and Event Generation for the Large Hacin Collider Bryan Webber Cavendish Laboratory

University of Cambridge

Bryan Webber

Outline

- QCD Basics
 - ★ Factorization, PDFs, running coupling
- QCD and Higgs boson production
 - ★ Inclusive production cross sections
 - ★ Differential cross sections, resummation
- QCD and Higgs boson decays
 - ★ Quark masses
 - ★ Uncertainties and prospects
- Monte Carlo event generation
 - ★ Perturbative and non-perturbative components
 - ★ Improvements: matching and merging
 - ★ Survey of results

References

- R.K. Ellis, W.J. Stirling & B.R. Webber, "QCD and Collider Physics" (C.U.P. 1996)
- A. Buckley et al., "General-purpose event generators for LHC physics", Phys.Rept. 504 (2011) 145 (MCNET-11-01, arXiv:1101.2599)
- M.H. Seymour & M. Marx, "Monte Carlo Event Generators", MCNET-13-05, arXiv:1304.6677
- A. Siódmok, "LHC event generation with generalpurpose Monte Carlo tools", Acta Phys. Polon. B44 (2013)1587

QCD Factorization

- Non-perturbative physics takes place over a much longer time scale, with unit probability
- Hence it cannot change the cross section
- Scale dependences of parton distribution functions and hard process cross section are perturbatively calculable, and cancel order by order

$$\mu^2 \frac{\partial}{\partial \mu^2} f_i(x,\mu^2) = \sum_j \int_x^1 \frac{d\xi}{\xi} P_{ij}\left(\frac{x}{\xi}, \alpha_{\rm S}(\mu^2)\right) f_j(\xi,\mu^2)$$

- PDFs measured in various processes at various scales
- Global fits satisfying evolution equations give PDF sets
- Generally done at NNLO nowadays

PDF Uncertainties

Ball et al., 1211.5142

- Parton luminosity $\mathcal{L}_{ij}(M_X^2, s) =$ $\int dx_1 dx_2 f_i(x_1, M_X^2) f_j(x_2, M_X^2) \delta\left(x_1 x_2 s - M_X^2\right)$
- Relevant PDFs (relatively) well known at x ~ M_H/\sqrt{s}
- Some disagreement with CTI0 \mathcal{L}_{gg}
- Remains true at 13 TeV
- Can be improved (in principle)

QCD Running Coupling

- Consider a dimensionless quantity R depending on a single hard scale Q
 - **★** Dependence on Q can only be via Q/μ
 - $\star~$ But $\mu~$ is arbitrary, so overall dependence on it must vanish

$$P = \frac{d}{d\mu^2} R(Q^2/\mu^2, \alpha_S) \equiv \left[\mu^2 \frac{\partial}{\partial \mu^2} + \mu^2 \frac{\partial \alpha_S}{\partial \mu^2} \frac{\partial}{\partial \alpha_S} \right] R = 0$$

$$Pe fine \ t = \ln\left(\frac{Q^2}{\mu^2}\right), \quad \beta(\alpha_S) = \mu^2 \frac{\partial \alpha_S}{\partial \mu^2}$$

$$P = \left[-\frac{\partial}{\partial t} + \beta(\alpha_S) \frac{\partial}{\partial \alpha_S} \right] R(e^t, \alpha_S) = 0$$

$$P = \left[-\frac{\partial}{\partial t} + \beta(\alpha_S) \frac{\partial}{\partial \alpha_S} \right] R(e^t, \alpha_S) = 0$$

- Introduce $\alpha_s(Q^2)$ such that $t = \int_{\alpha_S}^{\alpha_S(Q^2)} \frac{dx}{\beta(x)}, \quad \alpha_S(\mu^2) \equiv \alpha_S$
- Then solution is $R(1, \alpha_S(Q^2))$
 - * All scale dependence is absorbed in running coupling $\alpha_s(Q^2)$

