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• Multiple parton interactions in same collision	


✤ Depends on density profile of proton	


• Assume QCD 2-to-2 secondary collisions	


✤ Need cutoff at low pT	


• Need to model colour flow	


✤ Colour reconnections are necessary

LHC Simulations 3 Bryan Webber

Multiparton Interaction Model (PYTHIA/JIMMY)

For small pt min and high energy inclusive parton—parton 

cross section is larger than total proton—proton cross 

section.

!More than one parton—parton scatter per proton—proton

Need a model of spatial distribution within proton

! Perturbation theory gives n-scatter distributions
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|�⇤| > 120⇤

transverse
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transverse
60⇤ < |�⇤| < 120⇤

Figure 1: Definition of regions in the azimuthal angle with respect to the leading jet. The balancing parts
of the jet system are indicated with green arrows, compatible with the dominant dijet event topology.
Multijet topologies, encountered in the inclusive jet event selection, are expected to contribute more
substantially to the transverse regions than the geometry shown here.

in the ATLAS calorimeters, due to interactions with material upstream of the calorimeters and bending
in the magnetic field.

These detector-level objects have been identified [10] with true hadron-level quantities in terms of
primary particles, i.e. particles with a mean proper lifetime ⇥ � 0.3 ⇥ 10�10 s either directly produced
in the pp interactions or in the decay of particles with a shorter lifetime. The selected tracks correspond
to primary charged particles with pT > 0.5 GeV and |�| < 2.5, and ATLAS clusters are equivalent (when
summed over) to primary charged particles with momentum p > 0.5 GeV or primary neutral particles
with p > 0.2 GeV. Lower momentum particles are not included as they are unlikely to reach the ATLAS
calorimeters due to material interactions and bending in the magnetic eld.

The observables used in this study, defined in Table 1, employ the conventional UE azimuthal division
of events into regions relative to the direction of the “leading” object in the event. The leading object
in this case is defined by the calorimeter-based anti-kT [11] jet with a radius of R = 0.4 and having the
largest pT, after application of jet selection criteria as described in Section 4. The azimuthal regions used
are defined with respect to the ⇤ of the leading jet (i.e. the jet with the largest pT, which is denoted by
plead

T ): a 120⇤ “towards” region surrounds the leading jet, an “away” region of the same size is azimuthally
opposed to it and two “transverse” regions each of 60⇤ are defined orthogonal to the leading jet direction
[2]. This is illustrated in Figure 1, with the azimuthal angular di⇥erence from the leading jet defined as
|�⇤| = |⇤ � ⇤lead jet|.

As the towards region is dominated by the leading jet and in the dominant dijet configuration the away
region is dominated by the balancing jet, the transverse regions are the most sensitive to accompanying
particle flow, i.e. the UE. In addition, the transverse regions may be distinguished event-by-event based
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Figure 2: Profiles of charged particle
�

pT (top row) and charged multiplicities (bottom row) against
plead

T , for the inclusive jet event selection. The left column shows the result for the total transverse region
and several MC models for comparison, with the data error bars indicating the statistical uncertainty and
the shaded area showing the combined statistical and systematic uncertainty. The right column plots
compare the trans-max/min/di� observables to each other and the Pythia 6 AUET2B CTEQ6L1 MC
model. The error bands on the top plots show the combined systematic and statistical uncertainty, while
the grey band in the ratio plots shows the maximum combined statistical and systematic uncertainty
among the three regions.

fact, Herwig/Jimmy AUET2 LO�� gives the best description of all models considered here for inclusive
jet events with Nch � 15.

