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• Non-perturbative physics takes place over a much 
longer time scale, with unit probability	


• Hence it cannot change the cross section	


• Scale dependences of parton distribution functions 
and hard process cross section are perturbatively 
calculable, and cancel order by order
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• PDFs measured in various processes at various scales	


• Global fits satisfying evolution equations give PDF sets	


• Generally done at NNLO nowadays
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Figure 6: The gluon-gluon (upper plots) and quark-gluon (lower plots) luminosities, Eq. (2), for
the production of a final state of invariant mass MX (in GeV) at LHC 8 TeV. The left plots show
the comparison between NNPDF2.3, CT10 and MSTW08, while in the right plots we compare
NNPDF2.3, HERAPDF1.5 and MSTW08. All luminosities are computed at a common value of
αs = 0.118.
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Relevant PDFs (relatively) 
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24 2 Asymptotic freedom and confinement

However µ is an arbitrary parameter. The Lagrangian of QCD makes
no mention of the scale µ, even though a choice of µ is required to define
the theory at the quantum level. Therefore, if we hold the bare coupling
fixed, physical quantities such as R cannot depend on the choice made for
µ. Since R is dimensionless, it can only depend on the ratio Q2/µ2 and
the renormalized coupling αS . Mathematically, the µ independence of R
may be expressed by

µ2 d

dµ2
R(Q2/µ2,αS) ≡

[

µ2 ∂

∂µ2
+ µ2 ∂αS

∂µ2

∂

∂αS

]

R = 0 . (2.1)

To rewrite this equation in a more compact form we introduce the nota-
tions

t = ln

(

Q2

µ2

)

, β(αS) = µ2∂αS

∂µ2
. (2.2)

The derivative of the coupling in the definition of the β function is per-
formed at fixed bare coupling. We rewrite Eq. (2.1) as

[

− ∂

∂t
+ β(αS)

∂

∂αS

]

R(et,αS) = 0 . (2.3)

This first order partial differential equation is solved by implicitly defining
a new function – the running coupling αS(Q2) – as follows:

t =
∫ αS(Q2)

αS

dx

β(x)
, αS(µ2) ≡ αS . (2.4)

By differentiating Eq. (2.4) we see that

∂αS(Q2)

∂t
= β(αS(Q2)),

∂αS(Q2)

∂αS
=
β(αS(Q2))

β(αS)
(2.5)

and hence that R(1,αS(Q2)) is a solution of Eq. (2.3). The above analysis
shows that all of the scale dependence in R enters through the running of
the coupling constant αS(Q2). It follows that knowledge of the quantity
R(1,αS), calculated in fixed-order perturbation theory, allows us to pre-
dict the variation of R with Q if we can solve Eq. (2.4). In the next section,
we shall show that QCD is an asymptotically free theory. This means that
αS(Q2) becomes smaller as the scale Q increases. For sufficiently large
Q, therefore, we can always solve Eq. (2.4) using perturbation theory.

2.2 The β function

The running of the coupling constant αS is determined by the renormal-
ization group equation,

Q2 ∂αS

∂Q2
= β(αS). (2.6)
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The running of the coupling constant αS is determined by the renormal-
ization group equation,

Q2 ∂αS

∂Q2
= β(αS). (2.6)

Consider a dimensionless quantity R depending on a single hard scale Q
Dependence on Q can only be via Q/m
But m is arbitrary, so overall dependence on it must vanish

Define

Introduce aS(Q2) such that

Then solution is

All scale dependence is absorbed in running coupling aS(Q2) 
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30 9. Quantum chromodynamics

Preliminary determinations of αs from CMS data on the ratio of inclusive 3-jet to
2-jet cross sections [259], at NLO, and from the top-quark cross section [301], in
NNLO, quote values of αs(M2

Z) = 0.1148± 0.0014(exp.)± 0.0018(PDF)+0.0050
−0.0000(scale) and

αs(M2
Z) = 0.1151+0.0033

−0.0032, respectively, indicating many new results to be expected for
inclusion in upcoming reviews.

9.3.11. Electroweak precision fits :
The N3LO calculation of the hadronic Z decay width was used in a revision of the global
fit to electroweak precision data [349], resulting in αs(M2

Z) = 0.1193± 0.0028, claiming a
negligible theoretical uncertainty. For this Review the value obtained in Sec. Electroweak
model and constraints on new physics from data at the Z-pole, αs(M2

Z) = 0.1197± 0.0028
will be used instead, as it is based on a more constrained data set where QCD corrections
directly enter through the hadronic decay width of the Z. We note that all these
results from electroweak precision data, however, strongly depend on the strict validity
of Standard Model predictions and the existence of the minimal Higgs mechanism to
implement electroweak symmetry breaking. Any - even small - deviation of nature from
this model could strongly influence this extraction of αs.

