and Event Generation for the Large Hacin Collider Bryan Webber Cavendish Laboratory

University of Cambridge

Higgs Decays

Higgs decays

	Channel	$M_{\rm H} \; [{\rm GeV}]$	Γ [MeV]	$\Delta \alpha_{\rm s}$	$\Delta m_{\rm b}$	$\Delta m_{\rm c}$	$\Delta m_{ m t}$	THU
		122	2.30	-2.3% +2.3%	+3.2% -3.2%	+0.0% -0.0%	+0.0% -0.0%	-10%
56.1%	$\mathrm{H} \to \mathrm{b}\mathrm{b}$	126	2.36	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+2.0% -2.0%			
		130	2.42	-2.4%	+3.2%	+0.0%	+0.0%	+2.0%
		122	$2.51 \cdot 10^{-1}$	+0.0%	+0.0%	+0.0%	+0.0%	$\frac{-2.0\%}{+2.0\%}$
6.2%	$\mathrm{H} \to \tau^+ \tau^-$	122	$2.59 \cdot 10^{-1}$					-2.0% +2.0%
0.2/0	$\Pi \rightarrow t \ t$				+3.2% $+0.0%$ $+0.0%$ $-3.2%$ $-0.0%$ $-0.0%$ $+3.3%$ $+0.0%$ $+0.0%$ $-3.2%$ $-0.0%$ $-0.0%$ $+3.2%$ $+0.0%$ $+0.0%$ $-3.2%$ $-0.0%$ $-0.0%$ $-0.0%$ $+0.0%$ $+0.0%$ $-0.0%$ $-0.0%$ $-0.1%$ $-0.0%$ $-0.0%$ $-0.1%$ $-0.0%$ $-0.0%$ $-0.1%$ $-0.0%$ $-0.0%$ $-0.1%$ $-0.0%$ $-0.0%$ $-0.1%$ $-0.0%$ $-0.0%$ $-0.1%$ $-0.0%$ $-0.0%$ $-0.1%$ $-0.0%$ $-0.0%$ $-0.1%$ $-0.0%$ $-0.0%$ $-0.1%$ $-0.1%$ $+6.2%$ $+0.0%$ $-0.1%$ $-6.0%$ $-0.1%$ $-0.1%$ $-6.0%$ $-0.1%$ $-0.1%$ $-0.0%$ $-0.2%$ $-0.1%$ $-0.0%$ $-0.2%$ $-0.1%$ $-0.0%$ <t< th=""><th>-2.0% +2.0%</th></t<>	-2.0% +2.0%		
		130	$2.67 \cdot 10^{-1}$	+0.0%	-0.0%	-0.0%	-0.1%	-2.0%
		122	$8.71 \cdot 10^{-4}$	+0.0%	-0.0%	-0.0%	-0.1%	$^{+2.0\%}_{-2.0\%}$
0.02%	$\mathrm{H} \to \mu^+ \mu^-$	126	$8.99 \cdot 10^{-4}$					$^{+2.0\%}_{-2.0\%}$
		130	$9.27 \cdot 10^{-4}$					$^{+2.0\%}_{-2.0\%}$
		122	$1.16 \cdot 10^{-1}$	-7.1%	-0.1%	+6.2%	+0.0%	+2.0%
2.8%	$\mathrm{H} \to \mathrm{c} \overline{\mathrm{c}}$	126	$1.19 \cdot 10^{-1}$	-7.1%	-0.1%	+6.2%	+0.0%	+2.0%
2.070	11 / 00	130	$1.22 \cdot 10^{-1}$					$^{-2.0\%}_{+2.0\%}$
								$\frac{-2.0\%}{+3.0\%}$
		122	$3.25 \cdot 10^{-1}$	-4.1%	-0.1%	-0.0%	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-3.0%
8.5%	$\mathrm{H} \to \mathrm{gg}$	126	$3.57 \cdot 10^{-1}$	-4.1%	-0.1%	-0.0%	+0.2%	-3.0%
		130	$3.91 \cdot 10^{-1}$		+4.2% -0.1% +0 -4.1% -0.2% -0			+3.0% -3.0%
		122	$8.37 \cdot 10^{-3}$					$^{+1.0\%}_{-1.0\%}$
0.23%	$\mathrm{H}\to\gamma\gamma$	126	$9.59 \cdot 10^{-3}$	+0.0%	+0.0%	+0.0%	+0.0%	$^{+1.0\%}_{-1.0\%}$
0.2070		130	$1.10 \cdot 10^{-2}$	+0.1%	+0.0%	+0.0%	+0.0%	+1.0%
		122	$4.74 \cdot 10^{-3}$	+0.0%	+0.0%	+0.0%	+0.0%	$\frac{-1.0\%}{+5.0\%}$
01/0/	$\Pi \rightarrow Z_{0}$						$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-5.0% +5.0%
0.16%	$\mathrm{H}\to\mathrm{Z}\gamma$	126	$6.84 \cdot 10^{-3}$		-0.0%	-0.1%	-0.1%	-5.0% +5.0%
		130	$9.55 \cdot 10^{-3}$	-0.0%	-0.0%	-0.0%	-0.0%	-5.0%
		122	$6.25 \cdot 10^{-1}$	$^{+0.0\%}_{-0.0\%}$	-0.0%	-0.0%	-0.0%	$^{+0.5\%}_{-0.5\%}$
23.1%	$\mathrm{H} \rightarrow \mathrm{WW}$	126	$9.73 \cdot 10^{-1}$	$^{+0.0\%}_{-0.0\%}$				$^{+0.5\%}_{-0.5\%}$
		130	1.49	$^{+0.0\%}_{-0.0\%}$	+0.0%	+0.0%	+0.0%	$^{+0.5\%}_{-0.5\%}$
		122	$7.30 \cdot 10^{-2}$	+0.0%	76 $+0.0%$ $+0.0%$ $+0.0%$ 76 $-0.0%$ $-0.0%$ $-0.0%$ 76 $+0.0%$ $+0.0%$ $+0.0%$ 76 $+0.0%$ $+0.0%$ $+0.0%$ 76 $+0.0%$ $-0.0%$ $-0.0%$ 76 $+0.0%$ $-0.0%$ $-0.0%$ 76 $-0.0%$ $-0.0%$ $-0.0%$ 76 $-0.0%$ $-0.0%$ $-0.0%$ 76 $-0.0%$ $-0.0%$ $-0.0%$ 76 $-0.1%$ $+6.2%$ $+76$ 76 $-0.1%$ $-6.0%$ -76 76 $-0.1%$ $-6.0%$ -76 76 $-0.1%$ $-0.0%$ -76 76 $-0.1%$ $-0.0%$ -76 76 $-0.1%$ $-0.0%$ -76 76 $-0.1%$ $-0.0%$ -76 76 $-0.0%$ $-0.0%$ -76 76 $-0.0%$ $-0.0%$ -76 76 $-0.0%$ $-0.0%$ -76	+0.0%	+0.5%	
J D0/	$\mathrm{H} \to \mathrm{ZZ}$	126	$1.22 \cdot 10^{-1}$	-0.0% +0.0%	+0.0%	+0.0%	+0.0%	-0.5% +0.5%
2.9%		130	$1.95 \cdot 10^{-1}$	-0.0% +0.0%				-0.5% +0.5%
		130	1.7.3.10	-0.0%				-0.5%

HXSWG v.3, 1307.1347

Theoretical uncertainty: from scale variation and missing higher orders (not uncertainty in m_H)

Parametric uncertainties from QCD coupling and quark masses

$\Gamma_{tot}(126)$ = 4.21 MeV

Higgs decays

	Channel	$M_{\rm H}$ [GeV]	Γ [MeV]	$\Delta \alpha_{\rm s}$	$\Delta m_{\rm b}$	$\Delta m_{\rm c}$	$\Delta m_{\rm t}$	THU
		122	2.30	-2.3%	+3.2%	+0.0%	+0.0%	+2.0%
56.1%	$\mathrm{H} \rightarrow \mathrm{b}\mathrm{b}$	122	2.36	+2.3% -2.3%	-3.2% +3.3%	-0.0% +0.0%	-0.0% +0.0%	-2.0% +2.0%
50.170	$\Pi \rightarrow DD$			$^{+2.3\%}_{-2.4\%}$	-3.2% +3.2%	-0.0% +0.0%	-0.0% +0.0%	-2.0% +2.0%
		130	2.42	+2.3%	-3.2%	-0.0%	-0.0%	-2.0%
		122	$2.51 \cdot 10^{-1}$	$^{+0.0\%}_{+0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.1\%}$	$^{+2.0\%}_{-2.0\%}$
6.2%	${\rm H} \to \tau^+ \tau^-$	126	$2.59 \cdot 10^{-1}$	+0.0% +0.0%	$^{+0.0\%}_{-0.0\%}$	$+0.0\% \\ -0.0\%$	$+0.1\% \\ -0.1\%$	$^{+2.0\%}_{-2.0\%}$
		130	$2.67 \cdot 10^{-1}$	$^{+0.0\%}_{+0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.1\%}_{-0.1\%}$	+2.0% -2.0%
		122	$8.71 \cdot 10^{-4}$	$^{+0.0\%}_{+0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.1\%}_{-0.1\%}$	$^{+2.0\%}_{-2.0\%}$
0.02%	$\mathrm{H} \to \mu^+ \mu^-$	126	$8.99 \cdot 10^{-4}$	+0.0% +0.0%	$+0.0\% \\ -0.0\%$	-0.1% -0.0%	+0.0% -0.1%	+2.0% -2.0%
0.02/0		130	$9.27 \cdot 10^{-4}$	+0.0% +0.0%	+0.0% -0.0%	+0.0% -0.0%	$+0.1\% \\ -0.0\%$	+2.0% -2.0%
		122	$1.16 \cdot 10^{-1}$	-7.1% +7.0%	-0.1% -0.1%	$+6.2\% \\ -6.0\%$	+0.0% -0.1%	+2.0% -2.0%
2.8%	$\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}}$	126	$1.19 \cdot 10^{-1}$	-7.1% +7.0%	-0.1% -0.1%	$+6.2\% \\ -6.1\%$	$+0.0\% \\ -0.1\%$	+2.0% -2.0%
,		130	$1.22 \cdot 10^{-1}$	+7.0% -7.1% +7.0%	-0.1% -0.1% -0.1%	+6.3% -6.0%	+0.1% -0.1%	+2.0% +2.0% -2.0%
		122	$3.25 \cdot 10^{-1}$	+4.2% -4.1%	-0.1% -0.1%	+0.0% -0.0%	-0.2% +0.2%	+3.0% -3.0%
8.5%	$\mathrm{H} \to \mathrm{gg}$	126	$3.57 \cdot 10^{-1}$	+4.2% -4.1%	-0.1% -0.1%	+0.0% -0.0%	+0.2% -0.2% +0.2%	+3.0% -3.0%
0.070		130	$3.91 \cdot 10^{-1}$	-4.1% +4.2% -4.1%	-0.1% -0.2%	-0.0% +0.0% -0.0%	+0.2% -0.2% +0.2%	-3.0% +3.0% -3.0%
		122	$8.37 \cdot 10^{-3}$	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.2% +0.0% -0.0%	+1.0% -1.0%
0.23%	$\mathrm{H}\to\gamma\gamma$	126	$9.59 \cdot 10^{-3}$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	+1.0% -1.0%
		130	$1.10 \cdot 10^{-2}$	$+0.1\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	+1.0% -1.0%
		122	$4.74 \cdot 10^{-3}$	+0.0% -0.1%	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.1\%$	$+5.0\% \\ -5.0\%$
0.16%	$\mathrm{H}\to\mathrm{Z}\gamma$	126	$6.84 \cdot 10^{-3}$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.1\%$	$+0.0\% \\ -0.1\%$	+5.0% -5.0%
•••••		130	$9.55 \cdot 10^{-3}$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	+0.0% -0.0%	+0.0% -0.0%	+5.0% -5.0%
		122	$6.25 \cdot 10^{-1}$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.5\% \\ -0.5\%$
23.1%	$\mathrm{H} \to \mathrm{WW}$	126	$9.73 \cdot 10^{-1}$	$+0.0\% \\ -0.0\%$	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	$+0.5\% \\ -0.5\%$
		130	1.49	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.5\% \\ -0.5\%$
		122	$7.30 \cdot 10^{-2}$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.5\% \\ -0.5\%$
2.9%	$\mathrm{H} \to \mathrm{ZZ}$	126	$1.22 \cdot 10^{-1}$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.5\% \\ -0.5\%$
 ,,,,		130	$1.95 \cdot 10^{-1}$	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	$+0.0\% \\ -0.0\%$	$+0.5\% \\ -0.5\%$

