

Search for Supersymmetry at the LHC

GK Workshop Bad Liebenzell 2014 – Part II

Isabell-A. Melzer-Pellmann

Recap

Yesterday we discussed:

- Introduction to Supersymmetry
- Challenges in data analysis
- Detailed example for a SUSY search

Today and tomorrow:

- Overview over other SUSY searches
- Outlook

Overview on searches

In the following hour we will discuss the following analyses:

- Gluinos and 1st/2nd generation squarks
- Third-generation squarks

Tomorrow:

- Electroweak SUSY sector
- Escape routes:
 - R-parity violation
 - Long-lived particle searches
 - Beyond MSSM signatures

Outline for today

➡ Gluinos and 1st/2nd generation squarks <━━

- Full-hadronic searches
- Single-lepton searches
- Di-leptonic searches
- Multilepton searches
- Third-generation squarks

Gluinos and squarks can leave many different signatures in the detector, but we can distinguish **two classes of signals** depending on the underlying SUSY model:

- Massive LSP = χ_1° :
 - ← Cascade decays to jets and MET \rightarrow Jets + MET signature
 - ◆ Cascade decays + leptonic gaugino/slepton decay → Isolated lepton + jets + MET signature, 2-leptons (OS or SS) + jets + MET
 - Cascade decays to t or b quarks + MET (through on- or off-shell stop/sbottom)
- • Massless LSP = $\tilde{\mathbf{G}}$ (interpretation in GMSB/GGM)
 - Cascade decays in GMSB/GGM model typically include photons

\rightarrow signatures depend critically on the investigated model!

Inclusive All-Hadronic Search: Results

Result measured in bins of H_T , H_T^{miss} and Njets Different search regions sensitive to different signals

Isabell Melzer-Pellmann

GK Workshop Bad Liebenzell 22.-24.9.2014

6

Inclusive All-Hadronic Search: Interpretation

Interpretation in simplified models:

Squark masses excluded up to

- → **800 GeV** (assuming all 1st and 2nd generation masses degenerate)
- 400 GeV (assuming only one light squark)

Isabell Melzer-Pellmann GK Workshop Bad Liebenzell 22.-24.9.2014

Advantage of single lepton analysis compared to full-hadronic: → QCD background reduced by 1 lepton requirement

Background estimation methods make use of lepton and MET

- → **Method 1:** predict MET spectrum from lepton spectrum (assuming that BG events contain mainly MET from W → I_V)
- → **Method 2:** predict main background from $\Delta\Phi$, the azimuthal angle between the W-boson candidate and the lepton, analysis binned in $S_T = p_T$ (lepton) +MET

Method relies on signal being significant only on >= 2b-tag channel

Strong constraints on gluino mass up to 1.3 TeV! Stronger constraints on stop (up to 800 GeV) as in direct stop searches (under the assumption that gluino is in reach...)

Di-lepton search

Leptons can be

same-flavor (SF) or different flavor (DF)

or

opposite-sign (OS)

search for mass edge in SF events

low SM background only rare processes

Many interpretations possible...

Isabell Melzer-Pellmann GK Workshop Bad Liebenzell 22.-24.9.2014

Examples for interpretations

Opposite-Sign Dileptons

Search for a mass edge

• For $m(\tilde{\chi}_2^0) > m(\text{slepton}) > m(\tilde{\chi}_1^0)$ expect mass edge:

$$m_{\text{edge}} = \sqrt{\left(\left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{1}}^2\right)\left(m_{\tilde{1}}^2 - m_{\tilde{\chi}_1^0}^2\right)\right)} / m_{\tilde{1}}$$

SUS-12-019

Opposite-Sign Dileptons

- N_{lep} ≥ 2 (p_T > 20 GeV, |η| < 2.4)
 </p>
- N_{iets} ≥ 2 (p_T > 40 GeV, |η| < 3.0)
- $(N_{iets} \ge 2 \& MET > 150 \text{ GeV})$.OR. $(N_{iets} \ge 3 \& MET > 100 \text{ GeV})$
- Central region (both leptons within |η| < 1.4)
- Forward region (at least one lepton $|\eta| > 1.4$)

Opposite-Sign Dileptons

- Assume that signal is more central
- Cross check: comparison for background estimation from control region instead of fit

Total yield in window 20 $< m_{\parallel} <$ 70 GeV leads to: \rightarrow Local significance of **2.6** σ (central) and 0.3 σ (forward)

CMSSM Summary plot

Interpretation in CMSSM by CMS for 7 TeV only...

