

Analysis of the decay ${\it B}^+ ightarrow \ell^+ u \gamma, \ell^+ = {\it e}^+, \mu^+$

Bad Liebenzell 2014

Andreas Heller, Michael Feindt, Martin Heck, Anže Zupanc, Thomas Kuhr, Pablo Goldenzweig |

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (EKP), KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT)

The Belle experiment

- The Belle experiment ran 1999 2011 at KEKB accelerator at KEK in Tsukuba, Japan
- Asymmetric e^+e^- accelerator at Y(4S) energy of 10.58 GeV $\mathcal{B}(Y(4S) \rightarrow B \cdot \overline{B}) \approx 96\%$
- $(771.6 \pm 10.6) \times 10^6 B \overline{B}$ pairs measured

Helicity suppression of $B^+ \rightarrow \ell^+ \nu$

- Pure ${\it B}^+
 ightarrow \ell^+ \nu$ decay is helicity suppressed
- B meson has spin 0 and decays into particle and antiparticle with opposite spin
 - \rightarrow Both particles are almost exclusively right- or left-handed
- A heavier lepton has a lower momentum and thus a bigger coupling to the weak current
- SM prediction: $\mathcal{B}(B^+ \to e^+(\mu^+)\nu) = 9.2 \times 10^{-12} (3.9 \times 10^{-7})$
- Measurement¹: $\mathcal{B}(B^+ \rightarrow \tau^+ \nu) = (1.8 \pm 0.5) \times 10^{-4}$

¹Belle: Phys. Rev. D 82 071101, BaBar: Phys.Rev. D88 (2013) 031102

- $B^+ \rightarrow \ell^+ \nu \gamma$: Photon lifts helicity suppression but introduces additional electromagnetic coupling
- SM expectation $\mathcal{O}(\mathcal{B}(B^+ \to \ell^+ \nu \gamma)) \approx 10^{-6}$
- Weak decay is precisely calculable
- Photon emission needs an approximation from heavy quark theory where *E_γ* > 1 *GeV* is required

²Beneke, Rohrwild: *B* meson distribution amplitude from $B^+ \rightarrow \gamma \ell^+ \nu$ arXiv:1110.3228 (2011)

• Branching fraction depends on λ_B

- Describes the first moment of the quark distribution amplitude inside the *B* meson
- Theoretical calculation of the parameter unreliable
- Important parameter for several radiative B meson decays

³Aubert et al.: Search for the radiative leptonic decay $B^+ \rightarrow \gamma \ell^+ \nu$, arXiv:0704.1478 (2007) ²Beneke, Rohrwild: *B* meson distribution amplitude from $B^+ \rightarrow \gamma \ell^+ \nu$ arXiv:1110.3228 (2011)

• Branching fraction depends on λ_B

- Describes the first moment of the quark distribution amplitude inside the *B* meson
- Theoretical calculation of the parameter unreliable
- Important parameter for several radiative B meson decays
- From other measurements λ_B can be constrained

 $ightarrow \mathcal{O}(\mathcal{B}(B^+
ightarrow \ell^+
u \gamma)) pprox 10^{-6}$

³Aubert et al.: Search for the radiative leptonic decay $B^+ \rightarrow \gamma \ell^+ \nu$, arXiv:0704.1478 (2007)

²Beneke, Rohrwild: *B* meson distribution amplitude from $B^+ \rightarrow \gamma \ell^+ \nu$ arXiv:1110.3228 (2011)

Andreas Heller – Analysis of the decay ${\it B}^+
ightarrow \ell^+
u \gamma, \ell = {\it e}, \mu$

• Branching fraction depends on λ_B

- Describes the first moment of the quark distribution amplitude inside the *B* meson
- Theoretical calculation of the parameter unreliable
- Important parameter for several radiative B meson decays
- From other measurements λ_B can be constrained

 $ightarrow \mathcal{O}(\mathcal{B}(B^+
ightarrow \ell^+
u \gamma)) pprox 10^{-6}$

BaBar measurement of $\mathcal{B}(B^+ \to \ell^+ \nu \gamma)$ gives upper limits of $< 17 \times 10^{-6}$ (electron channel), $< 24 \times 10^{-6}$ (muon channel) ³