HXSWG v.3, 1307.1347

Uncertainties > 2% (mostly QCD)

Unknown EW HO

 $\Gamma_{tot}(126)$ = 4.21 MeV

Higgs decays

	Channel	$M_{\rm H}$ [GeV]	Γ [MeV]	$\Delta \alpha_{\rm s}$	$\Delta m_{\rm b}$	$\Delta m_{\rm c}$	$\Delta m_{\rm t}$	THU
		122	2.30	-2.3% +2.3%	$+3.2\% \\ -3.2\%$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+2.0\%}_{-2.0\%}$
56.1%	$\mathrm{H} \to \mathrm{b}\mathrm{b}$	126	2.36	-2.3%	+3.3%	+0.0%	+0.0%	+2.0%
		130	2.42	+2.3% -2.4%	-3.2% +3.2%	-0.0% +0.0%	-0.0% +0.0%	-2.0% +2.0%
		122	$2.51 \cdot 10^{-1}$	+2.3% +0.0%	-3.2% +0.0%	$\frac{-0.0\%}{+0.0\%}$	$\frac{-0.0\%}{+0.0\%}$	$\frac{-2.0\%}{+2.0\%}$
1 70/	TT . + -			$^{+0.0\%}_{+0.0\%}$	-0.0% +0.0%	-0.0% +0.0%	-0.1% +0.1%	-2.0% +2.0%
6.2%	$\mathrm{H} \to \tau^+ \tau^-$	126	$2.59 \cdot 10^{-1}$	+0.0%	-0.0%	-0.0%	-0.1%	-2.0%
		130	$2.67 \cdot 10^{-1}$	$^{+0.0\%}_{+0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.1\%}_{-0.1\%}$	$^{+2.0\%}_{-2.0\%}$
		122	$8.71 \cdot 10^{-4}$	$^{+0.0\%}_{+0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.1\%}_{-0.1\%}$	$^{+2.0\%}_{-2.0\%}$
0.02%	$\mathrm{H} \to \mu^+ \mu^-$	126	$8.99 \cdot 10^{-4}$	+0.0%	+0.0%	-0.1%	+0.0%	+2.0%
0.02/0		130	$9.27 \cdot 10^{-4}$	+0.0% +0.1%	-0.0% +0.0%	-0.0% +0.0%	-0.1% +0.1%	$^{-2.0\%}_{+2.0\%}$
				+0.0% -7.1\%	-0.0% -0.1%	-0.0% +6.2\%	$\frac{-0.0\%}{+0.0\%}$	$\frac{-2.0\%}{+2.0\%}$
• • • • /		122	$1.16 \cdot 10^{-1}$	+7.0%	-0.1%	-6.0%	-0.1%	-2.0%
2.8%	$\mathrm{H}\to\mathrm{c}\overline{\mathrm{c}}$	126	$1.19 \cdot 10^{-1}$	-7.1% +7.0%	$-0.1\% \\ -0.1\%$	$^{+6.2\%}_{-6.1\%}$	$^{+0.0\%}_{-0.1\%}$	$^{+2.0\%}_{-2.0\%}$
		130	$1.22 \cdot 10^{-1}$	-7.1% +7.0%	$-0.1\% \\ -0.1\%$	$^{+6.3\%}_{-6.0\%}$	$^{+0.1\%}_{-0.1\%}$	+2.0% -2.0\%
		122	$3.25 \cdot 10^{-1}$	$^{+4.2\%}_{-4.1\%}$	-0.1%	+0.0%	-0.2%	+3.0%
8.5%	$\mathrm{H} \to \mathrm{gg}$	126	$3.57 \cdot 10^{-1}$	+4.2%	-0.1% -0.1%	-0.0% +0.0%	$+0.2\% \\ -0.2\%$	-3.0% +3.0%
0.370	11 / 88		$3.91 \cdot 10^{-1}$	-4.1% +4.2%	$-0.1\% \\ -0.1\%$	-0.0% +0.0%	$^{+0.2\%}_{-0.2\%}$	-3.0% +3.0%
		130		-4.1%	-0.2% +0.0%	-0.0% +0.0%	+0.2% +0.0%	-3.0%
		122	$8.37 \cdot 10^{-3}$	$^{+0.0\%}_{-0.0\%}$	-0.0%	-0.0%	-0.0%	$^{+1.0\%}_{-1.0\%}$
0.23%	$\mathrm{H}\to\gamma\gamma$	126	$9.59 \cdot 10^{-3}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+1.0\%}_{-1.0\%}$
		130	$1.10 \cdot 10^{-2}$	$^{+0.1\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+1.0\%}_{-1.0\%}$
		122	$4.74 \cdot 10^{-3}$	+0.0%	+0.0%	+0.0%	+0.0%	+5.0%
0 1 4 0 /	II . 77			-0.1% +0.0%	-0.0% +0.0%	-0.0% +0.0%	-0.1% +0.0%	-5.0% +5.0%
0.16%	$\mathrm{H}\to\mathrm{Z}\gamma$	126	$6.84 \cdot 10^{-3}$	-0.0%	-0.0%	-0.1%	-0.1%	-5.0%
		130	$9.55 \cdot 10^{-3}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+5.0\%}_{-5.0\%}$
		122	$6.25 \cdot 10^{-1}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	+0.5% -0.5%
23.1%	$\mathrm{H} \rightarrow \mathrm{WW}$	126	$9.73 \cdot 10^{-1}$	+0.0%	+0.0%	+0.0%	+0.0%	+0.5%
23.170		130	1.49	-0.0% +0.0%	-0.0% +0.0%	-0.0% +0.0%	-0.0% +0.0%	-0.5% +0.5%
				-0.0% +0.0%	-0.0% +0.0%	-0.0% +0.0%	-0.0% +0.0%	-0.5% +0.5%
		122	$7.30 \cdot 10^{-2}$	-0.0%	-0.0%	-0.0%	-0.0%	-0.5%
2.9%	$\mathrm{H} \to \mathrm{ZZ}$	126	$1.22 \cdot 10^{-1}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.5\%}_{-0.5\%}$
		130	$1.95 \cdot 10^{-1}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.5\%}_{-0.5\%}$
				0,0,0	0.070	0.070	0.070	0.070

HXSWG v.3, 1307.1347

Uncertainties > 2% (mostly QCD)

Unknown EW HO

 $Strong mass dependence \\ \delta M_{H}=400 \text{ MeV} => ~5\%$

Running quark mass

 Couplings and masses (parameters in Lagrangian) must be renormalised, hence scale (and scheme) dependent

Pole quark mass

$$D(p) = \frac{i}{p - m_q - \Sigma(p)}$$

$$p_{\text{pole}} = m_q + \Sigma(p) = m_q + \Sigma^{(1)}(m_q) + \dots$$

$$\sum_{n=0}^{\infty} \sum_{n=0}^{n} \frac{1}{c_n} \sum_{n=0}^{\infty} c_n \alpha^{n+1}$$

$$\sum_{n=0}^{\infty} \sum_{n=0}^{\infty} c_n \alpha^{n+1}$$

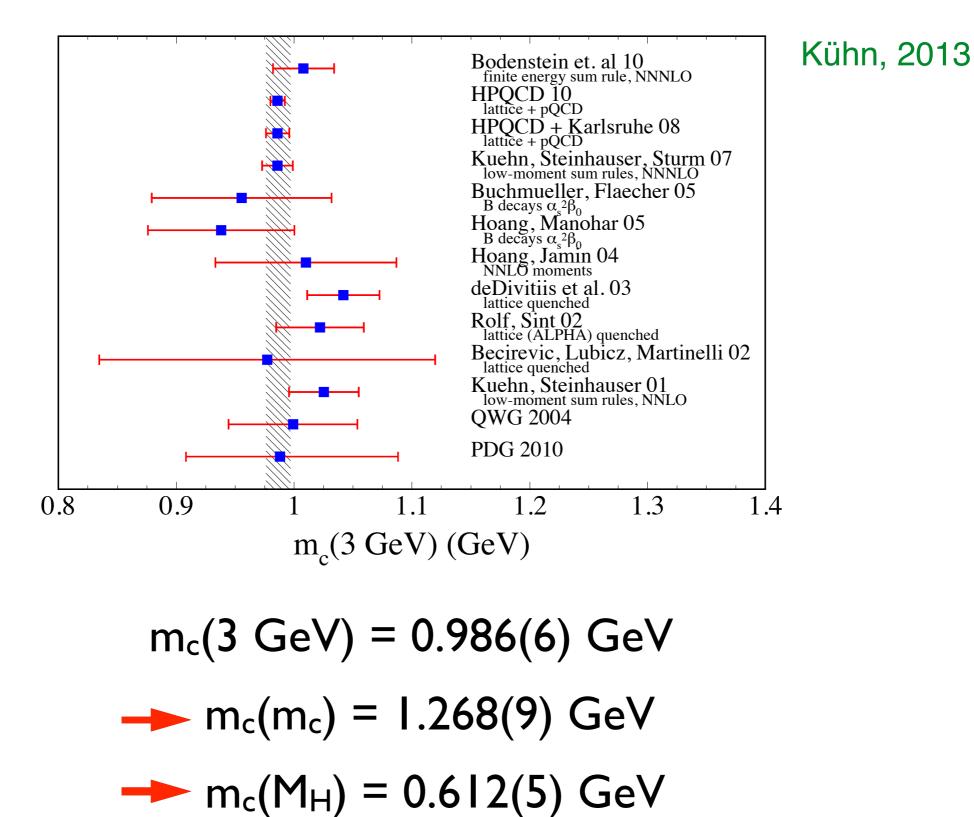
$$a = \frac{\beta_0 \alpha_s(m_q)}{4\pi} \sim \frac{1}{\log(m_q^2/\Lambda^2)} \equiv \frac{1}{L}$$

Asymptotic expansion: sum to smallest term $(n\sim L/2)$

Ambiguity ~ smallest term ($c_n a^{n+1} \sim e^{-L/2} \sim \Lambda/m_q$)

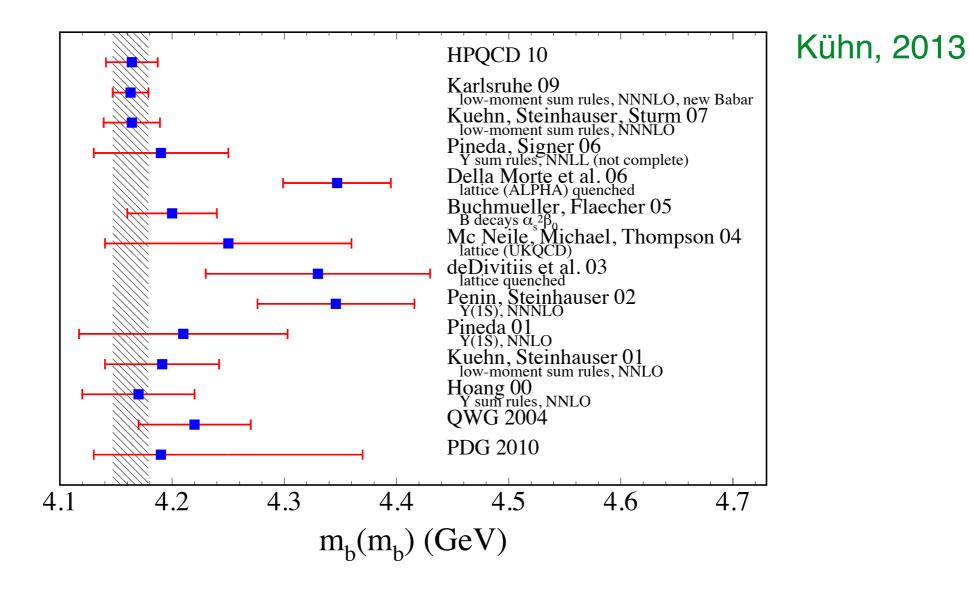
$$m_{\text{pole}} = m_q(m_q) \left\{ 1 + 0.4244 \,\alpha_s(m_q) + 0.835 \,\alpha_s^2(m_q) + 2.375 \,\alpha_s^3(m_q) + \ldots \right\} + \mathcal{O}(\Lambda)$$
Renormalon ambiguity
(There is no pole!)

$$\Gamma(H \to q\bar{q}) = \frac{3\sqrt{2}}{8\pi} G_F M_H m_q^2(M_H) \left[1 - \frac{4m_q^2(M_H)}{M_H^2} \right]^{\frac{3}{2}} \left[1 + 1.803 \,\alpha_{\rm s}(M_H) + 2.953 \,\alpha_{\rm s}^2(M_H) + \ldots \right]$$
(known to 4th order)


Running of masses is enormously important!