QCD Running Coupling

$$\ln\left(\frac{Q^2}{\mu^2}\right) = \int_{\alpha_{\rm S}(\mu^2)}^{\alpha_{\rm S}(Q^2)} \frac{d\alpha_{\rm S}}{\beta(\alpha_{\rm S})}, \quad \beta(\alpha_{\rm S}) = -\alpha_{\rm S}^2 \left(\beta_0 + \beta_1 \alpha_{\rm S} + \ldots\right)$$

$$\Rightarrow \ln\left(\frac{Q^2}{\mu^2}\right) = \frac{1}{\beta_0} \left[\frac{1}{\alpha_{\rm S}(Q^2)} - \frac{1}{\alpha_{\rm S}(\mu^2)}\right] + \ldots$$

$$\Rightarrow \alpha_{\rm S}(Q^2) = \frac{\alpha_{\rm S}(\mu^2)}{1 + \beta_0 \alpha_{\rm S}(\mu^2) \ln(Q^2/\mu^2)} + \ldots$$

$$\beta_0 = (33 - 2n_f)/12\pi$$

- β₀>0 means asymptotic freedom
- β -function known to 4 loops (β_3)

Bryan Webber

QCD Running Coupling

Bryan Webber

Lattice QCD Coupling

FLAG WG: Aoki et al., 1310.8555

Collaboration	Ref.	N_{f}	QuQ		Der	offic and a second	$\alpha_{\overline{\mathrm{MS}}}(M_{\mathrm{Z}})$	Method	Table
ETM 13D	[544]	2+1+1	А	0	0		0.1196(4)(8)(16)	gluon-ghost vertex	37
ETM $12C$	[545]	2 + 1 + 1	А	0	0		0.1200(14)	gluon-ghost vertex	37
ETM 11D	[546]	2+1+1	А	\circ \circ \bullet 0.1198(9)(5)($^{+0}_{-5}$) gluon-ghost vertex		37			
Bazavov 12	[503]	2+1	А	0	0	0	$0.1156(^{+21}_{-22})$	Q - \bar{Q} potential	33
HPQCD 10	[73]	2 + 1	А	0	0	0	0.1183(7)	current two points	36
HPQCD 10	[73]	2 + 1	А	0	\star	\star	0.1184(6)	Wilson loops	35
PACS-CS 09A	[486]	2 + 1	А	\star	\star	0	$0.118(3)^{\#}$	Schrödinger functiona	l 32
Maltman 08	[517]	2 + 1	А	0	0	0	0.1192(11)	Wilson loops	35
HPQCD 08B	[85]	2 + 1	А				0.1174(12)	current two points	36
HPQCD 08A	[514]	2 + 1	А	0	\star	\star	0.1183(8)	Wilson loops	35
HPQCD 05A	[513]	2 + 1	А	0	0	0	0.1170(12)	Wilson loops	35
QCDSF/UKQCD	05[518]	$0, 2 \rightarrow 3$	А	*		*	0.112(1)(2)	Wilson loops	35
Boucaud 01B	[539]	$2 \rightarrow 3$	А	0	0		0.113(3)(4)	gluon-ghost vertex	37
SESAM 99	[519]	$0, 2 \rightarrow 3$	А	\star			0.1118(17)	Wilson loops	35
Wingate 95	[520]	$0, 2 \rightarrow 3$	А	\star			0.107(5)	Wilson loops	
Davies 94	[521]	$0, 2 \rightarrow 3$	А	\star			0.115(2)	Wilson loops	
Aoki 94	[522]	$2 \rightarrow 3$	А	\star			0.108(5)(4)	Wilson loops 35	
El-Khadra 92	[523]	$0 \rightarrow 3$	А	*	0	0	0.106(4)	Wilson loops	35

QCD and the Higgs Boson

Higgs production cross sections

The challenges:

(taken from [R. Tanaka, talk at Aspen Higgs WS 03/13])

ggF, VBF, WH/ZH, ttH, BSM Higgs

PDF+α_s uncertainties Renormalization/Factorization scale dependence

LHC Higgs Cross Section Working Group

arXiv:1101.0593, 1201.3084, 1307.1347

Higgs Production Cross Section

 $\sigma_{\rm H}(s) = \sum_{i=i} \int \mathrm{d}x_1 \mathrm{d}x_2 f_i(x_1, \mu_F^2) f_j(x_2, \mu_F^2) \,\hat{\sigma}_{ij}\left(x_1 x_2 s, m_{\rm H}^2, \alpha_{\rm S}(\mu_R^2), \mu_F^2, \mu_R^2\right)$

Table B.10: ggF cross sections at the LHC at 8 TeV and corresponding scale and PDF+ α_s uncertainties computed

according to the PDF4LHC recommendation.