³Aubert et al.: Search for the radiative leptonic decay $B^+ \rightarrow \gamma \ell^+ \nu$, arXiv:0704.1478 (2007)

²Beneke, Rohrwild: *B* meson distribution amplitude from $B^+ \to \gamma \ell^+ \nu$ arXiv:1110.3228 (2011)

Andreas Heller – Analysis of the decay ${\it B}^+
ightarrow \ell^+
u \gamma, \ell = e, \mu$

Full reconstruction⁴

Hadronic full reconstruction covers 12% of the B⁺ branching fraction
The efficiency is in the range of 0.5%

⁴Feindt et al.: A Hierarchical NeuroBayes-based Algorithm for Full Reconstruction of *B* Mesons at *B* Factories

${\it B}^+ \rightarrow \ell^+ \nu \gamma$ analysis

- Full reconstruction of one B meson
 - \rightarrow Impuls des zweiten *B*-Mesons

$$ightarrow p_{B_{sig}} = (E_{Beam}/2, -ec{p}_{B_{tag}})$$

 $m_{miss}^2 = (p_{Bsig} - p_{lepton} - p_{\gamma})^2$

${\it B}^+ \rightarrow \ell^+ \nu \gamma$ analysis

- Full reconstruction of one B meson
 - ightarrow Impuls des zweiten *B*-Mesons

- Analysis is performed on MC (blind analysis)
- Signal branching fraction is assumed to be 5 × 10⁻⁶
- Background simulation consists of: generic MC with $b \rightarrow c$ decays and semi-leptonic $b \rightarrow u\ell\nu$ MC with $B^+ \rightarrow \pi^0/\eta\ell^+\gamma$ processes

Pre-selection

- After full reconstruction only signal side particles are expected to be left in the detector
- Signal signature consists of a charged track and a high energetic photon

Efficient signal selection

- Highest energetic photon in the event with an energy above 1 GeV
- No charged tracks left after selection
- Lepton selection based on compounded likelihood variable
- Little remaining energy deposition in the calorimeter
- Cut on the mass of the fully reconstructed B meson

Andreas Heller – Analysis of the decay $B^+
ightarrow \ell^+
u \gamma, \ell = e, \mu$

Signal like background

- Dominant background after pre-selection: $B^+ \to \pi^0 \ell^+ \nu$ and $B^+ \to \eta \ell^+ \nu$
- $\mathcal{B}(\pi^0 o \gamma\gamma) pprox 99\%, \, \mathcal{B}(\eta o \gamma\gamma) pprox 40\%$
- Decays are similar to signal if only one photon is found
- Second photon originating from the meson is searched in the detector with specific variables

- Meson masses of π^0, η are reconstructed from signal photon candidate an the remaining photons in the calorimeter
- Meson candidate with mass closest to its nominal mass is kept

- Meson masses of π^0, η are reconstructed from signal photon candidate an the remaining photons in the calorimeter
- Meson candidate with mass closest to its nominal mass is kept
- High combinatorics can lead to the construction artificial peaks at the nominal mass

- Meson masses of π^0, η are reconstructed from signal photon candidate an the remaining photons in the calorimeter
- Meson candidate with mass closest to its nominal mass is kept
- High combinatorics can lead to the construction artificial peaks at the nominal mass

 \rightarrow Mass spectra are computed with different energy cuts on the background photons

 \rightarrow Leads to different mass distributions with complementary information

- Meson masses of π^0, η are reconstructed from signal photon candidate an the remaining photons in the calorimeter
- Meson candidate with mass closest to its nominal mass is kept
- High combinatorics can lead to the construction artificial peaks at the nominal mass

 \rightarrow Mass spectra are computed with different energy cuts on the background photons

 \rightarrow Leads to different mass distributions with complementary information

 Meson mass spectra are gathered in neural network which is used for selection

Network training

- Neural net is trained with NeuroBayes⁵
- Training: Signal-MC against $X_u \ell \nu$ MC and especially $B^+ \to \pi^0 \ell^+ \gamma$
- Additional variables in the network are the remaining energy in the calorimeter and angles among the signal candidate particles
- Signal is measured with a fit of the missing mass in 6 bins of the network output

