a_{cw}	a_{cb}	a_{cwww}
WW, muon	4.54	5.37	5.28
WW, electron	4.98	6.04	5.90
WZ, muon	4.53	15.50	4.72
WZ, electron	4.87	15.88	5.06

- Slope involving c_b is assigned to have 15 % uncertainty (WZcategory).
- Other slopes: 5 %

HEEP ID

https://twiki.cern.ch/twiki/bin/view/CMS/HEEPElectronIdentificationRun2#Selection_Cuts_HEEP_V6_1_Optiona

Selection Cuts: HEEP V6.1 (Optional for 76X)

Variable	Barrel	Endcap
ET	> 35 GeV	> 35 GeV
η range	η _{sc} < 1.4442	1.566 < η _{sc} < 2.5
isEcalDriven	=1	=1
Δη _{in} seed	< 0.004	< 0.006
Δφ _{in}	< 0.06	< 0.06
H/E	<1/E + 0.05	< 5/E + 0.05
full 5x5 σ _{iηiη}	n/a	<0.03
full 5x5 E2x5/E5x5	>0.94 OR E1x5/E5x5 > 0.83	n/a
EM + Had Depth 1 Isolation	<2+0.03*Et +0.28*rho	<2.5 +0.28*rho for Et<50 else
		<2.5+0.03*(Et-50) +0.28*rho
Track Isol: Trk Pt	<5 for Et<95 else	<5 for Et<100 else
	<5 + 1.5*rho	<5 + 0.5*rho
Inner Layer Lost Hits	<=1	<=1
dxy	<0.02	<0.05

HighPt muon ID

https://twiki.cern.ch/twiki/bin/viewauth/CMS/SWGuideMuonIdRun2#HighPt_Muon

Plain-text description	Technical description	Comments
The candidate is reconstructed as a Global Muon	recoMu.isGlobalMuon()	
At least one muon- chamber hit included in the global-muon track fit	<pre>recoMu.globalTrack()- >hitPattern().numberOfValidMuonHits() > 0</pre>	To suppress hadronic punch-through and muons from decays in flight.
Muon segments in at least two muon stations This implies that the muon is also an arbitrated tracker muon, see SWGuideTrackerMuons	<pre>recoMu.numberOfMatchedStations() > 1</pre>	To suppress punch-through and accidental track-to-segment matches. Also makes selection consistent with the logic of the muon trigger, which requires segments in at least two muon stations to obtain a meaningful estimate of the muon $p_{T_{.}}$
The p _T relative error of the muon best track is less than 30%	<pre>recoMu.muonBestTrack()- >ptError()/recoMu.muonBestTrack()->pt() < 0.3</pre>	
Its tracker track has transverse impact parameter d _{xy} < 2 mm w.r.t. the primary vertex	<pre>fabs(recoMu.muonBestTrack()->dxy(vertex- >position())) < 0.2 Or dB() < 0.2 On pat::Muon [1]</pre>	To suppress cosmic muons and further suppress muons from decays in flight (see <u>CMS AN 2008/098</u>). The 2 mm cut preserves efficiency for muons from decays of b and c hadrons. It is a loose cut and can be tightened further with minimal loss of efficiency for prompt muons if background from cosmic muons is an issue. Another way to obtain a better cosmic-ray suppression is to complement the d_{xy} cut with a cut on the opening angle α or use a dedicated cosmic-id algorithm (see Section 7.1 of <u>MUO-10-004</u>). innerTrack() is also supported for dxy cut, as the performance of the two is very close.
The longitudinal distance of the tracker track wrt. the primary vertex is d _z < 5 mm	<pre>fabs(recoMu.muonBestTrack()->dz(vertex- >position())) < 0.5</pre>	Loose cut to further suppress cosmic muons, muons from decays in flight and tracks from PU. innerTrack() is also supported for dz cut, as the performance of the two is very close.
Number of pixel hits > 0	<pre>recoMu.innerTrack()- >hitPattern().numberOfValidPixelHits() > 0</pre>	To further suppress muons from decays in flight.
Cut on number of tracker layers with hits >5	<pre>recoMu.innerTrack()- >hitPattern().trackerLayersWithMeasurement() > 5</pre>	To guarantee a good p _T measurement, for which some minimal number of measurement points in the tracker is needed. Also suppresses muons from decays in flight.