Finally, the ATLAS tunes of both Pythia 6 and Pythia 8 are seen to undershoot this data somewhat
for low Nch, particularly in the inclusive jet sample, but describe the ⇥pT⇤ of higher-multiplicity events
well for both event selections. As both these tunes incorporated the equivalent of this observable in
the ATLAS leading charged particle UE analysis [4], the flaws in their data description seen here are
unexpected, and use of this data in future tunes may substantially change the MPI model parameters.
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to remark that the fraction of WW events with non-
vanishing colour length drop is slightly higher than for
the dijet case. Nevertheless, the vast majority of WW
events is not a↵ected by colour reconnection, too.

3.2 Classification of clusters

i�typ
e cluster

h�type
cluster

n�type
cluster

Fig. 7 Classification of colour clusters in a hadron collision
event, which, in this example, consists of the primary subpro-
cess (left) and one additional parton interaction. The grey-
shaded area denotes non-perturbative parts of the simula-
tion. The three clusters represent the cluster classes defined
in Sec. 3.2: n-type (blue), i-type (red) and h-type clusters
(orange).

These results generically raise the question which
mechanism in the hadron event generation is respon-
sible for these overly heavy clusters. To gain access to
this issue, we classify all clusters by their ancestors in
the event history. A sketch of the three types of clusters
in shown in Fig. 7.

– The first class are the clusters consisting of partons
emitted perturbatively in the same partonic subpro-
cess. We call them h-type (hard) clusters.

– The second class of clusters are the subprocesses-
interconnecting clusters, which combine par-
tons generated perturbatively in di↵erent par-
tonic subprocesses. They are labelled as i-type
(interconnecting) clusters.

– The remaining clusters, which can occur in hadron
collision events, are composed of at least one par-
ton created non-perturbatively, i.e. during the ex-
traction of partons from the hadrons or in soft scat-
ters. In what follows, these clusters are called n-type
(non-perturbative) clusters.
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Fig. 8 Cluster fraction functions, defined in Eq. (6), for LHC
dijet events at 7 TeV.

First we use this classification to analyse hadron
collision events as they are immediately before colour
rearrangement. For that purpose, we define the cluster
fraction functions

fa(m
cut

) ⌘ Na(m
cut

)
. X

b=h,i,n

Nb(mcut

) =
Na(m

cut

)

N
cl

,

(6)

where Na(m
cut

) is the number of a-type clusters (a =
h, i, n) with m � m

cut

, counted in a su�ciently large
number of events1. For instance, fi(100 GeV) = 0.15
says 15 % of all clusters with a mass larger than
100 GeV are subprocess-interconnecting clusters. By
construction, fa(m

cut

) is a number between 0 and 1 for
every class a. Moreover, the cluster fraction functions
satisfy
X

a=h,i,n

fa(m
cut

) = 1.

Figure 8 shows the cluster fraction functions for LHC
dijet events at

p
s = 7 TeV. The fraction of non-

perturbative clusters increases with m
cut

and exceeds
0.5 at m

cut

⇡ 70 GeV. So for an increasing threshold
m

cut

up to values well beyond physically reasonable
cluster masses of a few GeV, the contribution of n-type
clusters becomes more and more dominant.

A bin-by-bin breakdown to the contributions of the
various cluster types to the total cluster mass distribu-
tion is shown in Fig. 9. There are several things to learn
from those plots. First, non-perturbative n-type clus-
ters do not contribute as much to the peak region, say

1Apparently, fa(m
cut

) is only well-defined for m

cut

less than
the maximum cluster mass. On this interval, the series (fa,n),
with n the number of events taken into account, converges
pointwise to the function fa. This is a more formal definition
of the cluster fraction functions.
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Fig. 9 Primary cluster mass spectrum in LHC dijet events at 7 TeV. Figure (a) compares the mass distribution in the
pre-colour-reconnection stage to the distribution after colour reconnection. The contributions of the three cluster classes are
stacked. The histograms in (b) merely di↵er from the ones in (a) in their binning.

below 6 GeV, as perturbative h-type and i-type clus-
ters do. In the high-mass tail, however, n-type clusters
clearly dominate, as already indicated by the cluster
fraction functions discussed above. Both their minor
contribution at low masses and their large contribution
at high masses do not change after colour reconnection.
In total, however, the mass distribution is more peaked
after colour reconnection and the high-mass tail is sup-
pressed by a factor larger than 10.