0.11 0.12 0.13
αα    ((ΜΜ    ))s ΖΖ

Lattice
DIS 
e+e- annihilation

τ-decays 

Z pole fits 

Figure 9.3: Summary of values of αs(M2
Z) obtained for various sub-classes

of measurements (see Fig. 9.2 (a) to (d)). The new world average value of
αs(M2

Z) = 0.1185 ± 0.0006 is indicated by the dashed line and the shaded band.

9.3.12. Determination of the world average value of αs(M2
Z) :

Obtaining a world average value for αs(M2
Z) is a non-trivial exercise. A certain

arbitrariness and subjective component is inevitable because of the choice of measurements
to be included in the average, the treatment of (non-Gaussian) systematic uncertainties
of mostly theoretical nature, as well as the treatment of correlations among the various
inputs, of theoretical as well as experimental origin.

We have chosen to determine pre-averages for classes of measurements which are
considered to exhibit a maximum of independence between each other, considering
experimental as well as theoretical issues. These pre-averages are then combined to the
final world average value of αs(M2

Z), using the χ2 averaging method and error treatment
as described above. The five pre-averages are summarized in Fig. 9.3; we recall that these
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QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit  

0.1
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Figure 9.4: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).
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Figure 26: α(5)

MS
(MZ), the coupling constant in the MS scheme at the Z mass. The results

labeled Nf = 0, 2 use estimates for Nf = 3 obtained by first extrapolating in Nf from
Nf = 0, 2 results. Since this is not a theoretically justified procedure, these are not included
in our final estimate and are thus given a red symbol. However, they are shown to indicate
the progress made since these early calculations. The PDG entry indicates the outcome of
their analysis excluding lattice results (see section 9.9.4).

perturbative truncation errors, which are difficult to estimate. This concern also applies to
many non-lattice determinations. Further, all results except for those of sections 9.3, 9.6 are
based on extractions of αMS that are largely influenced by data with αeff ≥ 0.3. At smaller
α the momentum scale µ quickly is at or above a−1. We have included computations using
aµ up to 1.5 and αeff up to 0.4, but one would ideally like to be significantly below that.
Accordingly we wish at this stage to estimate the error ranges in a conservative manner, and
not simply perform weighted averages of the individual errors estimated by each group.

Many of the methods have thus far only been applied by a single collaboration, and with
simulation parameters that could still be improved. We therefore think that the following
aspects of the individual calculations are important to keep in mind, and look forward to
additional clarification and/or corroboration in the future.

• The potential computations Brambilla 10 [505], ETM 11C [504] and Bazavov 12 [503] give
evidence that they have reached distances where perturbation theory can be used. However,
in addition to ΛQCD, a scale is introduced into the perturbative prediction by the process
of subtracting the renormalon contribution. The extractions of Λ are dominated by data
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αMS(MZ) Method Table

ETM 13D [544] 2+1+1 A ◦ ◦ ! 0.1196(4)(8)(16) gluon-ghost vertex 37
ETM 12C [545] 2+1+1 A ◦ ◦ ! 0.1200(14) gluon-ghost vertex 37
ETM 11D [546] 2+1+1 A ◦ ◦ ! 0.1198(9)(5)(+0

−5) gluon-ghost vertex 37

Bazavov 12 [503] 2+1 A ◦ ◦ ◦ 0.1156(+21
−22) Q-Q̄ potential 33

HPQCD 10 [73] 2+1 A ◦ ◦ ◦ 0.1183(7) current two points 36
HPQCD 10 [73] 2+1 A ◦ ⋆ ⋆ 0.1184(6) Wilson loops 35
PACS-CS 09A [486] 2+1 A ⋆ ⋆ ◦ 0.118(3)# Schrödinger functional 32
Maltman 08 [517] 2+1 A ◦ ◦ ◦ 0.1192(11) Wilson loops 35
HPQCD 08B [85] 2+1 A ! ! ! 0.1174(12) current two points 36
HPQCD 08A [514] 2+1 A ◦ ⋆ ⋆ 0.1183(8) Wilson loops 35
HPQCD 05A [513] 2+1 A ◦ ◦ ◦ 0.1170(12) Wilson loops 35

QCDSF/UKQCD 05[518] 0, 2 → 3 A ⋆ ! ⋆ 0.112(1)(2) Wilson loops 35
Boucaud 01B [539] 2 → 3 A ◦ ◦ ! 0.113(3)(4) gluon-ghost vertex 37
SESAM 99 [519] 0, 2 → 3 A ⋆ ! ! 0.1118(17) Wilson loops 35
Wingate 95 [520] 0, 2 → 3 A ⋆ ! ! 0.107(5) Wilson loops 35
Davies 94 [521] 0, 2 → 3 A ⋆ ! ! 0.115(2) Wilson loops 35
Aoki 94 [522] 2 → 3 A ⋆ ! ! 0.108(5)(4) Wilson loops 35
El-Khadra 92 [523] 0 → 3 A ⋆ ◦ ◦ 0.106(4) Wilson loops 35