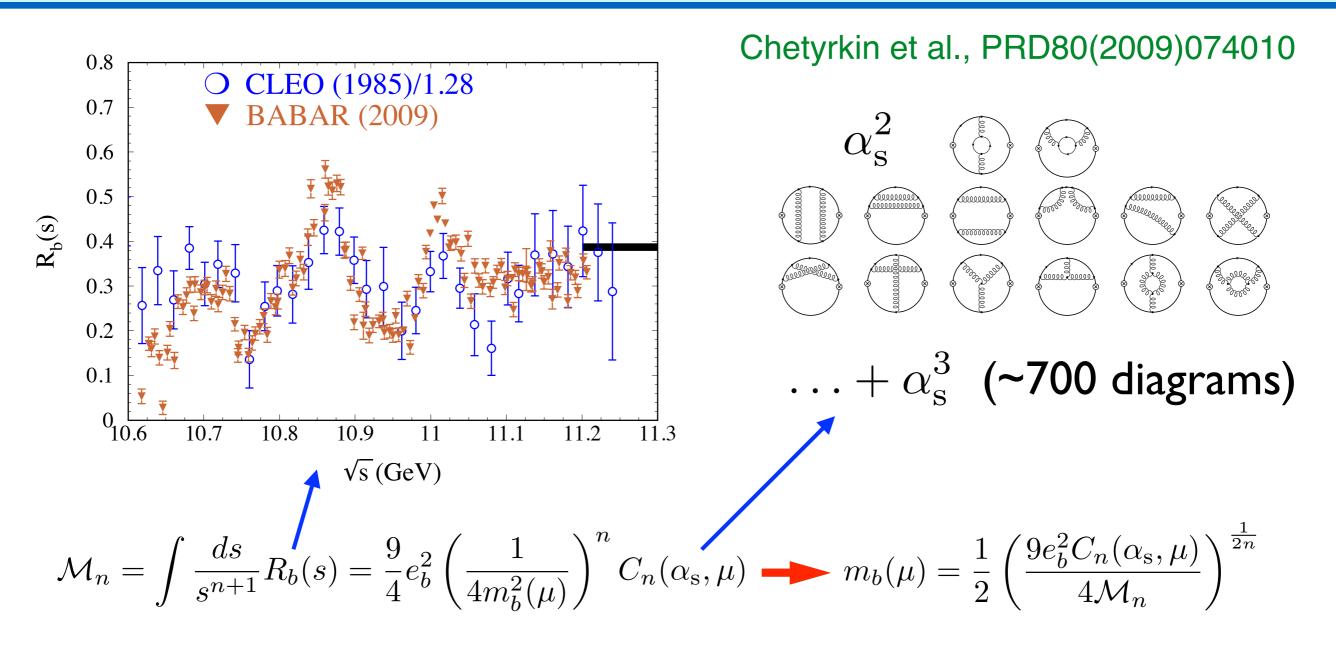
$$m_b^2(M_H)/m_b^2(m_b) = (2.77/4.16)^2 = 0.442$$

 $m_c^2(M_H)/m_c^2(m_c) = (0.612/1.27)^2 = 0.233$


• $\Gamma_{\rm b}$ affects all branching ratios!

$$BR(X) = \frac{\Gamma_X}{\Gamma_{tot}} \longrightarrow \frac{\delta BR(X)}{BR(X)} = \frac{\delta \Gamma_b}{\Gamma_{tot}} = 0.56 \frac{\delta \Gamma_b}{\Gamma_b}$$

Charm quark mass



Bottom quark mass

$$m_b(10 \text{ GeV}) = 3.617(25) \text{ GeV}$$

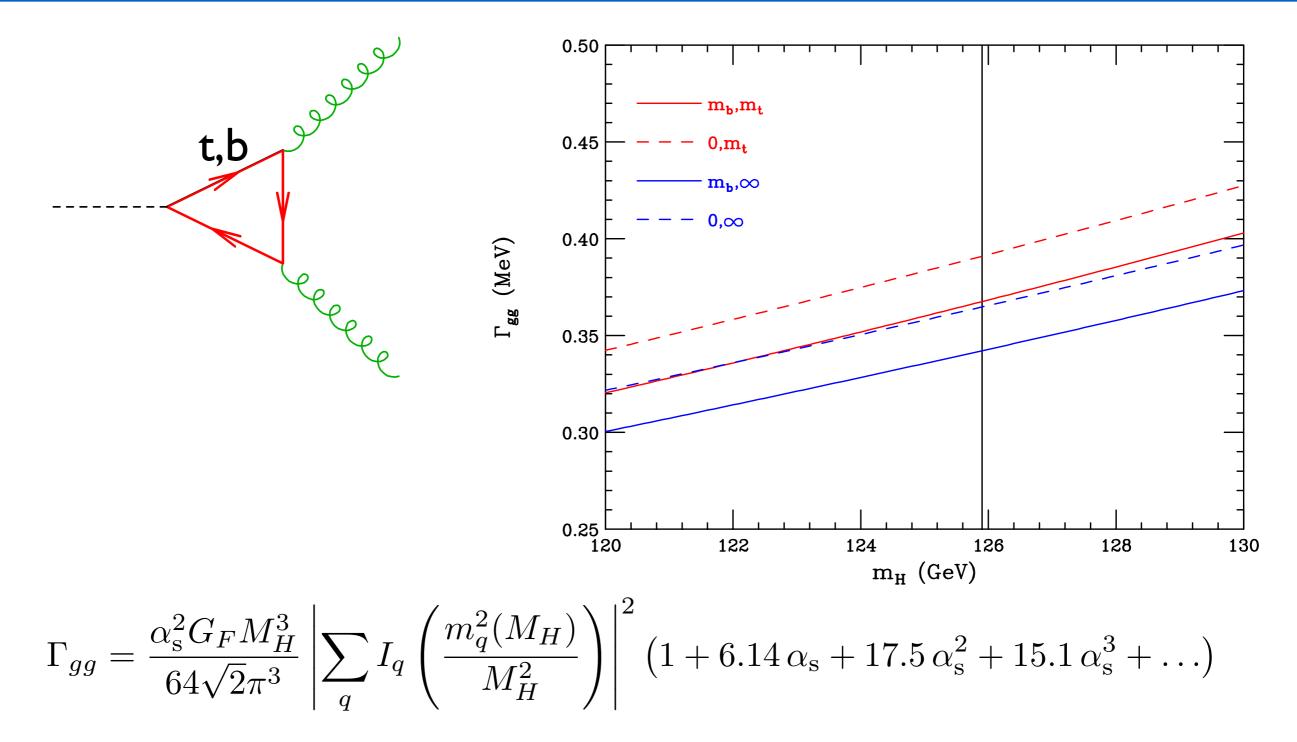
 $--- m_b(m_b) = 4.164(30) \text{ GeV}$
 $--- m_b(M_H) = 2.768(21) \text{ GeV}$

m_b from QCD sum rules

n	$m_b(10{ m GeV})$	exp	α_s	μ	total	$m_b(m_b)$
1	3597	14	7	2	16	4151
2	3610	10	12	3	16	4163
3	3619	8	14	6	18	4172
4	3631	6	15	20	26	4183

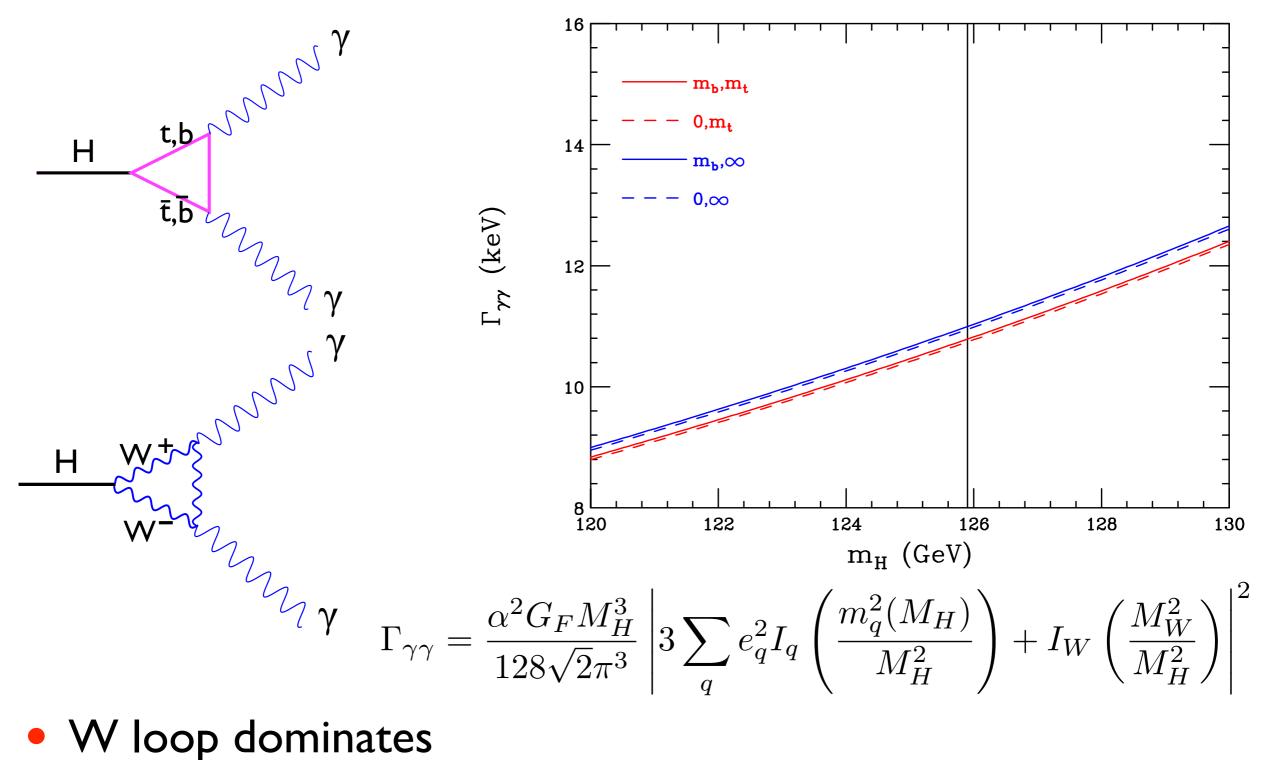
m_b(10 GeV) = 3.610(16) GeV

Top quark mass


"Direct" (≈pole mass?) measurements:

$m_t \; ({\rm GeV}/c^2)$	Source	$\int \mathcal{L} dt$	Ref. Channel
$174.94 \pm 1.14 \pm 0.96$	DØ Run II	3.6	[102] ℓ +jets
$\overline{172.85 \pm 0.71 \pm 0.85}$	CDF Run II	8.7	[101] ℓ +jets
$173.93 \pm 1.64 \pm 0.87$	CDF Run II	8.7	[116] Missing E_T +jets
$172.5 \pm 1.4 \pm 1.5$	CDF Run II	5.8	[122] All jets
$\overline{172.31 \pm 0.75 \pm 1.35}$	ATLAS	4.7	[99] ℓ +jets
$173.09 \pm 0.64 \pm 1.50$	ATLAS	4.7	$[108] \ \ell\ell$
$174.9 \pm 2.1 \pm 3.8$	ATLAS	2.04	[115] All jets
$173.49 \pm 0.43 \pm 0.98$	CMS	5.0	[100] ℓ +jets
$172.5 \pm 0.4 \pm 1.5$	CMS	5.0	$[109] \ \ell\ell$
$\frac{173.49 \pm 0.69 \pm 1.21}{1.21}$	CMS	3.54	[114] All jets
$173.20 \pm 0.51 \pm 0.71^{*}$	CDF,DØ (I+I	$() \le 8.7$	[3] publ. or prelim. res.
$173.29 \pm 0.23 \pm 0.92$ *	ATLAS, CMS	≤ 4.9	[121] publ. or prelim. res.