$M_{\rm H}[{\rm GeV}]$	σ [pb]	QCD Scale [%]	PDF+ α_{s} [%]
124.4	19.45	+7.2 -7.9	+7.5 - 6.9
124.5	19.42	+7.2 -7.9	+7.5 - 6.9
124.6	19.39	+7.2 -7.9	+7.5 - 6.9
124.7	19.36	+7.2 -7.9	+7.5 - 6.9
124.8	19.33	+7.2 -7.8	+7.5 - 6.9
124.9	19.30	+7.2 -7.8	+7.5 - 6.9
125.0	19.27	+7.2 -7.8	+7.5 - 6.9
125.1	19.24	+7.2 -7.8	+7.5 - 6.9
125.2	19.21	+7.2 -7.8	+7.5 - 6.9
125.3	19.18	+7.2 -7.8	+7.5 - 6.9
125.4	19.15	+7.2 -7.8	+7.5 - 6.9
125.5	19.12	+7.2 -7.8	+7.5 - 6.9
125.6	19.09	+7.2 -7.8	+7.5 - 6.9
125.7	19.06	+7.2 -7.8	+7.5 - 6.9
125.8	19.03	+7.2 -7.8	+7.5 - 6.9
125.9	19.00	+7.2 -7.8	+7.5 - 6.9
126.0	18.97	+7.2 -7.8	+7.5 - 6.9
126.1	18.94	+7.2 -7.8	+7.5 - 6.9
126.2	18.91	+7.2 -7.8	+7.5 - 6.9
126.3	18.88	+7.2 -7.8	+7.5 - 6.9
126.4	18.85	+7.2 -7.8	+7.5 - 6.9
126.5	18.82	+7.2 -7.8	+7.5 - 6.9

HXSWG vol.3

NNLO $\rightarrow \sigma_{ggF}(8 \text{ TeV}) = 19.1 \pm 2.0 \text{ pb}$

Ball et al., 1303.3590

Forte, Isgro, Vita, 1312.6688

• Higher-order effects are larger than x2 scale variation estimates

•
$$\sigma_{\rm ggF} \approx \sigma_{\rm LO} \left[1 + \kappa \{ \lambda \alpha_{\rm S} + (\lambda \alpha_{\rm S})^2 + (\lambda \alpha_{\rm S})^3 + \cdots \} \right]$$

 $\lambda \approx 5.6$

Ball et al., 1303.3590

Forte, Isgro, Vita, 1312.6688

• Higher-order effects are larger than x2 scale variation estimates

•
$$\sigma_{\rm ggF} \approx \sigma_{\rm LO} \left[1 + \kappa \{ \lambda \alpha_{\rm S} + (\lambda \alpha_{\rm S})^2 + (\lambda \alpha_{\rm S})^3 + \cdots \} \right] \approx \sigma_{\rm LO} \left[1 - \kappa + \frac{\kappa}{1 - \lambda \alpha_{\rm S}} \right]$$

 $\lambda \approx 5.6$

Ball et al., 1303.3590

Forte, Isgro, Vita, 1312.6688

• Higher-order effects are larger than x2 scale variation estimates

•
$$\sigma_{\rm ggF} \approx \sigma_{\rm LO} \left[1 + \kappa \{ \lambda \alpha_{\rm S} + (\lambda \alpha_{\rm S})^2 + (\lambda \alpha_{\rm S})^3 + \cdots \} \right] \approx \left[\sigma_{\rm LO} \left[1 - \kappa + \frac{\kappa}{1 - \lambda \alpha_{\rm S}} \right] \right]$$

 $\lambda \approx 5.6$

Burg Liebenzell, Sept 2014

Bryan Webber

• ATLAS, but not CMS, find ggF excess in $\gamma\gamma$ and ZZ^{*} channels

Cross Sections at 13 TeV

HXSWG 05/04/2014

√s = 13.0 TeV

gluon-gluon Fusion Process

• All cross sections are in complex-pole-scheme from the dFG program. They are computed at NNLL QCD and NLO EW.