# Result with a linear continuum extrapolation in a.

Table 38: Results for αMS(MZ). Nf = 3 results are matched at the charm and bottom
thresholds and scaled to MZ to obtain the Nf = 5 result. The arrows in the Nf column
indicates which Nf (Nf = 0, 2 or a combination of both) were used to first extrapolate to
Nf = 3 or estimate the Nf = 3 value through a model/assumption. The exact procedures
used vary and are given in the various papers.

Nf = 2 + 1 and Nf = 2 + 1 + 1 simulations. For comparison, we also include results from
Nf = 0, 2 simulations, which are not relevant for phenomenology. For the Nf ≥ 3 simulations,
the conversion from Nf = 3 to Nf = 5 is made by matching the coupling constant at the
charm and bottom quark thresholds and using the scale as determined or used by the authors.
For Nf = 0, 2 the results for αMS in the summary table come from evaluations of αMS at a
low scale and are extrapolated in Nf to Nf = 3.

As can be seen from the tables and figures, at present there are several computations
satisfying the quality criteria to be included in the FLAG average. We note that none of

those calculations of α(5)

MS
(MZ) satisfy all of our more stringent criteria: a ⋆ for the renor-

malization scale, perturbative behaviour and continuum extrapolation. The results, however,
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Table B.10: ggF cross sections at the LHC at 8 TeV and corresponding scale and PDF+αs uncertainties computed
according to the PDF4LHC recommendation.

MH[GeV] σ [pb] QCD Scale [%] PDF+αs [%]
124.4 19.45 +7.2 −7.9 +7.5 −6.9
124.5 19.42 +7.2 −7.9 +7.5 −6.9
124.6 19.39 +7.2 −7.9 +7.5 −6.9
124.7 19.36 +7.2 −7.9 +7.5 −6.9
124.8 19.33 +7.2 −7.8 +7.5 −6.9
124.9 19.30 +7.2 −7.8 +7.5 −6.9
125.0 19.27 +7.2 −7.8 +7.5 −6.9
125.1 19.24 +7.2 −7.8 +7.5 −6.9
125.2 19.21 +7.2 −7.8 +7.5 −6.9
125.3 19.18 +7.2 −7.8 +7.5 −6.9
125.4 19.15 +7.2 −7.8 +7.5 −6.9
125.5 19.12 +7.2 −7.8 +7.5 −6.9
125.6 19.09 +7.2 −7.8 +7.5 −6.9
125.7 19.06 +7.2 −7.8 +7.5 −6.9
125.8 19.03 +7.2 −7.8 +7.5 −6.9
125.9 19.00 +7.2 −7.8 +7.5 −6.9
126.0 18.97 +7.2 −7.8 +7.5 −6.9
126.1 18.94 +7.2 −7.8 +7.5 −6.9
126.2 18.91 +7.2 −7.8 +7.5 −6.9
126.3 18.88 +7.2 −7.8 +7.5 −6.9
126.4 18.85 +7.2 −7.8 +7.5 −6.9
126.5 18.82 +7.2 −7.8 +7.5 −6.9
126.6 18.80 +7.2 −7.8 +7.5 −6.9
126.7 18.77 +7.2 −7.8 +7.5 −6.9
126.8 18.74 +7.1 −7.8 +7.5 −6.9
126.9 18.71 +7.1 −7.8 +7.5 −6.9
127.0 18.68 +7.1 −7.8 +7.5 −6.9
127.1 18.65 +7.1 −7.8 +7.5 −6.9
127.2 18.62 +7.1 −7.8 +7.5 −6.9
127.3 18.59 +7.1 −7.8 +7.5 −6.9
127.4 18.57 +7.1 −7.8 +7.5 −6.9
127.5 18.54 +7.1 −7.8 +7.5 −6.9
127.6 18.51 +7.1 −7.8 +7.5 −6.9
127.7 18.48 +7.1 −7.8 +7.5 −6.9
127.8 18.45 +7.1 −7.8 +7.5 −6.9
127.9 18.42 +7.1 −7.8 +7.5 −6.9
128.0 18.40 +7.1 −7.8 +7.5 −6.9
128.1 18.37 +7.1 −7.8 +7.5 −6.9
128.2 18.34 +7.1 −7.8 +7.5 −6.9
128.3 18.31 +7.1 −7.8 +7.5 −6.9
128.4 18.28 +7.1 −7.8 +7.5 −6.9
128.5 18.26 +7.1 −7.8 +7.5 −6.9
128.6 18.23 +7.1 −7.8 +7.5 −6.9
128.7 18.20 +7.1 −7.8 +7.5 −6.9
128.8 18.17 +7.1 −7.8 +7.5 −6.9
128.9 18.15 +7.1 −7.8 +7.5 −6.9
129.0 18.12 +7.1 −7.8 +7.5 −6.9
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Figure 1: The cross section for Higgs production in gluon fusion, computed varying the
perturbative order of the matrix element. The label on the x-axis denotes the order of
the matrix element, while in each case the three points from left to right are obtained
respectively using LO, NLO, and NNLO PDFs. The uncertainties are obtained varying
the renormalization scale by a factor two about µR = mH . The N3LO result is the
approximation of Ref. [4].