$m_t(pole) = 173.07 \pm 0.52(stat) \pm 0.72(sys) \text{ GeV}$ $\longrightarrow m_t(m_t) = 163.4 \pm 0.9 \text{ GeV}$ $m_t(m_t) = 160^{+5}_{-4} \text{ GeV}$ from cross section


RPP 2013

b contributes ~ -6%, which almost cancels top mass effect

Higgs → γγ

W loop dominates

b contributes less, so top mass effect is significant (\sim -2%)

Bryan Webber

Burg Liebenzell, Sept 2014

Higgs decay uncertainties: current

Almeida, Lee, Pokorski, Wells, 1311.6721v3

	Parametric u	ncertainties %	Scale	
	added linearly	in quadrature	dependence	~ THU ??
	$P_{\Gamma}^{\pm}(\text{par.add.})$	$P_{\Gamma}^{\pm}(\text{par.quad.})$	$(P_{\Gamma}^+, P_{\Gamma}^-)(\mu)$	
total	2.82(1.79)	1.71(1.07)	(0.08, 0.10)	
gg	2.52(1.83)	1.74(1.49)	$(0.05,\!0.03)$	
$\gamma\gamma$	1.45 (0.42)	$1.38\ (0.35)$	$(1.31,\!0.60)$	
$b\overline{b}$	2.62(2.43)	1.84(1.82)	$(0.29,\!0.01)$	
$c\overline{c}$	7.34(7.15)	5.55(5.54)	$(0.45,\!0.35)$	
$\tau^+\tau^-$	0.36(0.12)	0.32(0.08)	$(0.01,\!0.01)$	
WW^*	4.41 (1.17) $ $	4.97(1.25)	$(0.25,\!0.31)$	
ZZ^*	4.90 (1.25) $ $	4.42(1.11)	$(0.,\!0.)$	
$Z\gamma$	3.56(0.92)	3.52(0.88)	(0.56, 0.23)	
$\mu^+\mu^-$	0.34 (0.11)	0.32(0.08)	(0.03, 0.03)	

 $\delta M_H/MeV = 400(100) [ILC => 30]$

Higgs mass

 ATLAS & CMS get masses differing by ~I GeV from different channels and from each other:

> ATLAS γγ: I25.98±0.42(stat)±0.28(sys) ATLAS ZZ*: I24.5I±0.37(stat)±0.06(sys) CMS γγ: I24.70±0.3I(stat)±0.I5(sys) CMS ZZ*: I25.60±0.40(stat)±0.20(sys)

But their final numbers are more consistent:

ATLAS: $125.36\pm0.37(stat)\pm0.18(sys)$ CMS: $125.03 \stackrel{+0.26}{_{-0.27}}(stat) \stackrel{+0.13}{_{-0.15}}(sys)$

• We need results from Run II !

Higgs decay uncertainties: prospects

Lepage, Mackenzie, Peskin, 1404.0319

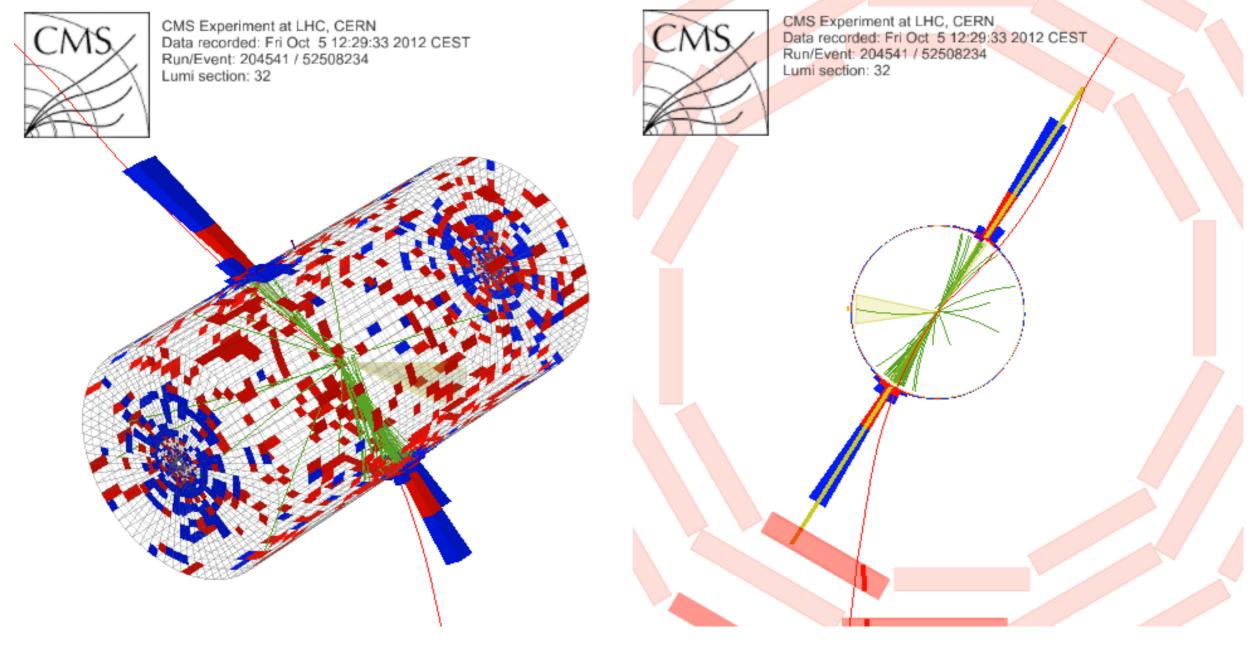
	Parametr	ric uncerta	$ δ_j = δΓ_j/2Γ_j \% $			
	$\delta m_b(10)$	$\delta \alpha_s(m_Z)$	$\delta m_c(3)$	δ_b	δ_c	δ_g
current errors [10]	0.70	0.63	0.61	0.77	0.89	0.78
+ PT	0.69	0.40	0.34	0.74	0.57	0.49
+ LS	0.30	0.53	0.53	0.38	0.74	0.65
$+ LS^2$	0.14	0.35	0.53	0.20	0.65	0.43
+ PT + LS	0.28	0.17	0.21	0.30	0.27	0.21
$+ PT + LS^2$	0.12	0.14	0.20	0.13	0.24	0.17
$+ PT + LS^2 + ST$	0.09	0.08	0.20	0.10	0.22	0.09
ILC goal				0.30	0.70	0.60

 $PT = \mathcal{O}(\alpha_s^4) \text{ [current} = \mathcal{O}(\alpha_s^3)\text{]}$ LS = 0.030 fm [current = 0.045 fm] $LS^2 = 0.023 \text{ fm [computing} \times 100\text{]}$ $ST = \text{statistics} \times 100$

Conclusions on Higgs Decays

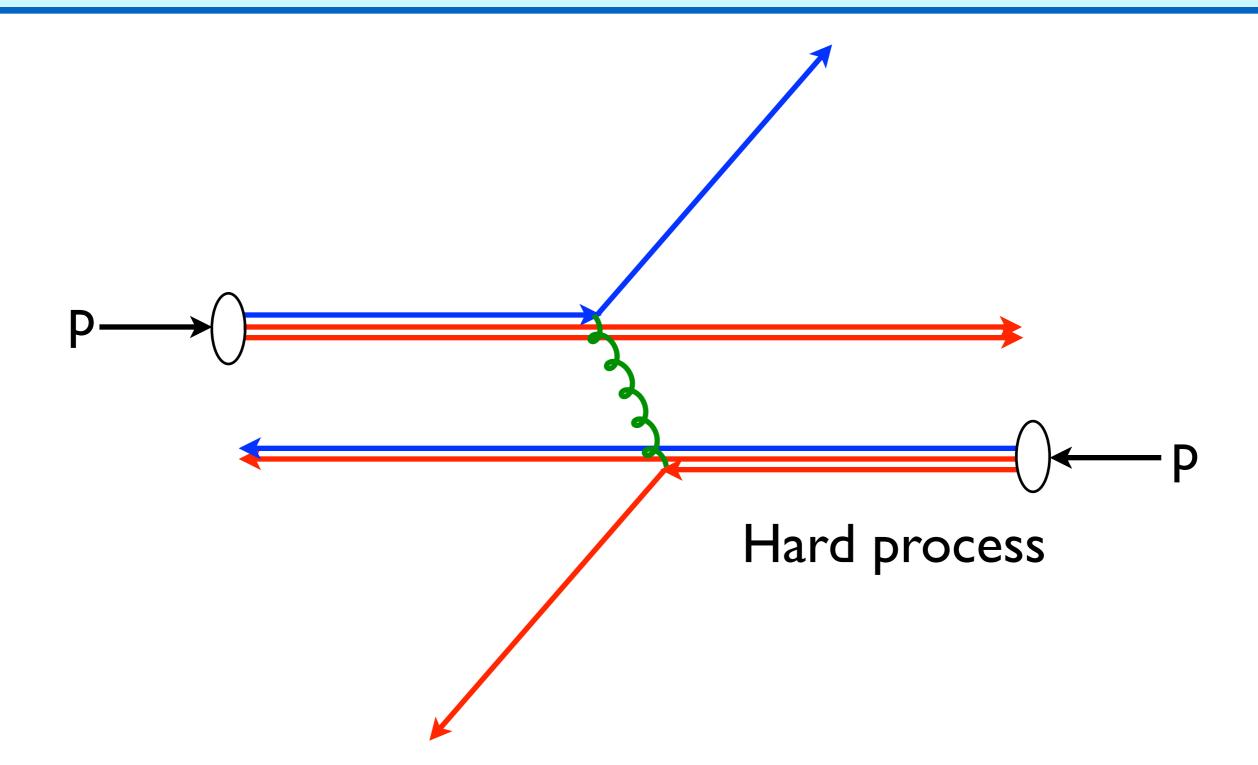
- Higgs partial widths currently predicted to 2%-5%
- Higgs mass uncertainty important for VV* modes (at LHC, not ILC)
- Predictions to 1%-2% look feasible, with big investments in perturbative and lattice QCD
- Is this good enough??