m _H (GeV)	Cross Section (pb)	+QCD Scale %	-QCD Scale %	+(PDF+ α_s) %	-(PDF+ α_s) %
125.0	43.92	+7.4	-7.9	+7.1	-6.0
125.5	43.62	+7.4	-7.9	+7.1	-6.0
126.0	43.31	+7.4	-7.9	+7.1	-6.0

VBF Process

• At NNLO QCD and NLO EW. All cross sections are in complex-pole-scheme.

m _H (GeV)	Cross Section (pb)	+QCD Scale %	-QCD Scale %	+(PDF+ α_s) %	-(PDF+ α_s) %
125.0	3.748	+0.7	-0.7	+3.2	-3.2
125.5	3.727	+1.0	-0.7	+3.4	-3.4
126.0	3.703	+1.3	-0.6	+3.1	-3.1

Cross Section vs Energy

http://theory.fi.infn.it/grazzini/hcalculators.html

Higgs Differential Cross Sections

Higgs q_T & E_T

• Higgs transverse momentum

$$\mathbf{q}_{\mathrm{T}} = -\sum \mathbf{p}_{\mathrm{T}i}$$

Bozzi et al. 0705.3887 Mantry & Petriello, 0911.4135 Catani & Grazzini, 1011.3918 de Florian et al. 1109.2109

Radiated transverse energy

$$E_T = \sum |\mathbf{p}_{\mathrm{T}i}|$$

Papaefstathiou, Smillie, BW, 1002.4375 +Grazzini, 1403.3394

Higgs q_T (fixed order)

• (N)LO
$$\xrightarrow[q_T \to 0]{} (-)\infty$$

• Large logs of m_{H^2}/q_{T^2} need resummation

Higgs $q_T \& E_T$ (fixed order)

• (N)LO
$$\xrightarrow{E_{T} \to 0} (-)\infty$$

• Large logs of m_{H^2}/E_T^2 need resummation

$$d\sigma = \int dx_1 dx_2 f_a(x_1, \mu) f_b(x_2, \mu) d\hat{\sigma}_{ab}(x_1 x_2 s, \mu, \ldots)$$

$$\frac{1}{\hat{\sigma}_{gg}} \frac{d^2 \hat{\sigma}_{gg}}{d \mathbf{q}_T^2} \sim \delta^2(\mathbf{q}_T) + \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right]_+ \delta^2(\mathbf{q}_T + \mathbf{p}_T) + \ldots$$

$$d\sigma = \int dx_1 dx_2 f_a(x_1, \mu) f_b(x_2, \mu) d\hat{\sigma}_{ab}(x_1 x_2 s, \mu, \ldots)$$

$$\frac{1}{\hat{\sigma}_{gg}} \frac{d^2 \hat{\sigma}_{gg}}{d \mathbf{q}_T^2} \sim \delta^2(\mathbf{q}_T) + \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right]_+ \delta^2(\mathbf{q}_T + \mathbf{p}_T) + \ldots$$

$$\sim \int \frac{d^2 \mathbf{b}}{(2\pi)^2} e^{i\mathbf{b}\cdot\mathbf{q}_T} \left\{ 1 + \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right] (e^{i\mathbf{b}\cdot\mathbf{p}_T} - 1) + \ldots \right\}$$

$$d\sigma = \int dx_1 dx_2 f_a(x_1, \mu) f_b(x_2, \mu) d\hat{\sigma}_{ab}(x_1 x_2 s, \mu, \ldots)$$

$$\frac{1}{\hat{\sigma}_{gg}} \frac{d^2 \hat{\sigma}_{gg}}{d \mathbf{q}_T^2} \sim \delta^2(\mathbf{q}_T) + \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right]_+ \delta^2(\mathbf{q}_T + \mathbf{p}_T) + \ldots$$

$$\sim \int \frac{d^2 \mathbf{b}}{(2\pi)^2} e^{i\mathbf{b}\cdot\mathbf{q}_T} \left\{ 1 + \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right] \left(e^{i\mathbf{b}\cdot\mathbf{p}_T} - 1 \right) + \ldots \right\}$$

$$\sim \int \frac{d^2 \mathbf{b}}{(2\pi)^2} e^{i\mathbf{b}\cdot\mathbf{q}_T} \exp \left\{ \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right] \left(e^{i\mathbf{b}\cdot\mathbf{p}_T} - 1 \right) \right\}$$