ATLAS did 8 TeV as well

Compressed spectra

CMS.

Special analyses required if ΔM between SUSY particles is small

- \rightarrow called compressed spectra
 - Dedicated analysis using ISR jet : "Monojet"
 - Analyze parked data
 - Relax kinematic constraints on H_T and MET by requiring 1 soft lepton or 2 same-sign leptons

Gluino, 1st/2nd Generation squarks in GMSB

Next-to-Lighest LSP (NLSP) determines the event final states

Gluino, 1st/2nd Generation squarks in GMSB

GMSB (reminder: Gauge Mediated SUSY Breaking): Gravitino is LSP

- Next-to-Lighest LSP (NLSP) determines the event final states
- NLSP = $\widetilde{\chi}_1^0$
 - χ_1° bino-like: $\gamma\gamma$ final states
 - $\widetilde{\chi}_1^{0}$ wino-like: γ +e or γ + jets final states

Searches with Photons: Event Selection

Di-photon analysis:

- At least 2 photons in barrel with $p_T^{\gamma 1} > 40$ GeV, $p_T^{\gamma 2} > 25$ GeV
- At least 1 jet with $p_T > 30$ GeV, $|\eta| < 2.6$
- Signal region: $E_T^{miss} > 100 \text{ GeV}$

Single photon analysis:

- Exactly 1 photon in barrel with $p_T^{\gamma} > 110$ GeV (due to trigger)
- $H_T > 500 \text{ GeV}$ (also from trigger)
- At least 2 jets with $p_T > 30$ GeV, $|\eta| < 2.5$
- Signal region: $E_T^{miss} > 100 \text{ GeV}$ (6 intervals)

Searches with Di-Photons: Background Determination

QCD background (no true E_T^{miss})

- Mis-measurement of E_T^{miss} in QCD processes and/or photon misidentification:
 - Direct di-photon production
 - γ +jets and multijets, with jets mimicking photons
- Background determined from samples with 2 loose γ (or electrons)

Electroweak background with true $E_{\tau}^{\rm miss}$

 Background from events with real or fake photon and W → ve (where e is misidentified as γ)

Searches with Di-Photons: Results

Excluded regions in **gluino-squark plane** for $m\chi^0=375$ GeV

limit with Razor analysis

Strong limit on squarks up to 1.45 TeV and gluinos up to 1.2 TeV for neutralinos of 375 GeV

Searches with Di-Photons: Results

analysis described here

Excluded regions in **gluino-neutralino plane** for m_{squark}=2.5 TeV

limit with Razor analysis

Searches with Single Photons: Background Determination

CMS PAS SUS-12-001

Background determination similar to di-photon case Additional backgrounds: initial state radiation (ISR) and final state radiation (FSR) of photons:

- ISR and FSR in events with electrons in final state covered by EW background prediction from data
- Remaining contributions from SM process are very small taken from Monte Carlo simulation with a systematic uncertainty of 100%.