Gluon fusion, the dominant Higgs production channel at the LHC, has a slowly con-
vergent expansion in perturbative QCD: the inclusive cross section is currently known up
to next-to-next-to-leading order (NNLO) [1–3], and a recent approximate determination
of the N3LO result has been presented [4], while rapid progress on the exact computation
has been reported [5].

With N3LO results around the corner, it is natural to ask whether these will be of
any use, given that fully consistent N3LO parton distributions (PDFs) are not likely to be
available any time soon, essentially because the determination of N3LO anomalous dimen-
sions would require a fourth-order computation, for instance of deep-inelastic structure
functions, or Wilson coefficients. Clearly, this question is related to the more general issue
of theoretical uncertainties on PDFs: current PDF uncertainties [6] only reproduce the
uncertainty in the underlying data, and of the procedure used to propagate it onto PDFs,
but not that related to missing higher-order corrections in the theory used for PDF deter-
mination. Henceforth in this paper we will call ‘theoretical uncertainty’ the uncertainty
due to the fixed-order truncation of the perturbative expansion, sometimes [7] also called
missing higher-order uncertainty, or MHOU.

Here we address this set of issues in the specific context of Higgs production in gluon
fusion. We use the dependence on the perturbative order of the prediction for this process
as either the PDF or the matrix element are taken at different orders as an estimate the
theoretical uncertainty on either. We then address the more general issue of how one may
estimate theoretical uncertainties on PDFs and matrix elements, specifically by using the
approach of Cacciari and Houdeau [8].

We first compute the cross-section using the ggHiggs code [4,9], with default settings 1.

1We have checked that similar results are obtained using ihixs [10] version 1.3.3. Note that previous

2

⇡

pp @ 8 TeV

Forte, Isgro, Vita, 1312.6688

Higher-order effects are larger than x2 scale variation estimates

� ⇡ 5.6

Ball et al., 1303.3590
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Figure 1: The cross section for Higgs production in gluon fusion, computed varying the
perturbative order of the matrix element. The label on the x-axis denotes the order of
the matrix element, while in each case the three points from left to right are obtained
respectively using LO, NLO, and NNLO PDFs. The uncertainties are obtained varying
the renormalization scale by a factor two about µR = mH . The N3LO result is the
approximation of Ref. [4].

Gluon fusion, the dominant Higgs production channel at the LHC, has a slowly con-
vergent expansion in perturbative QCD: the inclusive cross section is currently known up
to next-to-next-to-leading order (NNLO) [1–3], and a recent approximate determination
of the N3LO result has been presented [4], while rapid progress on the exact computation
has been reported [5].

With N3LO results around the corner, it is natural to ask whether these will be of
any use, given that fully consistent N3LO parton distributions (PDFs) are not likely to be
available any time soon, essentially because the determination of N3LO anomalous dimen-
sions would require a fourth-order computation, for instance of deep-inelastic structure
functions, or Wilson coefficients. Clearly, this question is related to the more general issue
of theoretical uncertainties on PDFs: current PDF uncertainties [6] only reproduce the
uncertainty in the underlying data, and of the procedure used to propagate it onto PDFs,
but not that related to missing higher-order corrections in the theory used for PDF deter-
mination. Henceforth in this paper we will call ‘theoretical uncertainty’ the uncertainty
due to the fixed-order truncation of the perturbative expansion, sometimes [7] also called
missing higher-order uncertainty, or MHOU.

Here we address this set of issues in the specific context of Higgs production in gluon
fusion. We use the dependence on the perturbative order of the prediction for this process
as either the PDF or the matrix element are taken at different orders as an estimate the
theoretical uncertainty on either. We then address the more general issue of how one may
estimate theoretical uncertainties on PDFs and matrix elements, specifically by using the
approach of Cacciari and Houdeau [8].

We first compute the cross-section using the ggHiggs code [4,9], with default settings 1.