Resummation & matching of Higgs q_T

Higgs transverse momentum: 8 TeV

- Peak at ~10 GeV: $\log(m_{H^2}/q_{T^2})$ ~5.1
- Resummation affects spectrum out to larger qT

Higgs transverse momentum: 14 TeV

- Peak at ~10 GeV: $\log(m_{H}^{2}/q_{T}^{2})$ ~5.1
- Resummation affects spectrum out to larger qT

$$d\sigma = \int dx_1 dx_2 f_a(x_1, \mu) f_b(x_2, \mu) d\hat{\sigma}_{ab}(x_1 x_2 s, \mu, \ldots)$$

$$\frac{1}{\hat{\sigma}_{gg}} \frac{d^2 \hat{\sigma}_{gg}}{d\mathbf{q}_T^2} \sim \delta^2(\mathbf{q}_T) + \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right]_+ \delta^2(\mathbf{q}_T + \mathbf{p}_T) + \ldots$$

$$\sim \int \frac{d^2 \mathbf{b}}{(2\pi)^2} e^{i\mathbf{b}\cdot\mathbf{q}_T} \left\{ 1 + \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right] \left(e^{i\mathbf{b}\cdot\mathbf{p}_T} - 1 \right) + \ldots \right\}$$

$$\sim \int \frac{d^2 \mathbf{b}}{(2\pi)^2} e^{i\mathbf{b}\cdot\mathbf{q}_T} \exp \left\{ \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right] \left(e^{i\mathbf{b}\cdot\mathbf{p}_T} - 1 \right) \right\}$$

$$\begin{split} \mathrm{d}\sigma &= \int \mathrm{d}x_{1}\mathrm{d}x_{2}\,f_{a}(x_{1},\mu)f_{b}(x_{2},\mu)\,\mathrm{d}\hat{\sigma}_{ab}(x_{1}x_{2}s,\mu,\ldots) \\ &\frac{1}{\hat{\sigma}_{gg}}\frac{\mathrm{d}^{2}\hat{\sigma}_{gg}}{\mathrm{d}\,\mathbf{q}_{\mathrm{T}}^{2}} \sim \delta^{2}(\mathbf{q}_{\mathrm{T}}) + \alpha_{\mathrm{S}}\int\mathrm{d}^{2}\mathbf{p}_{\mathrm{T}}\left[\frac{A_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\ln\frac{m_{H}^{2}}{\mathbf{p}_{\mathrm{T}}^{2}} + \frac{B_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\right]_{+}\delta^{2}(\mathbf{q}_{\mathrm{T}} + \mathbf{p}_{\mathrm{T}}) + \ldots \\ &\sim \int\frac{\mathrm{d}^{2}\mathbf{b}}{(2\pi)^{2}}\,\mathrm{e}^{i\mathbf{b}\cdot\mathbf{q}_{\mathrm{T}}}\left\{1 + \alpha_{\mathrm{S}}\int\mathrm{d}^{2}\mathbf{p}_{\mathrm{T}}\left[\frac{A_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\ln\frac{m_{H}^{2}}{\mathbf{p}_{\mathrm{T}}^{2}} + \frac{B_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\right]\left(\mathrm{e}^{i\mathbf{b}\cdot\mathbf{p}_{\mathrm{T}}} - 1\right) + \ldots\right\} \\ &\sim \int\frac{\mathrm{d}^{2}\mathbf{b}}{(2\pi)^{2}}\,\mathrm{e}^{i\mathbf{b}\cdot\mathbf{q}_{\mathrm{T}}}\,\exp\left\{\alpha_{\mathrm{S}}\int\mathrm{d}^{2}\mathbf{p}_{\mathrm{T}}\left[\frac{A_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\ln\frac{m_{H}^{2}}{\mathbf{p}_{\mathrm{T}}^{2}} + \frac{B_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\right]\left(\mathrm{e}^{i\mathbf{b}\cdot\mathbf{p}_{\mathrm{T}}} - 1\right)\right\} \\ &\frac{1}{\hat{\sigma}_{gg}}\frac{\mathrm{d}\hat{\sigma}_{gg}}{\mathrm{d}\,E_{T}} \sim \delta(E_{T}) + \alpha_{\mathrm{S}}\int\mathrm{d}^{2}\mathbf{p}_{\mathrm{T}}\left[\frac{A_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\ln\frac{m_{H}^{2}}{\mathbf{p}_{\mathrm{T}}^{2}} + \frac{B_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\right]\left(\mathrm{e}^{i\mathbf{b}\cdot\mathbf{p}_{\mathrm{T}}} - 1\right)\right\} \\ &\sim \int\frac{\mathrm{d}^{2}}{2\pi}\,\mathrm{e}^{i\tau E_{T}}\,\exp\left\{\alpha_{\mathrm{S}}\int\mathrm{d}^{2}\mathbf{p}_{\mathrm{T}}\left[\frac{A_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\ln\frac{m_{H}^{2}}{\mathbf{p}_{\mathrm{T}}^{2}} + \frac{B_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\right]\left(\mathrm{e}^{-i\tau|\mathbf{p}_{\mathrm{T}}| - 1\right)\right\} \end{split}$$