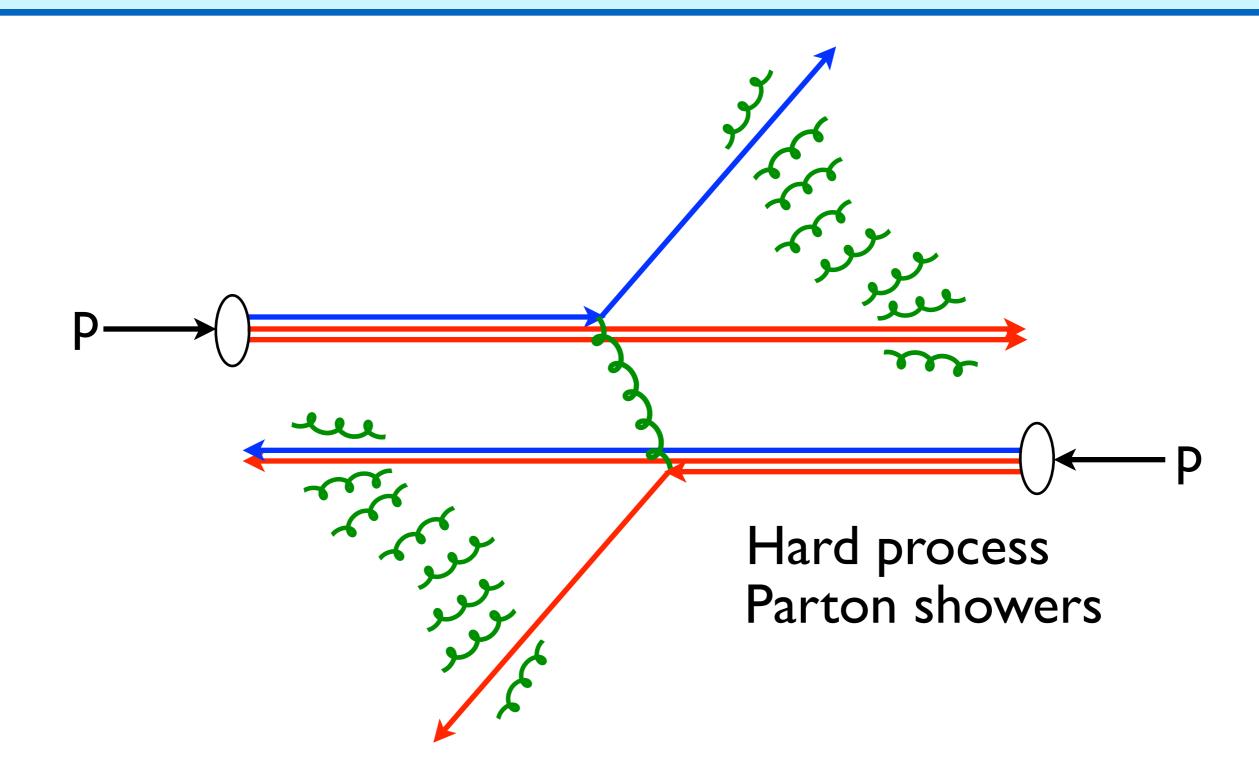
Monte Carlo Event Generation

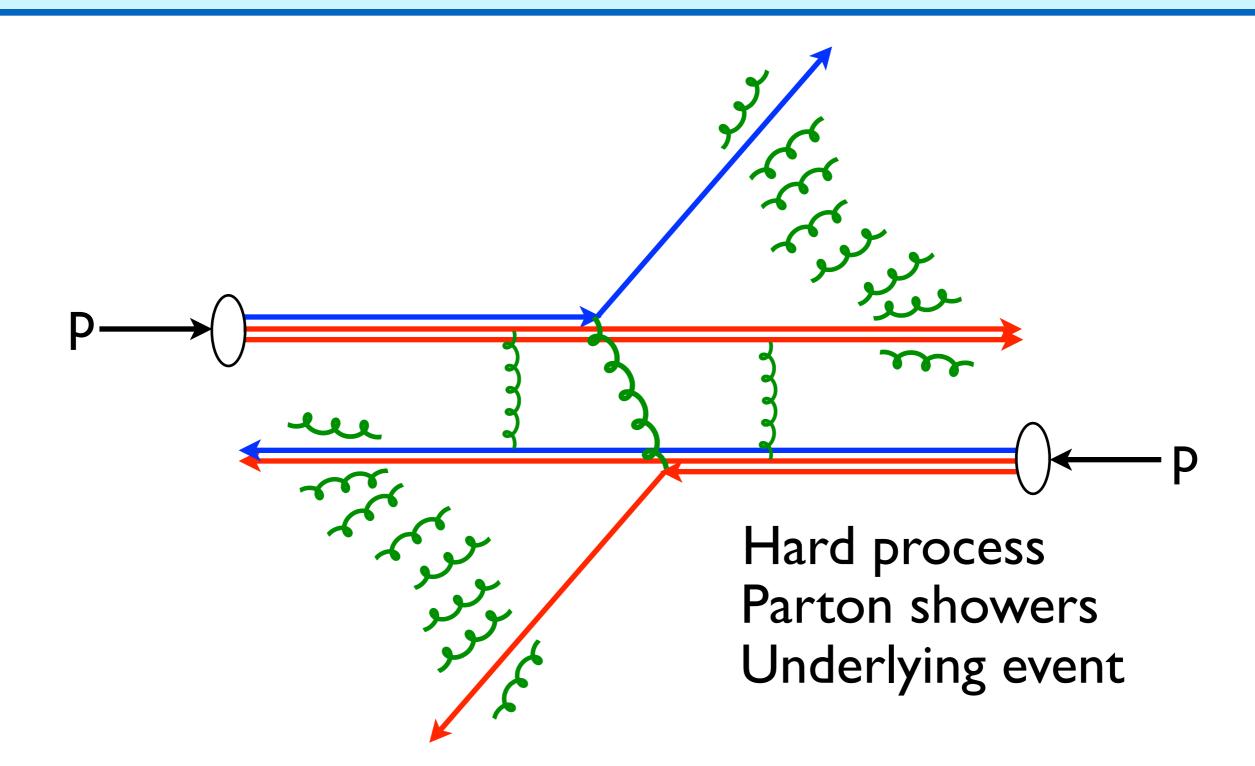

Monte Carlo Event Generation

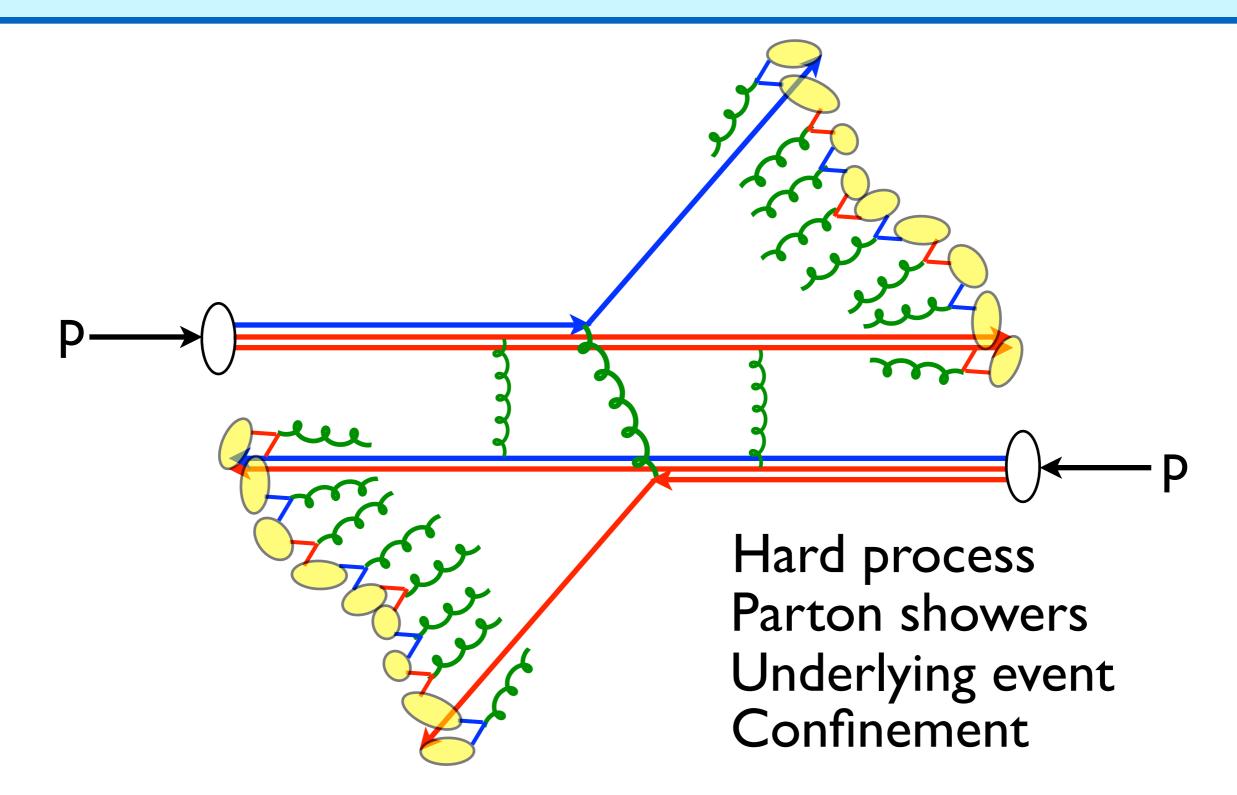
- Monte Carlo event generation:
 - theoretical status and limitations
- Recent improvements:
 - perturbative and non-perturbative
- Overview of results:
 - W, Z, top, Higgs, BSM (+jets)

Monte Carlo Event Generation


- Aim is to produce simulated (particle-level) datasets like those from real collider events
 - * i.e. lists of particle identities, momenta, ...
 - simulate quantum effects by (pseudo)random numbers
- Essential for:
 - Designing new experiments and data analyses
 - Correcting for detector and selection effects
 - Testing the SM and measuring its parameters
 - Estimating new signals and their backgrounds