Searches with Single Photons: Results

95% CL upper limit in gluino-squark mass space

95% CL exclusion contours in gluino-squark mass space

Outline for today

Gluinos and 1st/2nd generation squarks

- Full-hadronic sbottom search
- Di-leptonic sbottom search
- Stop searches

Third Generation Masses in SUSY

Mass eigenstates are calculated from gauge eigenstates, e.g. $f_1 = f_L \cos(M_f) + f_R \sin(M_f)$, where the mass matrix M_f depends on:

- M_1 , M_2 , tan β , μ : SUSY masses and breaking
- MZ, $\sin^2 \theta_W$: EWSB mixing: B,W \rightarrow Z, γ

Stop mass:

$${\cal M}_{ ilde{t}}^2 = \left(egin{array}{cc} m_t^2 + m_{LL}^2 & m_{LR}^* \, m_t \ m_{LR} \, m_t & m_t^2 + m_{RR}^2 \end{array}
ight) \, ,$$

stop mass can be small due to top mass in nondiagonal matrix elements

$$\begin{split} m_{LL}^2 &= \widetilde{M}_Q^2 + m_Z^2 \cos 2\beta \left(\frac{1}{2} - \frac{2}{3} \sin^2 \theta_W\right), \\ m_{RR}^2 &= \widetilde{M}_U^2 + \frac{2}{3} m_Z^2 \cos 2\beta \, \sin^2 \theta_W, \\ m_{LR} &= A_t - \mu^* \cot \beta, \end{split}$$
 Coupling of h and

Large mass splitting between \widetilde{t}_1 and \widetilde{t}_2 possible Sbottom and stau:

- Mass can be small due to large tan β
- \tilde{b}_L can be small even in models with small large tan β due to large top Yukawa coupling being part of the doublet containing \tilde{t}_L

Third-Generation Searches

Natural solution to hierarchy problem: light stops and sbottoms!

- → Powerful sbottom search: $\tilde{b}_L \tilde{b}_L$ with $\tilde{b}_L \rightarrow b \tilde{\chi}_1^0 \rightarrow 2$ b-tagged jets + MET
- Other searches (not discussed here in detail):
 - → $\tilde{b}_L \tilde{b}_L$ with $\tilde{b}_L \rightarrow t \tilde{\chi}_1^{+-}$ → 2 b + 4 W+ MET
 - → $b_{L}^{\vee}b_{L}^{\vee}$ with $b_{L}^{\vee} \rightarrow b \widetilde{\chi}_{2}^{0} \rightarrow 2 b + 2 h + MET$

SUS-13-018

 \tilde{b}^*

 $\tilde{\chi}_1^0$

Full-Hadronic sbottom Search

Exclusive 2b-jet analysis:

- 2 jets with $p_T > 70$ GeV and $|\eta| < 2.4$
- veto 3^{rd} jet with $p_T > 50$ GeV and $|\eta| < 5$
- Veto leptons
- $\Delta \Phi$ (jet1, jet2) < 2.5 to veto QCD events
- 1 or 2 b-tags
- → H_T > 250 GeV
- ♦ MET > <u>175 GeV</u>
- $M_T = \sqrt{[E_T(J_2) E_T^{miss}]^2 + [p_T(J_2) E_T^{miss}]^2} > 200 \text{ GeV}$ (kinematic edge at the mass of the top quark when the jet and MET originate from semileptonic top decay)
- Contransverse mass $M_{CT}^2(J_1, J_2) = [E_T(J_1) + E_T(J_2)]^2 [\mathbf{p}_T(J_1) \mathbf{p}_T(J_2)]^2$ = $2p_T(J_1)p_T(J_2)(1 + \cos \Delta \phi(J_1, J_2)),$

with endpoint at $(m(\tilde{b})^2 - m(\tilde{\chi}_1^0)^2)/m(\tilde{b})$ Main backgrounds:

- $Z \rightarrow$ invisible (as most hadronic searches)
- W + jets

Isabell Melzer-Pellmann

GK Workshop Bad Liebenzell

32

Full-Hadronic sbottom Search

Results binned in N(btag) and MCT

Di-leptonic sbottom Search

What if sbottom decays mainly as: $\tilde{b}_L \tilde{b}_L \rightarrow bb \tilde{\chi}_2^0 \tilde{\chi}_2^0 \rightarrow 2b+2h(bb,WW)+MET$ \rightarrow Search in 3b + jet +MET (as H \rightarrow bb is ~60%)

After all cuts

Remaining background

Irreducible:

- ttbar+H/Z(bb) : σ~0.1 pb
- ttbar+b/bb : σ~0.1 pb
- → Estimated w Monte Carlo

Reducible:

- ttbar with τ-jet, c-jet mistagged as a b-jet
- → Estimated w matrix method

Exclude sbottom masses up to 700 GeV No constraint for neutralino masses below 250 GeV

Different final states \rightarrow different search strategies for different mass ranges

Isabell Melzer-Pellmann

Stop Search with Monojets

For a very **compressed spectrum** the stop decay products, e.g. $\widetilde{t}_1 \rightarrow c \chi_1^0$, are very soft, and thus hard to detect. \Rightarrow Exploit the possible presence of a **hard ISR jet** and large MET

- ✤ MET > 250 GeV
- → pT (j1) > 110 GeV
- veto 2^{nd} jet with $p_T > 60 \text{ GeV}$
- no leptons

Main backgrounds:

- → $Z \rightarrow vv+jets$
- → W → I_V +jets

Stop masses up to 250 GeV are excluded for m_{stop} — $m_{\chi_0^1}$ < 10 GeV

Results can be generalized to $\widetilde{t}_1 \rightarrow x \widetilde{\chi}_1^0$, where x is any decay product invisible to the monojet selection

GK Workshop Bad Liebenzell 22.-24.9.2014

SUS-13-024

Stealth Stop Search

If t_2 light enough to be produced, use it to target region with $m(t_1)-m(\chi_1^0)=m(t)$

- Use searches with 1, 2, >=3 leptons
- b-tags for H→bb signature

3 lepton region mostly sensitive

Need to reduce large background that looks similar to the signal:

Baseline selection:

- → >= 4 jets
- → >= 1 b-jet
- 1 lepton
- ✤ MET > 100 GeV
- ✤ M_T > 120 GeV

Multivariate analysis with BDT BDT signal regions:

- ♦ MET
- Hadronic top χ^2
- ♦ H_T ratio
- ♦ b-jet p_T
- → min (ΔΦ)
- ♦ M_{T2}^W

Isabell Melzer-Pellmann

GK Workshop Bad Liebenzell 22.-24.9.2014

Single Lepton Stop Search with BDT

SUS-13-011

EPJC 73 (2013) 2677

arXiv:1308.1586

Single Lepton Stop Search with BDT

Search for stop \rightarrow top neutralino Influence of Branching Ratio

Considering no acceptance for other decay chains in the investigated channel in case of smaller branching ratio

50% branching ratio reduces discovery range from m(gluino) = [200,750] GeV, m(neutralino) < 250 GeV to m(gluino) = [275,475] GeV, m(neutralino) < 90 GeV

Search for stop \rightarrow top neutralino Influence of Polarization

Polarization of the top quarks (inherited from left/right mixing of the top squarks) has an influence on acceptance \rightarrow limit

Search for stop \rightarrow **top neutralino**

SUS-13-011 SUS-13-004 SUS-14-011

Single lepton stop search combined with Razor hadronic box

Exclude stop masses below 750 GeV No acceptance in stealth region

Isabell Melzer-Pellmann GK Workshop Bad Liebenzell 22.-24.9.2014

Search for stop - Summary

SMS limits including other decay channels

ATLAS-CONF-2013-025 CMS-PAS-SUS-13-002

Stops in GMSB

Summary on Stop

Plain vanilla scenarios for 'natural' stop and sbottom almost all excluded

- Second SUSY crisis after no Higgs found at LEP2?
- Generate lots of new ideas to evade these constraints

Naturalness guide not applicable to Higgs? Higgs mass stabilized by other mechanism? SUSY fine-tuned?

Clearly the situation can be more complex and signal may well hide...

Recap

Today we discussed:

- Gluinos and 1st/2nd generation squarks
- Third-generation squarks

Next:

- Electroweak SUSY sector
- Escape routes:
 - R-parity violation
 - Long-lived particle searches
 - Beyond MSSM signatures
- Outlook