⁵Feindt: A Neural Bayesian Estimator for Conditional Probability Densities, arXiv:physics/0402093 (2004)

Network output data-MC comparison

Network bin optimization

Fit shapes, muon channel

Andreas Heller – Analysis of the decay ${\it B}^+
ightarrow \ell^+
u \gamma, \ell = e, \mu$

Fit shapes, electron channel

Signal extraction

- Yield of the dominant $B^+ \to X_u \ell^+ \nu$ backgrounds is fixed to MC prediction
 - \rightarrow Two free fit parameters are the signal and one background yield

- Yield of the dominant $B^+ \to X_u \ell^+ \nu$ backgrounds is fixed to MC prediction
 - \rightarrow Two free fit parameters are the signal and one background yield
- Electron and muon channel are fitted separately and simultaneously

- Yield of the dominant $B^+ \to X_u \ell^+ \nu$ backgrounds is fixed to MC prediction
 - \rightarrow Two free fit parameters are the signal and one background yield
- Electron and muon channel are fitted separately and simultaneously
- Several tests are performed with toy MC studies: linearity test, confidence interval coverage, bootstrapped toy MC
 - \rightarrow No bias is found for significant measurements
 - \rightarrow Confidence interval coverage is too large

Systematic error

Sample	muon channel	electron channel
Meson veto network	-0.58	-0.66
Fit shapes	+0.75 -1.34	+0.64 -1.06
Fixing of $B o X_u \ell^+ \nu$	±0.18	±0.24
${\it B}^+ ightarrow \ell^+ u \gamma \; { m model}$	-0.01	-0.05
Tag side efficiency	\pm 0.35	±0.34
Continuum suppression	-0.13	-0.4
Tracking efficiency	-0.01	-0.01
Lepton ID	±0.42	±0.18
N _{BB}	± 0.11	±0.11
Sum	+1.14 -1.59	+1.10 -1.39
	Simultaneous fit	
Sum	+1.81 -2.29	

Measurement on data, muon channel

Andreas Heller – Analysis of the decay ${\it B}^+
ightarrow \ell^+
u \gamma, \ell = e, \mu$

Measurement on data, electron channel

Andreas Heller – Analysis of the decay ${\it B}^+
ightarrow \ell^+
u \gamma, \ell = e, \mu$

Fit results on data one bin

Measurement on data

Sample	Yield	significance in σ	BR limit ×10 ⁶ (90% CL)
${\it B}^+ ightarrow {\it e}^+ u \gamma$	$6.1^{+4.9+1.1}_{-3.9-1.4}$	1.4	13.2
$B^+ ightarrow^+ u \gamma$	$0.9^{+3.6+1.1}_{-2.6-1.6}$	0.4	7.1
${\rm B}^+ \to \ell^+ \nu \gamma$	$6.6^{+5.7+1.8}_{-4.7-2.3}$	1.4	7.3

Default analysis $E(\gamma_{sig}) > 1 \text{ GeV}$

Sample	Yield	significance in σ	BR limit ×10 ⁶ (90% CL)
${\it B}^+ ightarrow {\it e}^+ u \gamma$	$11.9^{+7.0+1.9}_{-6.0-2.4}$	2.0	14.4
${\it B}^+ ightarrow \mu^+ u \gamma$	$-0.1^{+5.2+1.9}_{-4.1-2.3}$	-	6.3
$B^+ ightarrow \ell^+ u \gamma$	$11.3^{+8.4+3.1}_{-7.4-3.6}$	1.5	7.6

Secondary analysis with $E(\gamma_{sig}) > 400 \text{ MeV}$

For the yields the first error is statistical, the second error is systematic. Significances and upper limits contain systematic errors.

Backup Slides

Measurement on data, muon channel, secondary analysis

Muon channel with $E(\gamma_{sig}) > 400$ MeV.

Andreas Heller – Analysis of the decay ${\it B}^+
ightarrow \ell^+
u \gamma, \ell = e, \mu$

Measurement on data, electron channel, secondary analysis

Electron channel with $E(\gamma_{sig}) > 400$ MeV.