A high-mass dijet event




• $M_{jj} = 5.15 \text{ TeV}$

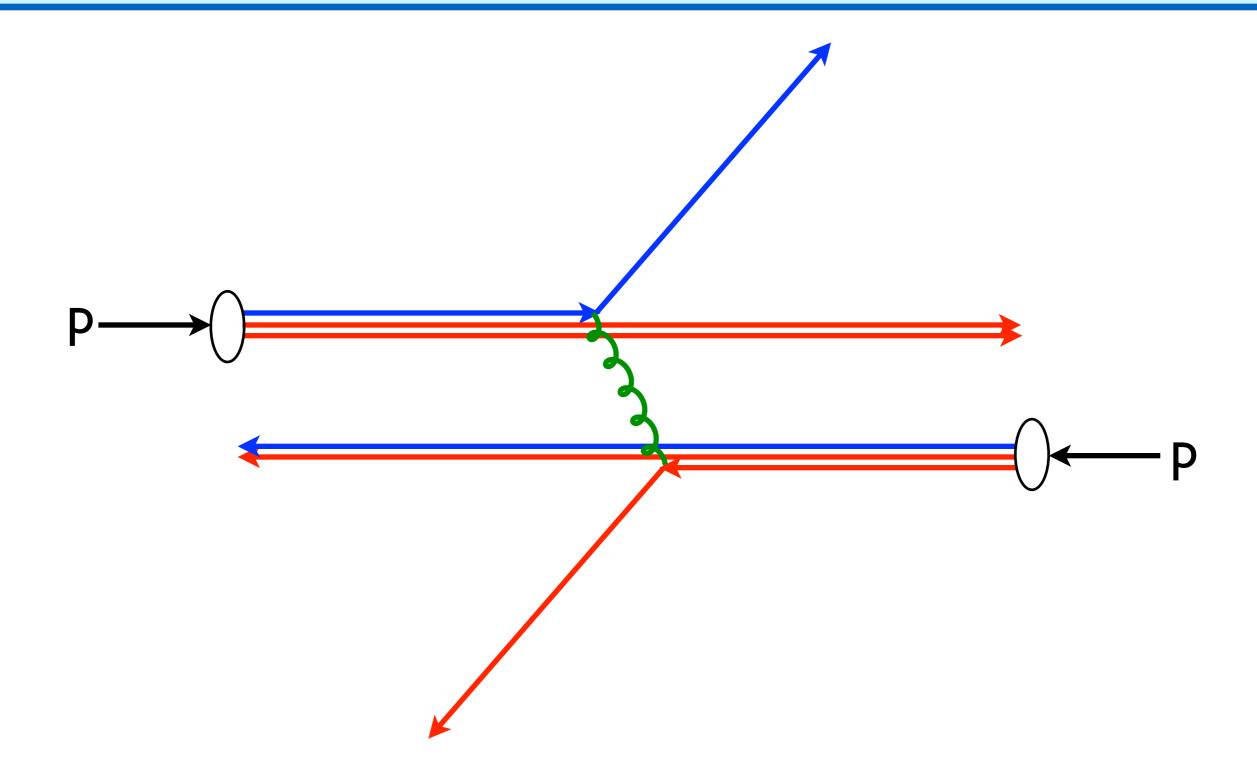
CMS PAS EXO-12-059

Event Generation quark jet

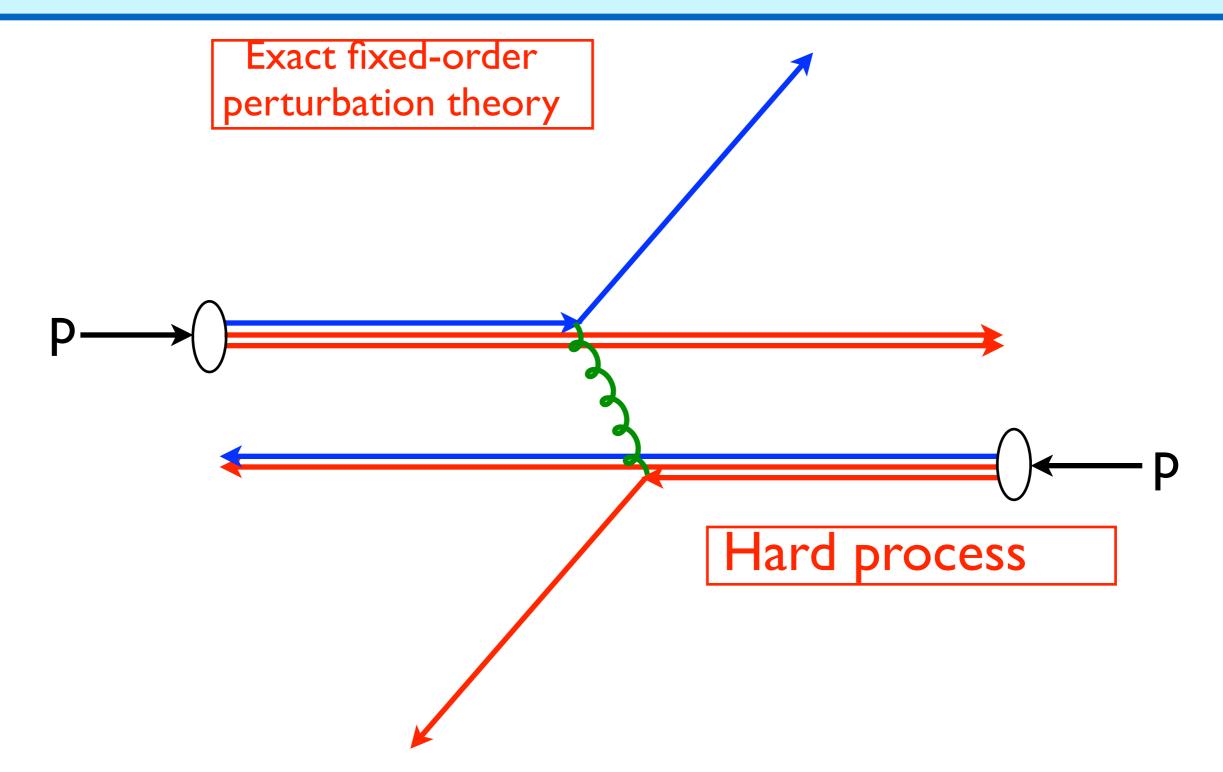
Hard process Parton showers Underlying event Confinement Hadronization beam

jet

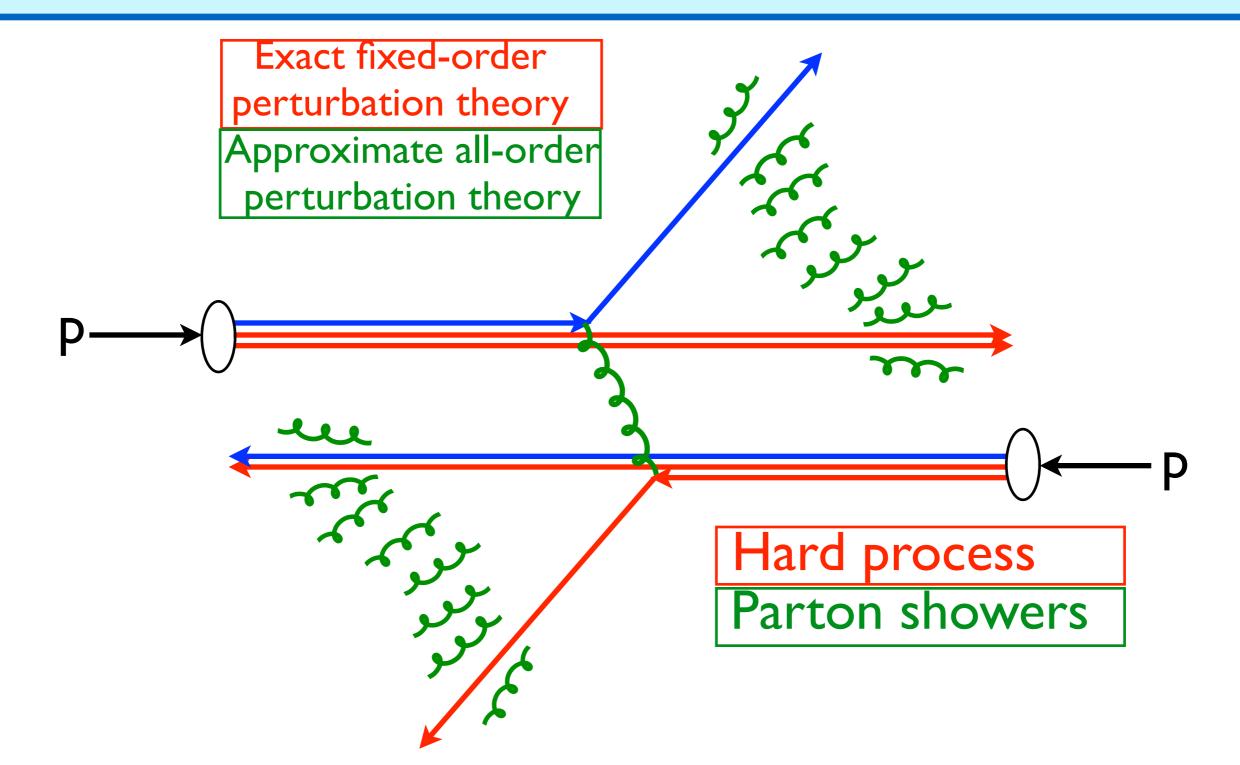
Ρ

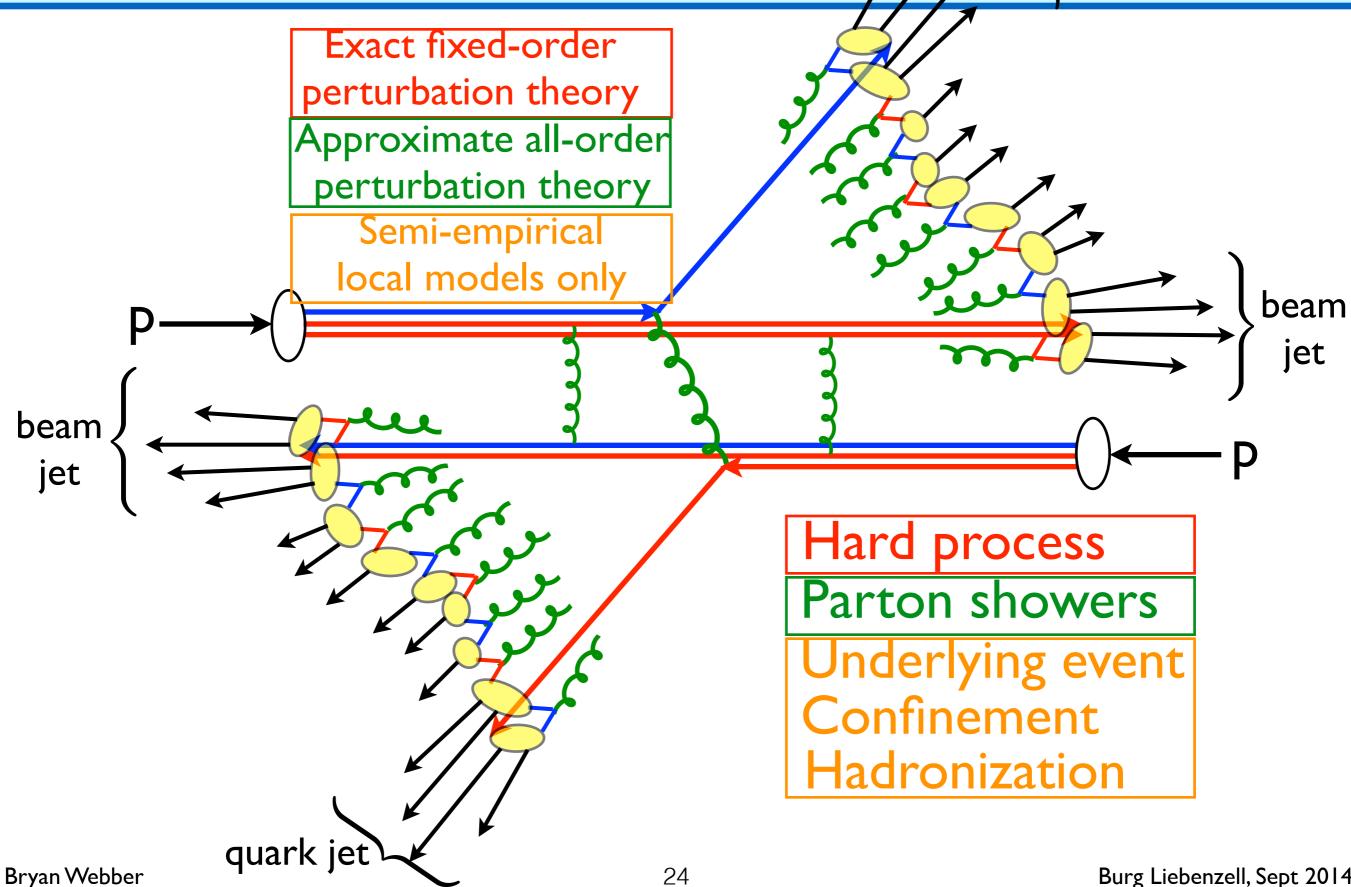

Bryan Webber

quark jet


beam

jet

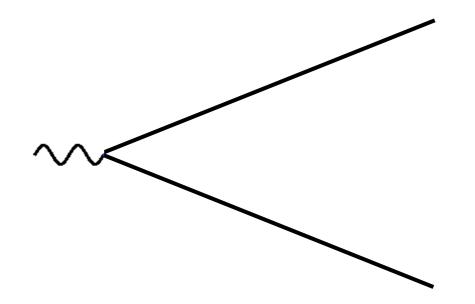

Theoretical Status


Theoretical Status

Theoretical Status

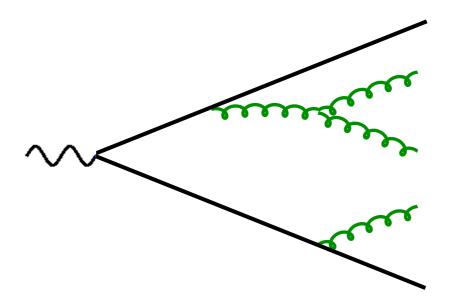
Theoretical Status^{quark jet}

Burg Liebenzell, Sept 2014

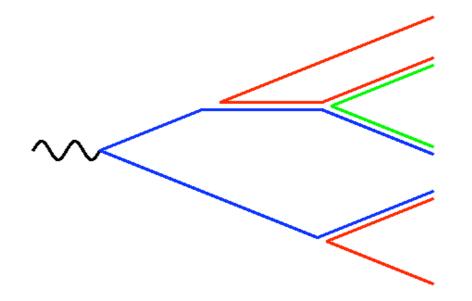

Parton Shower Approximation

• Keep only most singular parts of QCD matrix elements:

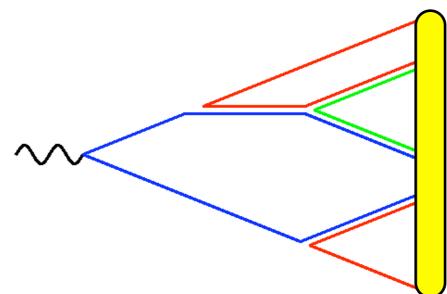
Angular-ordered parton shower (or dipoles)


Hadronization Models

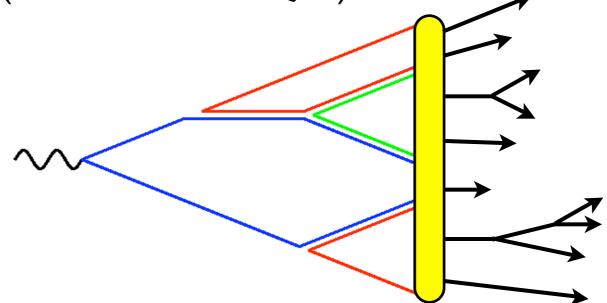
- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- Precision At a scale pear $\Lambda_{OCD} \approx 200$ MeV, perturbation theory breaks down and hadrons are formed
 - Before that, at scales $Q_0 \sim \text{few x } \Lambda_{QCD}$, there is universal preconfinement of colour
 - Colour, flavour and momentum flows are only locally redistributed by hadronization


Hadronization Models

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- Precision At a scale pear $\Lambda_{OCD} \approx 200$ MeV, perturbation theory breaks down and hadrons are formed
 - Before that, at scales $Q_0 \sim \text{few x } \Lambda_{QCD}$, there is universal preconfinement of colour
 - Colour, flavour and momentum flows are only locally redistributed by hadronization


Hadronization Models

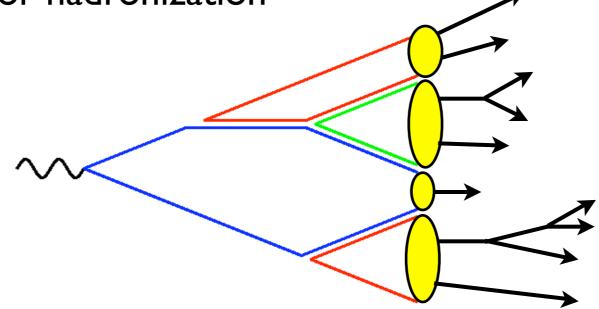
- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{OCD} ~200 MeV, perturbation Precise of theory breaks down and hadrons are formed
 - Before that, at scales $Q_0 \sim \text{few x } \Lambda_{QCD}$, there is universal preconfinement of colour
 - Colour, flavour and momentum flows are only locally redistributed by hadronization


String Hadronization Model

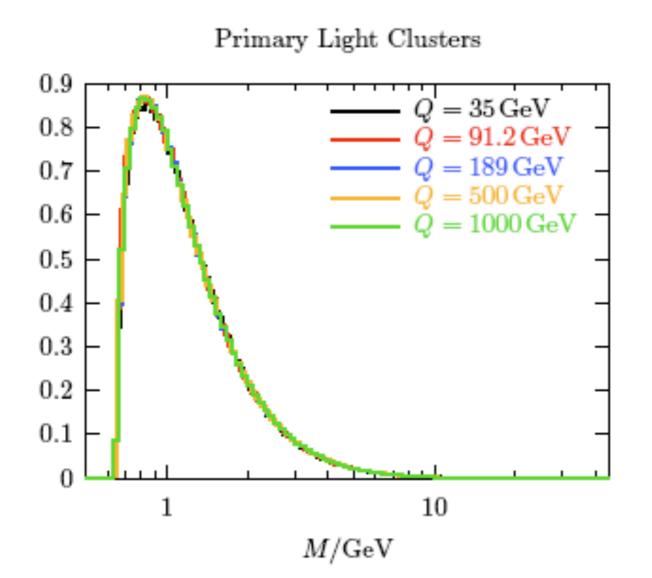
- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{QCD} ~200 MeV, perturbation Precheory breaks down and hadrons are formed
 - Before that, at scales $Q_0 \sim \text{few x } \Lambda_{QCD}$, there is universal preconfinement of colour
 - Colour flow dictates how to connect hadronic string (width ~ few x Λ_{QCD}) with shower


String Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{QCD} ~200 MeV, perturbation Precheory breaks down and hadrons are formed
 - Before that, at scales $Q_0 \sim \text{few x } \Lambda_{QCD}$, there is universal preconfinement of colour
 - Colour flow dictates how to connect hadronic string (width ~ few x Λ_{QCD}) with shower


Cluster Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{OCD} ~200 MeV, perturbation Precheory breaks down and hadrons are formed
 - Before that, at scales $Q_0 \sim \text{few x } \Lambda_{QCD}$, there is universal preconfinement of colour
 - Decay of preconfined clusters provides a direct basis for hadronization



Cluster Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{OCD} ~200 MeV, perturbation Precheory breaks down and hadrons are formed
 - Before that, at scales $Q_0 \sim \text{few x } \Lambda_{QCD}$, there is universal preconfinement of colour
 - Decay of preconfined clusters provides a direct basis for hadronization

Colour Preconfinement

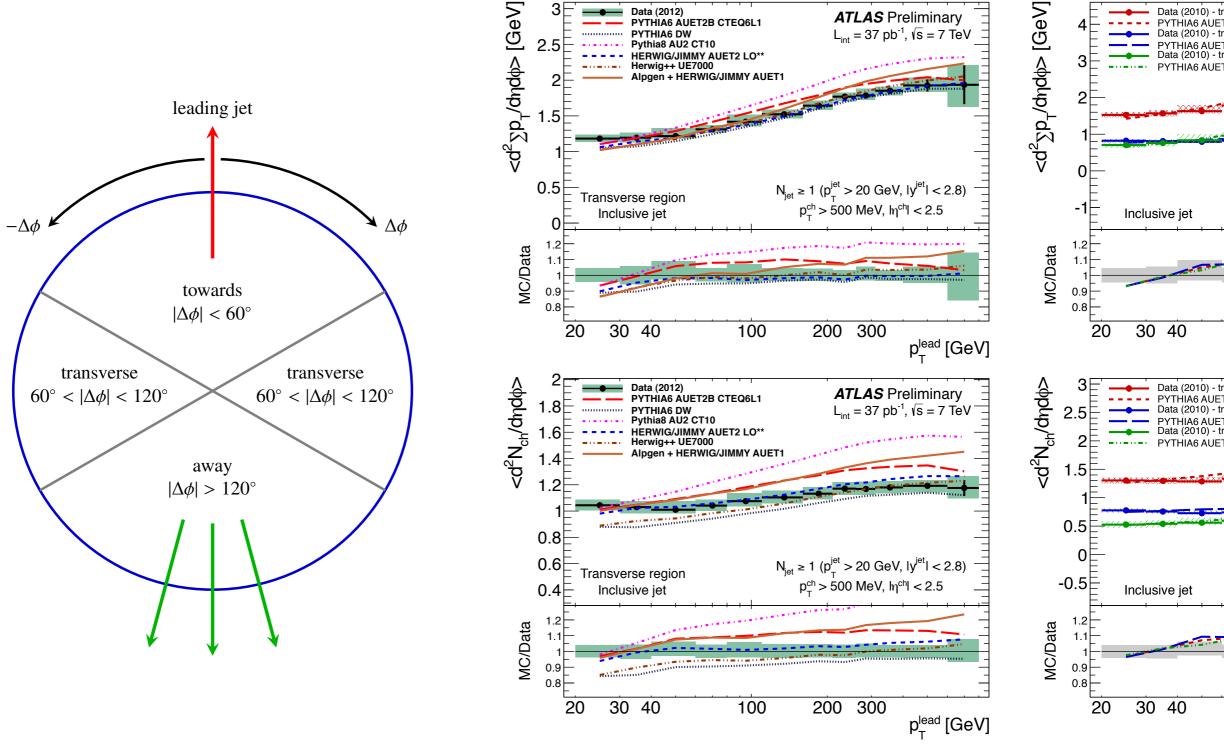
- Mass distribution of preconfined clusters is universal
- Phase-space decay model for most clusters
- High-mass tail decays anisotropically (string-like)

Hadronization Status

No fundamental progress since 1980s

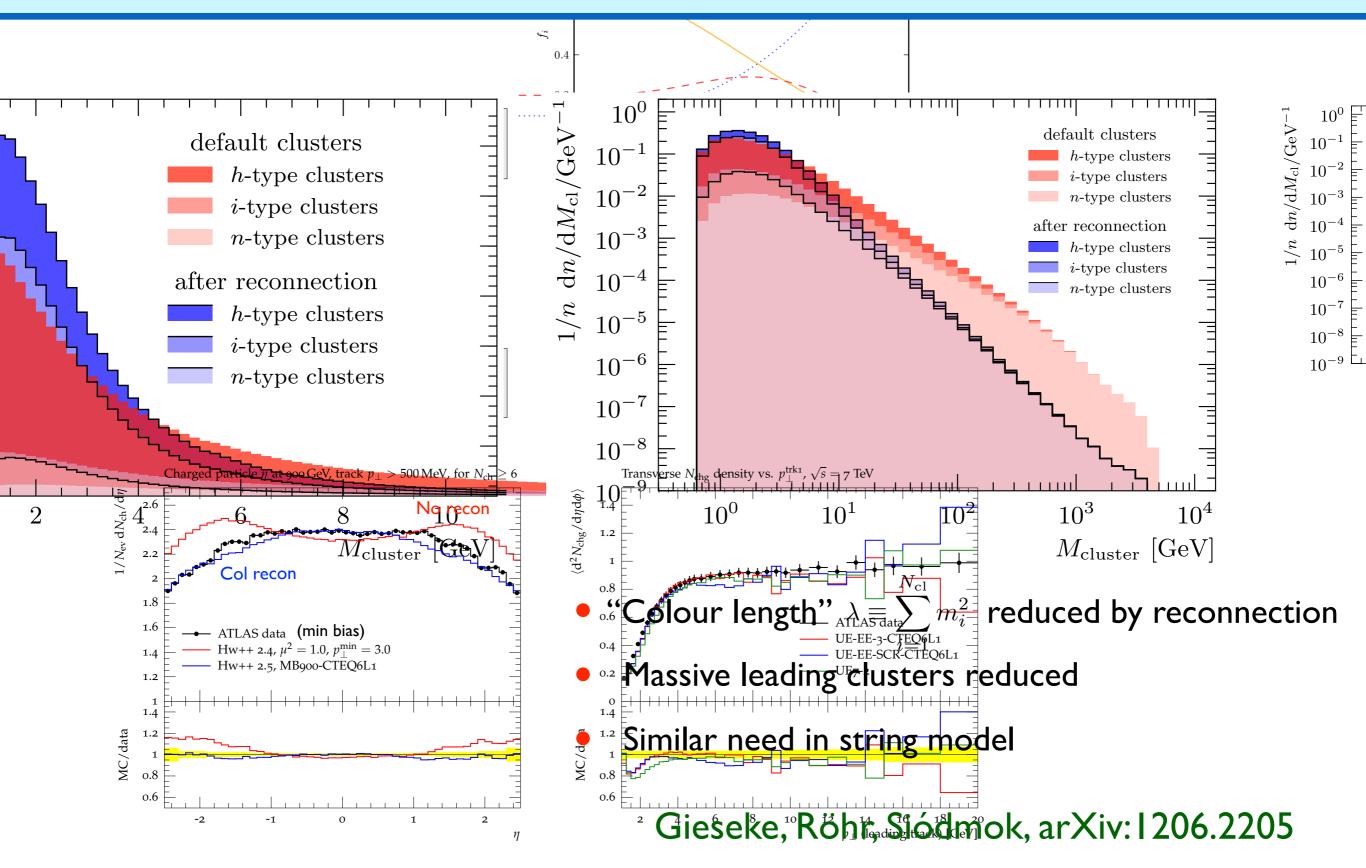
- Available non-perturbative methods (lattice, AdS/QCD, ...) are inapplicable
- Less important in some respects in LHC era
 - Jets, leptons and photons are observed objects, not hadrons
- But still important for detector effects
 - Jet response, heavy-flavour tagging, lepton and photon isolation, ...