$$\frac{1}{\hat{\sigma}_{gg}} \frac{\mathrm{d}\hat{\sigma}_{gg}}{\mathrm{d}E_T} \sim \int_{-\infty}^{+\infty} \frac{\mathrm{d}\tau}{2\pi} \,\mathrm{e}^{i\tau E_T} \exp\left\{\alpha_{\mathrm{S}} \int \mathrm{d}^2 \mathbf{p}_{\mathrm{T}} \left[\frac{A_g}{\mathbf{p}_{\mathrm{T}}^2} \ln \frac{m_H^2}{\mathbf{p}_{\mathrm{T}}^2} + \frac{B_g}{\mathbf{p}_{\mathrm{T}}^2}\right] \left(\mathrm{e}^{-i\tau |\mathbf{p}_{\mathrm{T}}|} - 1\right)\right\}$$

• Defined for $\mathsf{E}_{\mathsf{T}} \leq \mathsf{0}$

$$\frac{1}{\hat{\sigma}_{gg}} \frac{\mathrm{d}\hat{\sigma}_{gg}}{\mathrm{d}E_T} \sim \int_{-\infty}^{+\infty} \frac{\mathrm{d}\tau}{2\pi} \,\mathrm{e}^{i\tau E_T} \exp\left\{\alpha_{\mathrm{S}} \int \mathrm{d}^2 \mathbf{p}_{\mathrm{T}} \left[\frac{A_g}{\mathbf{p}_{\mathrm{T}}^2} \ln \frac{m_H^2}{\mathbf{p}_{\mathrm{T}}^2} + \frac{B_g}{\mathbf{p}_{\mathrm{T}}^2}\right] \left(\mathrm{e}^{-i\tau|\mathbf{p}_{\mathrm{T}}|} - 1\right)\right\}$$

Defined for E_T ≤0

• For $E_T < 0$, can close τ -contour in lower half-plane

$$\frac{1}{\hat{\sigma}_{gg}} \frac{\mathrm{d}\hat{\sigma}_{gg}}{\mathrm{d}E_T} \sim \int_{-\infty}^{+\infty} \frac{\mathrm{d}\tau}{2\pi} \,\mathrm{e}^{i\tau E_T} \exp\left\{\alpha_{\mathrm{S}} \int \mathrm{d}^2 \mathbf{p}_{\mathrm{T}} \left[\frac{A_g}{\mathbf{p}_{\mathrm{T}}^2} \ln \frac{m_H^2}{\mathbf{p}_{\mathrm{T}}^2} + \frac{B_g}{\mathbf{p}_{\mathrm{T}}^2}\right] \left(\mathrm{e}^{-i\tau|\mathbf{p}_{\mathrm{T}}|} - 1\right)\right\}$$