Andreas Heller – Analysis of the decay ${\it B}^+
ightarrow \ell^+
u \gamma, \ell = e, \mu$

Hierarchische Ansatz der vollständigen Rekonstruktion

Andreas Heller – Analysis of the decay ${\it B}^+
ightarrow \ell^+
u \gamma, \ell = e, \mu$

26/22

Netwerkvariablen

- Extraenergie im ECL
- Winkel zwischen Signal γ und ν
- $m(\pi^0)$ mit $E(\gamma_{rem}) > 40$ MeV
- $m(\pi^0)$ ohne Schnitt auf $E(\gamma_{rem})$
- $m(\eta)$ mit $E(\gamma_{rem}) > 300$ MeV
- Winkel zwischen Signal γ und Lepton
- $m(\eta)$ mit $E(\gamma_{rem}) > 100$ MeV
- $m(\pi^0)$ mit $E(\gamma_{rem}) > 60$ MeV
- $m(\pi^0)$ mit ECL-Schnitten skaliert um 0.6

Fitformen: Myonkanal für Sekundäranalyse E(γ_{sig}) > 400 MeV

Andreas Heller – Analysis of the decay ${\it B}^+ o \ell^+
u \gamma, \ell = e, \mu$

Fitformen: Elektronkanal für Sekundäranalyse E(γ_{sig}) > 400 MeV

Andreas Heller – Analysis of the decay ${\it B}^+
ightarrow \ell^+
u \gamma, \ell = e, \mu$

Übergroßes Konfidenzintervall für oberes Limit

Katisruher: Institut für Technologie

Übergroßes Konfidenzintervall für oberes Limit

Systematische Fehler für die Sekunäranalyse mit $E(\gamma_{sig}) > 400 \text{ MeV}$

Datensatz	Myonkanal	Elektronkanal
Mesonveto Netzwerk	-0.91	-1.08
Fitformen	+1.18 -1.69	+1.27 -1 9
$B ightarrow X_u \ell^+ u$ Normierung	±0.31	±0.41
${\it B}^+ ightarrow \ell^+ u \gamma$ Modell	+0.8	+0.4
Tagseiteneffizienz	±0.52	±0.51
Kontinuumsunterdrückung	+0.19	-0.48
Trackingeffizienz	-0.02	-0.02
Lepton ID	±0.62	±0.27
N _{BB}	±0.17	±0.17
Summe	+1.92 -2.27	+1.92 -2.39
	Simultanfit	
Summe	+3.05 -3.58	

Faltung eines signifkanten Likelihoods

Faltung eines signifkanten Likelihoods

Erwartete Signifikanz

Primäranalyse mit $E(\gamma_{sig}) > 1 \text{ GeV}$			
Datensatz	Erwartete Messung	Signifikanz in σ	Erwartetes Limit $\times 10^{6}$ (90% CL)
Elektron	$8.0 \pm 4.5 {}^{+1.1}_{-1.4}$	2.4 (2.1)	7.02 (7.46)
Myon	$8.7 \pm 4.6 {}^{+1.1}_{-1.6}$	2.5 (2.2)	6.50 (6.93)
Simultanfit	$16.5\pm 6.5 {}^{+1.8}_{-2.3}$	3.6 (2.9)	4.35 (4.76)

Sekundäranalyse mit $E(\gamma_{sig}) > 400 \text{ MeV}$			
Datensatz	Erwartete Messung	Signifikanz in σ	Erwartetes Limit $\times 10^{6}$ (90% CL)
Elektron	12.4 \pm 6.2 $^{+1.9}_{-2.4}$	2.4 (2.1)	6.54 (6.78)
Myon	11.9 \pm 6.0 $^{+1.9}_{-2.3}$	2.5 (2.2)	5.98 (6.23)
Simultanfit	24.9 \pm 8.7 $^{+3.1}_{-3.6}$	3.4 (2.9)	4.08 (4.30)

Erwartete Messung und Signifikanz für Signal mit BR = 5×10^6 und erwartetes oberes Limit ohne Signal. Werte in Klammern beinhalten systematische Fehler.

- Signifikanzen werden durch eine Likelihoodverhältnis bestimmt
- Obergrenzen werden durch Integration eines Likelihoods bestimmt, wobei nur der positive Teil berücksichtigt wird