Underlying Event

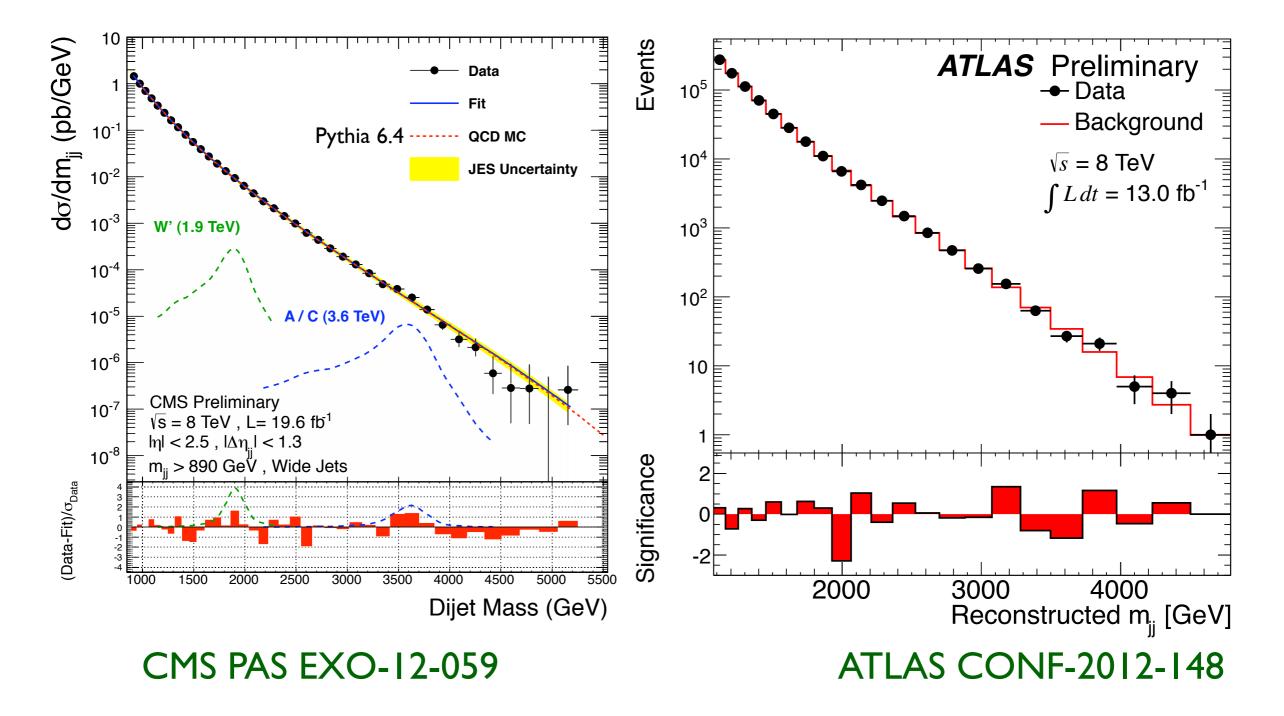


Multiple parton interactions in same collision

Depends on density profile of proton


- Assume QCD 2-to-2 secondary collisions
 - Need cutoff at low pT
- Need to model colour flow
 - Colour reconnections are necessary

Underlying Event


ATLAS CONF-2012-164

Colour Reconnection

Bryan Webber

Dijet Mass Distribution

No sign of deviation from Standard Model (yet)

Event Generators

• HERWIG

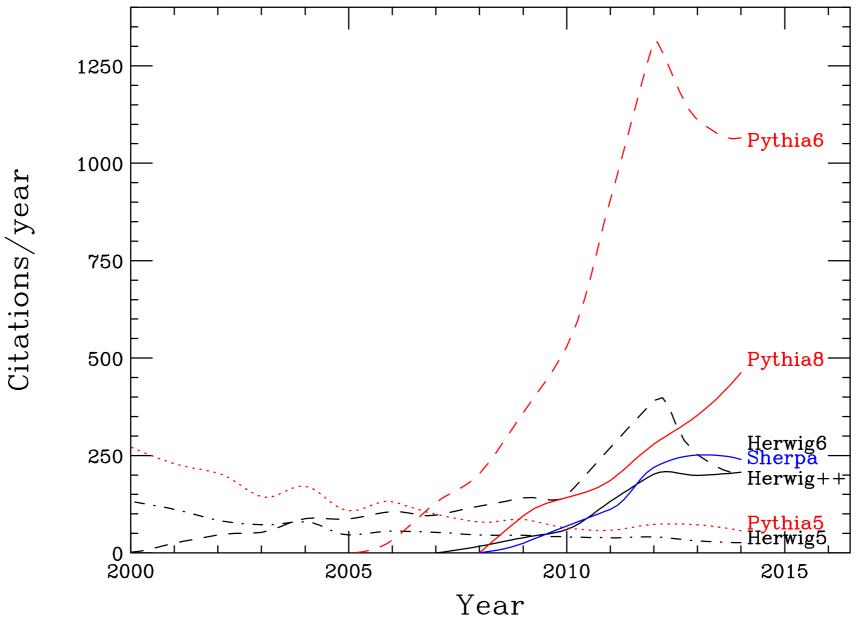
http://projects.hepforge.org/herwig/

- Angular-ordered parton shower, cluster hadronization
- ➡ v6 Fortran; Herwig++

• PYTHIA

http://www.thep.lu.se/~torbjorn/Pythia.html

- Dipole-type parton shower, string hadronization
- ➡ v6 Fortran; v8 C++
- SHERPA


➡ C++

http://projects.hepforge.org/sherpa/

Dipole-type parton shower, cluster hadronization

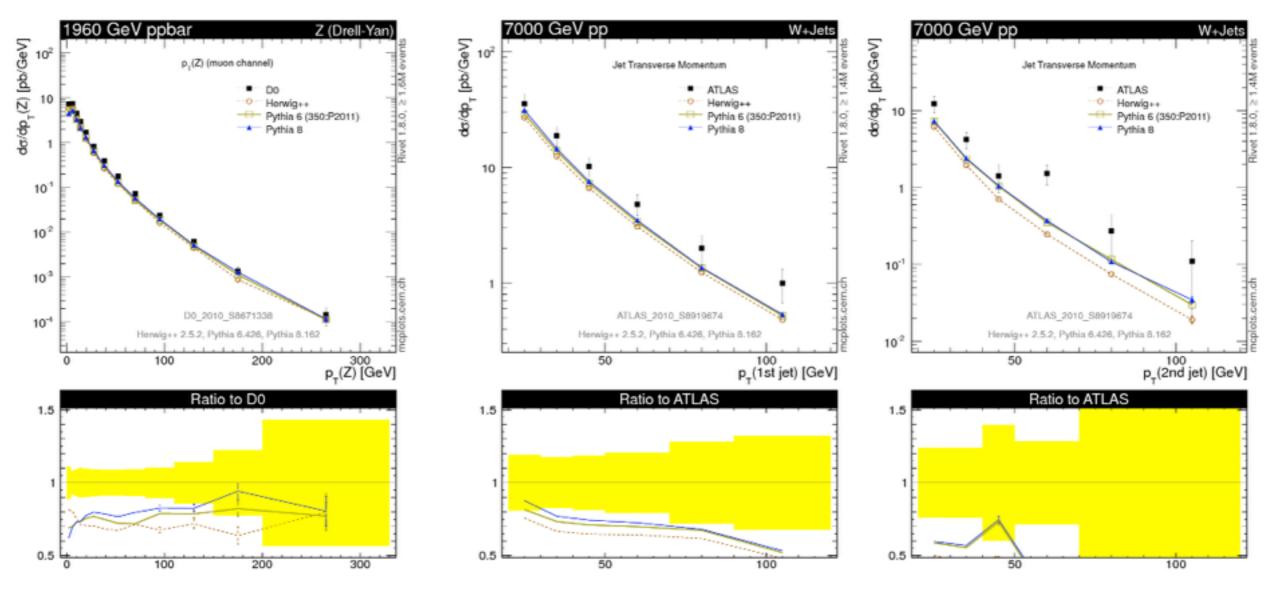
"General-purpose event generators for LHC physics", A Buckley et al., arXiv:1101.2599, Phys. Rept. 504(2011)145

Generator Citations

Most-cited article only for each version

2014 is extrapolation (Jan to Aug x1.5)

Other relevant software (with apologies for omissions)


- Other event/shower generators: PhoJet, Ariadne, Dipsy, Cascade, Vincia
- Matrix-element generators: MadGraph/MadEvent, CompHep, CalcHep, Helac, Whizard, Sherpa, GoSam, aMC@NLO
- Matrix element libraries: AlpGen, POWHEG BOX, MCFM, NLOjet++, VBFNLO, BlackHat, Rocket
- Special BSM scenarios: Prospino, Charybdis, TrueNoir
- Mass spectra and decays: SOFTSUSY, SPHENO, HDecay, SDecay
- Feynman rule generators: FeynRules
- PDF libraries: LHAPDF
- Resummed (p_{\perp}) spectra: ResBos
- Approximate loops: LoopSim
- Jet finders: anti- k_{\perp} and FastJet
- Analysis packages: Rivet, Professor, MCPLOTS
- Detector simulation: GEANT, Delphes
- Constraints (from cosmology etc): DarkSUSY, MicrOmegas
- Standards: PDF identity codes, LHA, LHEF, SLHA, Binoth LHA, HepMC

Sjöstrand, Nobel Symposium, May 2013

Parton Shower Monte Carlo

Hard subprocess: $q\bar{q} \rightarrow Z^0/W^{\pm}$

http://mcplots.cern.ch/

- Leading-order (LO) normalization
 need next-to-LO (NLO)
- Worse for high p_T and/or extra jets need multijet merging

Summary on Event Generators

- Fairly good overall description of data, but...
- Hard subprocess: LO no longer adequate
- Parton showers: need matching to NLO
 - Also multijet merging
 - NLO showering?
- Hadronization: string and cluster models
 - Need new ideas/methods
- Underlying event due to multiple interactions
 - Colour reconnection necessary