1We have checked that similar results are obtained using ihixs [10] version 1.3.3. Note that previous
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Figure 1: The cross section for Higgs production in gluon fusion, computed varying the
perturbative order of the matrix element. The label on the x-axis denotes the order of
the matrix element, while in each case the three points from left to right are obtained
respectively using LO, NLO, and NNLO PDFs. The uncertainties are obtained varying
the renormalization scale by a factor two about µR = mH . The N3LO result is the
approximation of Ref. [4].

Gluon fusion, the dominant Higgs production channel at the LHC, has a slowly con-
vergent expansion in perturbative QCD: the inclusive cross section is currently known up
to next-to-next-to-leading order (NNLO) [1–3], and a recent approximate determination
of the N3LO result has been presented [4], while rapid progress on the exact computation
has been reported [5].

With N3LO results around the corner, it is natural to ask whether these will be of
any use, given that fully consistent N3LO parton distributions (PDFs) are not likely to be
available any time soon, essentially because the determination of N3LO anomalous dimen-
sions would require a fourth-order computation, for instance of deep-inelastic structure
functions, or Wilson coefficients. Clearly, this question is related to the more general issue
of theoretical uncertainties on PDFs: current PDF uncertainties [6] only reproduce the
uncertainty in the underlying data, and of the procedure used to propagate it onto PDFs,
but not that related to missing higher-order corrections in the theory used for PDF deter-
mination. Henceforth in this paper we will call ‘theoretical uncertainty’ the uncertainty
due to the fixed-order truncation of the perturbative expansion, sometimes [7] also called
missing higher-order uncertainty, or MHOU.

Here we address this set of issues in the specific context of Higgs production in gluon
fusion. We use the dependence on the perturbative order of the prediction for this process
as either the PDF or the matrix element are taken at different orders as an estimate the
theoretical uncertainty on either. We then address the more general issue of how one may
estimate theoretical uncertainties on PDFs and matrix elements, specifically by using the
approach of Cacciari and Houdeau [8].

We first compute the cross-section using the ggHiggs code [4,9], with default settings 1.

1We have checked that similar results are obtained using ihixs [10] version 1.3.3. Note that previous
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Figure 1: The cross section for Higgs production in gluon fusion, computed varying the
perturbative order of the matrix element. The label on the x-axis denotes the order of
the matrix element, while in each case the three points from left to right are obtained
respectively using LO, NLO, and NNLO PDFs. The uncertainties are obtained varying
the renormalization scale by a factor two about µR = mH . The N3LO result is the
approximation of Ref. [4].

Gluon fusion, the dominant Higgs production channel at the LHC, has a slowly con-
vergent expansion in perturbative QCD: the inclusive cross section is currently known up
to next-to-next-to-leading order (NNLO) [1–3], and a recent approximate determination
of the N3LO result has been presented [4], while rapid progress on the exact computation
has been reported [5].

With N3LO results around the corner, it is natural to ask whether these will be of
any use, given that fully consistent N3LO parton distributions (PDFs) are not likely to be
available any time soon, essentially because the determination of N3LO anomalous dimen-
sions would require a fourth-order computation, for instance of deep-inelastic structure
functions, or Wilson coefficients. Clearly, this question is related to the more general issue
of theoretical uncertainties on PDFs: current PDF uncertainties [6] only reproduce the
uncertainty in the underlying data, and of the procedure used to propagate it onto PDFs,
but not that related to missing higher-order corrections in the theory used for PDF deter-
mination. Henceforth in this paper we will call ‘theoretical uncertainty’ the uncertainty
due to the fixed-order truncation of the perturbative expansion, sometimes [7] also called
missing higher-order uncertainty, or MHOU.

Here we address this set of issues in the specific context of Higgs production in gluon
fusion. We use the dependence on the perturbative order of the prediction for this process
as either the PDF or the matrix element are taken at different orders as an estimate the
theoretical uncertainty on either. We then address the more general issue of how one may
estimate theoretical uncertainties on PDFs and matrix elements, specifically by using the
approach of Cacciari and Houdeau [8].

We first compute the cross-section using the ggHiggs code [4,9], with default settings 1.

1We have checked that similar results are obtained using ihixs [10] version 1.3.3. Note that previous

2

⇡
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David & Passarino, 1307.1843:  22.5 + 2.6 pb

sggF(8 TeV) = 19.1+ 2.0 pbNNLO

Series extrapolation:  23.6 + ?? pb

Full N3LO coming soon (Anastasiou et al.)
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ATLAS-CONF-2014-009 (Moriond EW)
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Figure 2: Likelihood contours in the (µ f
ggF+ttH , µ

f
VBF+VH) plane for the channels f=H! ��,

H!ZZ⇤! 4`, H!WW⇤! `⌫`⌫, H ! ⌧⌧ and a Higgs boson mass mH = 125.5 GeV. The sharp lower
edge of the H!ZZ⇤! 4` contours is due to the small number of events in this channel and the require-
ment of a positive pdf. The best-fit values to the data (⇥) and the 68% (full) and 95% (dashed) CL
contours are indicated, as well as the SM expectations (+).