- Defined for E_T ≤ 0
- For $E_T < 0$, can close τ -contour in lower half-plane
- No singularities in lower half-plane

$$\frac{1}{\hat{\sigma}_{gg}} \frac{\mathrm{d}\hat{\sigma}_{gg}}{\mathrm{d}E_T} \sim \int_{-\infty}^{+\infty} \frac{\mathrm{d}\tau}{2\pi} \,\mathrm{e}^{i\tau E_T} \exp\left\{\alpha_{\mathrm{S}} \int \mathrm{d}^2 \mathbf{p}_{\mathrm{T}} \left[\frac{A_g}{\mathbf{p}_{\mathrm{T}}^2} \ln \frac{m_H^2}{\mathbf{p}_{\mathrm{T}}^2} + \frac{B_g}{\mathbf{p}_{\mathrm{T}}^2}\right] \left(\mathrm{e}^{-i\tau|\mathbf{p}_{\mathrm{T}}|} - 1\right)\right\}$$

- Defined for E_T ≤0
- For $E_T < 0$, can close τ -contour in lower half-plane
- No singularities in lower half-plane

Bryan Webber

Burg Liebenzell, Sept 2014

Resummation & matching of Higgs E_T

$$\left[\frac{d\sigma_H}{dQ^2 \ dE_T}\right]_{\text{res.}} = \frac{1}{2\pi} \sum_{a,b} \int_0^1 dx_1 \int_0^1 dx_2 \int_{-\infty}^{+\infty} d\tau \ e^{-i\tau E_T} \ f_{a/h_1}(x_1,\mu) \ f_{b/h_2}(x_2,\mu) \ W_{ab}^H(x_1x_2s;Q,\tau,\mu)$$

 $W_{ab}^{H}(s;Q,\tau,\mu) = \int_{0}^{1} dz_{1} \int_{0}^{1} dz_{2} C_{ga}(\alpha_{\rm S}(\mu), z_{1};\tau,\mu) C_{gb}(\alpha_{\rm S}(\mu), z_{2};\tau,\mu) \,\delta(Q^{2} - z_{1}z_{2}s) \,\sigma_{gg}^{H}(Q,\alpha_{\rm S}(Q)) \,S_{g}(Q,\tau)$

$$S_g(Q,\tau) = \exp\left\{-2\int_0^Q \frac{dq}{q} \left[2A_g(\alpha_{\rm S}(q)) \ln \frac{Q}{q} + B_g(\alpha_{\rm S}(q))\right] \left(1 - e^{iq\tau}\right)\right\}$$
$$A_g(\alpha_{\rm S}) = \sum_{n=1}^\infty \left(\frac{\alpha_{\rm S}}{\pi}\right)^n A_g^{(n)} ,$$
$$B_g(\alpha_{\rm S}) = \sum_{n=1}^\infty \left(\frac{\alpha_{\rm S}}{\pi}\right)^n B_g^{(n)} ,$$
$$C_{ga}(\alpha_{\rm S},z) = \delta_{ga} \,\delta(1-z) + \sum_{n=1}^\infty \left(\frac{\alpha_{\rm S}}{\pi}\right)^n C_{ga}^{(n)}(z)$$

$$\frac{d\sigma_H}{dE_T} = \left[\frac{d\sigma_H}{dE_T}\right]_{\text{resum}} - \left[\frac{d\sigma_H}{dE_T}\right]_{\text{resum,NLO}} + \left[\frac{d\sigma_H}{dE_T}\right]_{\text{NLO}}$$

Transverse energy distribution

Peak at ~35 GeV: log(m_H²/E_T²)~2.6

- Resummation affects spectrum out to much larger E_T
- Unlike q_T, the Underlying Event also contributes...

Summary

QCD factorization allows precise predictions for LHC

Scale dependence is a (rough) guide to precision

Higgs ggF cross section at I3 TeV is still very uncertain

• My estimate: $\sigma_{ggF}(13 \text{ TeV}) = 53 \pm 11 \text{ pb}$

Higgs transverse momentum resummed to NNLL+NLO

► Peak $q_T \sim 10$ GeV, independent of energy

- Radiated transverse energy resummed to (N)NLL+NLO
 - Peak E_T ~35 GeV in associated transverse energy

Contribution from Underlying Event to be considered ...