Ivan Shvetsov

Pruning

limits for WW and WZ categories

Ivan Shvetsov

WW+WZ

merged WW+WZ, no interference

Ivan Shvetsov

Effects of the SM-interference

• No SM interference: $N_{obs} = N_{SM} + c_1 \cdot aTGC_1^2 + c_2 \cdot aTGC_2^2$

• SM interference:

$$N_{obs} = N_{SM} + c_i \cdot aTGC_1 + c_1 \cdot aTGC_1^2 + c_2 \cdot aTGC_2^2$$

• \rightarrow shift in the ellipse

Effects of the aTGC-aTGC interference

Karlsruhe Institute of Technology

- aTGC-aTGC interference: $N_{obs} = N_{SM} + c_i \cdot aTGC_1 \cdot aTGC_2 + c_1 \cdot aTGC_1^2 + c_2 \cdot aTGC_2^2$
- \rightarrow rotation of the ellipse:

$$aTGC_{1}' = \cos\alpha \cdot aTGC_{1} + \sin\alpha \cdot aTGC_{2}$$
$$aTGC_{2}' = -\sin\alpha \cdot aTGC_{1} + \cos\alpha \cdot aTGC_{2}$$

Cross-checks for ttbar control region

GK workshop, 28.09.2016

Electron channel

Muon channel

43

no requirement on b-tagging

Electron channel

Muon channel

Details about signal function

$$\begin{aligned} F_{atgc} \cdot A_N = &N_{SM} \cdot e^{a_0 x} + \sum_i \left(N_{c_i,1} \cdot c_i^2 \cdot e^{a_{i,1} x} \cdot \frac{1 + \operatorname{Erf}((x - a_{o,i})/a_{w,i})}{2} + N_{c_i,2} \cdot c_i \cdot e^{a_{i,2} x} \right) \\ &+ \sum_{i \neq j}^{i < j} \left(N_{c_i,c_j} \cdot c_i \cdot c_j \cdot e^{a_{ij} x} \right) ,\end{aligned}$$

$$S_{aTGC} = 1 + \sum_{i} S_{c_i}$$
$$F_{atgc} \rightarrow S_{aTGC} \cdot F_{atgc}$$
$$S_{c_i} = b_0 + b_1 \cdot c_i + b_2 \cdot c_i^2 - 1$$

$$\begin{split} A_{N} = & N_{SM} + \sum_{i} \left(N_{c_{i},1} \cdot c_{i}^{2} + N_{c_{i},2} \cdot c_{i} \right) + \sum_{i \neq j}^{i < j} \left(N_{c_{i},c_{j}} \cdot c_{i} \cdot c_{j} \right) \\ & N_{c_{i},1} = \frac{N_{c_{i}}^{MC^{+}} + N_{c_{i}}^{MC^{-}}}{2} - N_{SM} \\ & N_{c_{i},2} = \frac{N_{c_{i},c_{j}}^{en} - (N_{SM} + N_{c_{i},1} + N_{c_{i},2} + N_{c_{j},1} + N_{c_{j},2}) \\ & = N_{c_{i},c_{j}}^{gen} - \left(N_{SM} + \frac{N_{c_{i}}^{MC^{+}} + N_{c_{i}}^{MC^{-}}}{2} - N_{SM} + \frac{N_{c_{i}}^{MC^{+}} - N_{c_{i}}^{MC^{-}}}{2} \right) \\ & + \frac{N_{c_{j}}^{MC^{+}} + N_{c_{j}}^{MC^{-}}}{2} - N_{SM} + \frac{N_{c_{j}}^{MC^{+}} - N_{c_{j}}^{MC^{-}}}{2} \right) \\ & = (N_{c_{i}+,c_{j}+}^{gen} + N_{SM}) - (N_{c_{i}}^{MC^{+}} + N_{c_{j}}^{MC^{+}}) \; . \end{split}$$

$$\mu = \frac{m_W^2}{2} + \vec{p}_{T,lepton} \cdot \vec{E}_T^{miss}$$

- take real part if complex solution
- take the one with the smallest absolute value if 2 real solutions