5 Coupling fits

In the previous section signal strength scale factors µ f
i for given Higgs boson production or decay modes

are discussed. However, for a measurement of Higgs boson couplings, production and decay modes
cannot be treated independently. Scenarios with a consistent treatment of Higgs boson couplings in
production and decay modes are studied in this section. All uncertainties on the best-fit values shown in
this Section take into account both experimental and theoretical systematic values.

5.1 Framework for coupling scale factor measurements

Following the leading order (LO) tree level motivated framework and benchmarks recommended in
Ref. [14], measurements of coupling scale factors are implemented for the combination of all analyses
and channels summarised in Table 1. This framework is based on the following assumptions:

• The signals observed in the di↵erent search channels originate from a single narrow resonance
with a mass near 125.5 GeV. The case of several, possibly overlapping, resonances in this mass
region is not considered.

• The width of the assumed Higgs boson near 125.5 GeV is neglected, i.e. the zero-width approxi-
mation is used. Hence the product � ⇥ BR(i ! H ! f ) can be decomposed in the following way
for all channels:

� ⇥ BR(i! H ! f ) =
�i · �f

�H
,

where �i is the production cross section through the initial state i, �f the partial decay width into
the final state f and �H the total width of the Higgs boson.

• Only modifications of couplings strengths, i.e. of absolute values of couplings, are taken into
account, while the tensor structure of the couplings is assumed to be the same as in the SM. This

7

ATLAS, but not CMS, find ggF excess in gg and ZZ* channels

CMS PAS HIG-13-005
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Figure 4: The 68% (solid lines) CL region for the signal strength in the gluon-gluon-fusion-plus-
ttH and in the VBF-plus-VH production mechanisms, µggH+ttH and µVBF+VH, respectively. The
different colours show the results obtained by combining data from each of the five analysed
decay modes: gg (green), WW (blue), ZZ (red), tt (violet), bb (cyan). The crosses indicate the
best-fit values. The diamond at (1,1) indicates the expected values for the SM Higgs boson. A
combination of the different decay modes is not possible without making assumptions on the
relative branching fractions.
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SM  Higgs  production  cross  sections  at  √s  =  13-14  TeV
SM  Higgs  production  cross  sections  (calculated  official  numbers)

√s  =  13.0  TeV
√s  =  13.5  TeV
√s  =  14.0  TeV

Higgs  cross  section  estimation  via  parton-luminosity  function
Parton  luminosity  ratio

SM  Higgs  production  cross  sections  (calculated  official  numbers)
See  8  TeV  XS  TWiki  page  for  more  information  on  calculation  conditions.
All  ggF  and  VBF  numbers  are  based  upon  complex-pole-scheme  (CPS),  while  WH/ZH  and  ttH  numbers  are  with  zero-width-approximation  (ZWA).

√s  =  13.0  TeV

gluon-gluon  Fusion  Process

All  cross  sections  are  in  complex-pole-scheme  from  the  dFG  program.  They  are  computed  at  NNLL  QCD  and  NLO  EW.

mH  (GeV) Cross  Section  (pb) +QCD  Scale  % -QCD  Scale  % +(PDF+αs)  % -(PDF+αs)  %

125.0 43.92 +7.4 -7.9 +7.1 -6.0

125.5 43.62 +7.4 -7.9 +7.1 -6.0

126.0 43.31 +7.4 -7.9 +7.1 -6.0

VBF  Process

At  NNLO  QCD  and  NLO  EW.  All  cross  sections  are  in  complex-pole-scheme.

mH  (GeV) Cross  Section  (pb) +QCD  Scale  % -QCD  Scale  % +(PDF+αs)  % -(PDF+αs)  %

125.0 3.748 +0.7 -0.7 +3.2 -3.2

125.5 3.727 +1.0 -0.7 +3.4 -3.4

126.0 3.703 +1.3 -0.6 +3.1 -3.1

WH  Process

The  cross  section  are  calculated  at  NNLO  QCD  and  NLO  EW.

mH  (GeV) Cross  Section  (pb) +QCD  Scale  % -QCD  Scale  % +(PDF+αs)  % -(PDF+αs)  %

125.0 1.380 +0.7 -1.5 +3.2 -3.2

125.5 1.362 +0.9 -1.5 +3.2 -3.2

126.0 1.345 +0.8 -1.5 +3.2 -3.2

ZH  Process

The  cross  section  are  calculated  at  NNLO  QCD  and  NLO  EW.

mH  (GeV) Cross  Section  (pb) +QCD  Scale  % -QCD  Scale  % +(PDF+αs)  % -(PDF+αs)  %

125.0 0.8696 +3.8 -3.8 +3.5 -3.5

125.5 0.8594 +3.8 -3.8 +3.5 -3.5

126.0 0.8501 +3.8 -3.9 +3.5 -3.5

ttH  Process

The  cross  section  are  calculated  at  NLO  QCD.

mH  (GeV) Cross  Section  (pb) +QCD  Scale  % -QCD  Scale  % +(PDF+αs)  % -(PDF+αs)  %

125.0 0.5085 +5.7 -9.3 +8.8 -8.8

125.5 0.5027 +5.7 -9.3 +8.8 -8.8

126.0 0.4966 +5.7 -9.3 +8.8 -8.8

bbH  Process

The  cross  sections  are  the  Santander  matched  numbers  with  5FS  (NNLO)  and  4FS  (NLO)  (see  Section  12.2.2  in  CERN  Report  2).

TWiki >   LHCPhysics  Web > CrossSections > CERNYellowReportPageAt1314TeV
(05  Apr  2014,  ReiTanaka)

HXSWG 05/04/2014
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 Cross Section vs Energy
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sggF(13 TeV) = 43.3 + 4.3 pbNNLO

sggF(13 TeV) = 55.9 + ?? pbSeries extrapolation:

sggF(13 TeV) = 53 + 8 pbMy best guess:

http://theory.fi.infn.it/grazzini/hcalculators.html

http://theory.fi.infn.it/grazzini/hcalculators.html
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 Higgs qT & ET
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pTi

Higgs transverse momentum

qT = �
X

pTi

Radiated transverse energy

ET =
X

|pTi|

Bozzi et al. 0705.3887

Catani & Grazzini, 1011.3918
Mantry & Petriello, 0911.4135

de Florian et al. 1109.2109

Papaefstathiou, Smillie, BW, 1002.4375
+Grazzini, 1403.3394
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 Higgs qT (fixed order)
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Large logs of mH2/qT2 need resummation

(N)LO �!
qT!0

(�)1
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 Higgs qT & ET (fixed order)

32

Large logs of mH2/ET2 need resummation

(N)LO �!
ET!0

(�)1
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 Resummation of Higgs qT
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 Higgs transverse momentum: 8 TeV
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Resummation affects spectrum out to larger qT

Peak at ~10 GeV:  log(mH2/qT2)~5.1
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 Higgs transverse momentum: 14 TeV

Peak at ~10 GeV:  log(mH2/qT2)~5.1

Resummation affects spectrum out to larger qT
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For ET < 0, can close t-contour in lower half-plane
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to all orders in ↵s. The resummation applies to leading, next-to-leading and next-to-next-

to-leading logarithms of ET /Q ((N)NLL) where Q is the hard process scale, taken to be the

Higgs mass mH . Thus it improves the treatment of the small ET region, where the fixed-

order prediction diverges whereas the actual distribution must tend to zero as ET ! 0.

By matching the resummed prediction to the NLO one we improve the treatment of both

small and large ET .

Our approach follows on from Ref. [3], based in turn on the early work on ET resumma-

tion in vector boson production [4–6] and closely related to the resummation of transverse

momentum in vector boson [7, 8, 11] and Higgs production [10, 12]. We make a number of

improvements relative to Ref. [3], including:

• Predictions for the experimentally relevant Higgs mass of 126 GeV, at centre-of-mass

energies 8 and 14 TeV;

• Fixed-order predictions to NLO;

• Expansion of the ET resummation formula to NLO, and demonstration that to this

order all the logarithms are consistent with the fixed-order prediction;

• Matching of the resummed and NLO predictions across the whole range of ET ;

• A constraint on the perturbative unitarity of the prediction, using the method of

Ref. [9], which reduces the impact of logarithmic terms in the large-ET region;

• Monte Carlo studies of the e↵ects of rapidity cuts and preclustering.

The paper is organized as follows. In Section 2, we review the resummation calcula-

tion and then describe the necessary modifications to implement the unitarity condition

mentioned above. This involves new formalism and the evaluation of new integrals in this

prescription. In Section 3, we expand our resummed result to next-to-leading order in

order to match our results to the fixed-order prediction at this accuracy. This renders

our predictions positive throughout the ET -range. In Section 4, we investigate the ET

distribution further through Monte Carlo studies. We first reweight Monte Carlo results to

our analytic distribution and then investigate the impact of hadronisation and underlying

event. We end the main text in Section 5 with conclusions and discussion. A number of

appendices then contain supplementary results.