Other results

August 2016	CMS ATLAS					
Fit Value			Channel	Limits	∫ <i>L</i> dt	N S
<u>Λκ</u> _	—		WW	[-4.3e-02, 4.3e-02]	4.6 fb ⁻¹	7 TeV
<u> </u>	H H		WW	[-2.5e-02, 2.0e-02]	20.3 fb ⁻¹	8 TeV
	⊢● −−1		WW	[-6.0e-02, 4.6e-02]	19.4 fb ⁻¹	8 TeV
			WZ	[-1.3e-01, 2.4e-01]	33.6 fb ⁻¹	8,13 TeV
	· · · · · · · · · · · · · · · · · · ·		WV	[-9.0e-02, 1.0e-01]	4.6 fb⁻¹	7 TeV
	H		WV	[-4.3e-02, 3.3e-02]	5.0 fb⁻¹	7 TeV 🧹
	—		WV	[-4.0e-02, 4.1e-02]	2.3 fb ⁻¹	13 TeV 🔰
	⊢ •		LEP Comb.	[-7.4e-02, 5.1e-02]	0.7 fb ⁻¹	0.20 TeV
λ_			WW	[-6.2e-02, 5.9e-02]	4.6 fb ⁻¹	7 TeV
Z	н		WW	[-1.9e-02, 1.9e-02]	20.3 fb ⁻¹	8 TeV
	—		WW	[-4.8e-02, 4.8e-02]	4.9 fb ⁻¹	7 TeV
	┝╼┥		WW	[-2.4e-02, 2.4e-02]	19.4 fb ⁻¹	8 TeV
	F		WZ	[-4.6e-02, 4.7e-02]	4.6 fb ⁻¹	7 TeV
	н		WZ	[-1.4e-02, 1.3e-02]	33.6 fb ⁻¹	8,13 TeV
	—		WV	[-3.9e-02, 4.0e-02]	4.6 fb ⁻¹	7 TeV
	H		WV	[-3.8e-02, 3.0e-02]	5.0 fb⁻¹	7 TeV 🧹
	—		WV	[-3.9e-02, 3.9e-02]	2.3 fb ⁻¹	13 TeV 🤺
	⊢ −●−1		D0 Comb.	[-3.6e-02, 4.4e-02]	8.6 fb ⁻¹	1.96 TeV
	┝━━━┥		LEP Comb.	[-5.9e-02, 1.7e-02]	0.7 fb ⁻¹	0.20 TeV
Δg_{\perp}^{Z}			WW	[-3.9e-02, 5.2e-02]	4.6 fb ⁻¹	7 TeV
-1	H		WW	[-1.6e-02, 2.7e-02]	20.3 fb ⁻¹	8 TeV
			WW	[-9.5e-02, 9.5e-02]	4.9 fb ⁻¹	7 TeV
	┝╼╾┥		WW	[-4.7e-02, 2.2e-02]	19.4 fb ⁻¹	8 TeV
			WV	[-6.7e-02, 6.6e-02]	2.3 fb ⁻¹	13 TeV 🔰
			WZ	[-5.7e-02, 9.3e-02]	4.6 fb ⁻¹	7 TeV
	H H		WZ	[-1.5e-02, 3.0e-02]	33.6 fb ⁻ '	8,13 IeV
			WV	[-5.5e-02, 7.1e-02]	4.6 fb ⁻¹	7 TeV
	⊢ −●−−1		D0 Comb.	[-3.4e-02, 8.4e-02]	8.6 fb ⁻	1.96 TeV
	┝╾●┬┨		LEP Comb.	[-5.4e-02, 2.1e-02]	0.7 fb ⁻¹	0.20 TeV
-0.4 -0.2	0	0.2	0.4	0.6	0.8	
				aTGC Lin	its @95	5% C.L.

Ivan Shvetsov