2. Resummation of logarithms

Here we summarize the results of refs. [3,5] as applied to Higgs production. The resummed

component of the transverse energy distribution in the process h1h2 ! HX at scale Q has

the form


d�H
dQ2 dET
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our predictions positive throughout the ET -range. In Section 4, we investigate the ET

distribution further through Monte Carlo studies. We first reweight Monte Carlo results to

our analytic distribution and then investigate the impact of hadronisation and underlying

event. We end the main text in Section 5 with conclusions and discussion. A number of

appendices then contain supplementary results.

2. Resummation of logarithms
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where fa/h(x, µ) is the parton distribution function (PDF) of parton a in hadron h at

factorization scale µ, taken to be the same as the renormalization scale here (we illustrate

the impact of varying this scale in section 3). In what follows we use the MS renormalization

scheme. To take into account the constraint that the transverse energies of emitted partons

should sum to ET , the resummation procedure is carried out in the domain that is Fourier

conjugate to ET . The transverse energy distribution (2.1) is thus obtained by performing

the inverse Fourier transformation with respect to the “transverse time”, ⌧ . The factor

WH
ab is the perturbative and process-dependent partonic cross section that embodies the

all-order resummation of the large logarithms ln(Q⌧). Since ⌧ is conjugate to ET , the limit

ET ⌧ Q corresponds to Q⌧ � 1.

As in the case of transverse momentum resummation [15], the resummed partonic cross

section can be written in the following form:

WH
ab (s;Q, ⌧, µ) =
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dz1

Z 1
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Here �H
gg is the cross section for the partonic subprocess of gluon fusion, gg ! H, through

a massive-quark loop:

�H
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0 , (2.3)

where in the limit of infinite quark mass
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Sg(Q, ⌧) is the appropriate gluon form factor, which in the case of ET resummation takes

the form [5,6]
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The functions Ag(↵S), Bg(↵S), as well as the coe�cient functions Cga in Eq. (2.2), contain

no ln(Q⌧) terms and are perturbatively computable as power expansions with constant

coe�cients:

Ag(↵S) =
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Thus a calculation to NLO in ↵S involves the coe�cients A
(1)
g , A(2)

g , B(1)
g , B(2)

g and C
(1)
ga .

Where logarithmically enhanced terms are concerned, knowledge of A(1)
g leads to the resum-

mation of the leading logarithmic (LL) contributions at small ET , which in the di↵erential

– 3 –
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Figure 3: Transverse-energy distribution in Higgs boson production at the LHC at 8 and 14 TeV.
Blue: resummed only. Red: resummed and matched to NLO. Green: NLO only. The solid curves
correspond to renormalization scale mH , the dashed to 2mH and mH/2.

Away from the small-ET region, the NLO data are then well described by a parametriza-

tion of the form
"
d�H
dET

� d�H
dqT

����
qT=ET

#

NLO

= Logarithmic terms +
a1ET

mH(mH + a2ET ) + a3E2
T

, (3.16)

as shown by the red curves in Fig. 2, with the parameter values shown.

To match the resummed and NLO ET distributions, we have to subtract the NLO

logarithmic terms (3.14), which are already included in the resummation, and replace

them by the full NLO result:

d�H
dET

=


d�H
dET

�

resum

�

d�H
dET

�

resum,NLO

+


d�H
dET

�

NLO

. (3.17)

3.3 Results

The resulting resummed and matched ET distributions at the LHC at 8 and 14 TeV are

shown in Fig. 3. For all these predictions we use the best-fit value B
(2)
g = �3.0 found

from the NLO data. The distribution peaks at around ET = 35 GeV at both centre-of-

mass energies, considerably above the peak in the Higgs transverse-momentum distribution,

around qT = 12 GeV [11]. Thus in the peak region of ET the resummed logarithms are

not so dominant as in the corresponding region of qT . On the other hand, the fixed-order

NLO prediction is rising rapidly and unphysically towards smaller values of ET .2

The purely resummed distribution becomes slightly negative at small and large ET ,

which is also unphysical. The e↵ect of matching is to raise the distribution to positive

values, close to the fixed-order prediction at high ET . The matched prediction is still

somewhat unstable at small ET , owing to the delicate cancellation of diverging logarithmic

2At very small ET it turns over and tends to �1, as seen in Fig. 1.
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 Transverse energy distribution

Peak at ~35 GeV:  log(mH2/ET2)~2.6

Resummation affects spectrum out to much larger ET

Unlike qT, the Underlying Event also contributes…
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Summary

47

Scale dependence is a (rough) guide to precision

Higgs ggF cross section at 13 TeV is still very uncertain

My estimate: sggF(13 TeV) = 53 + 11 pb

Higgs transverse momentum resummed to NNLL+NLO

Peak qT ~10 GeV, independent of energy

Radiated transverse energy resummed to (N)NLL+NLO

Peak ET ~35 GeV in associated transverse energy

Contribution from Underlying Event to be considered …

QCD factorization allows precise predictions for LHC