3.3 Resulting physics implications

The characteristics of clusters that have been studied in
this section clearly confirm the physical picture we have
started out with. The colour reconnection model in fact
reduces the invariant masses of clusters that are mostly
of non-perturbative origin. These arise as an artefact of
the way we colour-connect additional hard scatters in
the MPI model with the rest of the event.

At this non-perturbative level we have no handle on
the colour information from theory, hence we have mod-
elled it. First in a very näıve way when we extract the
‘first’ parton from the proton, but only to account for a
more physical picture later, where we use colour precon-
finement as a guiding principle. We therefore conclude
that our ansatz to model colour reconnections in the
way we have done it reproduces a meaningful physical
picture.

4 Tuning and comparison of the model results

with data

In this section we address the question of whether the
MPI model in Herwig, equipped with the new CR
model, can improve the description of the ATLAS MB
and UE data, see Fig. 2. To that end we need to find
values of free parameters (tune parameters) of the MPI
model with CR that allow to get the best possible
description of the experimental data. Since both CR
models can be regarded as an extension of the cluster
model [36], which is used for hadronization in Herwig,
the tune of Herwig with CR models may require a
simultaneous re-tuning of the hadronization model pa-
rameters to a wide range of experimental data, primar-
ily from LEP (see Appendix D from Ref. [14]). There-
fore, we start this section by examining whether the
description of LEP data is sensitive to CR parameters.

4.1 Validation against e+e� LEP data

Already in Section 3 we have seen that the colour
structure of LEP final states is well-defined by the
perturbative parton shower evolution. Moreover, the
CR model does not change this structure significantly.
Therefore, although CR is an extension of hadroniza-
tion, we can expect that the default hadronization pa-
rameters are still valid in combination with CR. This
was confirmed by comparing Herwig results with and
without CR against a wide range of experimental data
from LEP [41–49]. As an example we show a compari-
son of Herwig without and with CR (using the main
tunes for both CR methods presented in this paper) to
two LEP observables in Fig. 10. The full set of plots,
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Fig. 9 Primary cluster mass spectrum in LHC dijet events at 7 TeV. Figure (a) compares the mass distribution in the
pre-colour-reconnection stage to the distribution after colour reconnection. The contributions of the three cluster classes are
stacked. The histograms in (b) merely di↵er from the ones in (a) in their binning.

below 6 GeV, as perturbative h-type and i-type clus-
ters do. In the high-mass tail, however, n-type clusters
clearly dominate, as already indicated by the cluster
fraction functions discussed above. Both their minor
contribution at low masses and their large contribution
at high masses do not change after colour reconnection.
In total, however, the mass distribution is more peaked
after colour reconnection and the high-mass tail is sup-
pressed by a factor larger than 10.

3.3 Resulting physics implications

The characteristics of clusters that have been studied in
this section clearly confirm the physical picture we have
started out with. The colour reconnection model in fact
reduces the invariant masses of clusters that are mostly
of non-perturbative origin. These arise as an artefact of
the way we colour-connect additional hard scatters in
the MPI model with the rest of the event.

At this non-perturbative level we have no handle on
the colour information from theory, hence we have mod-
elled it. First in a very näıve way when we extract the
‘first’ parton from the proton, but only to account for a
more physical picture later, where we use colour precon-
finement as a guiding principle. We therefore conclude
that our ansatz to model colour reconnections in the
way we have done it reproduces a meaningful physical
picture.

4 Tuning and comparison of the model results

with data

In this section we address the question of whether the
MPI model in Herwig, equipped with the new CR
model, can improve the description of the ATLAS MB
and UE data, see Fig. 2. To that end we need to find
values of free parameters (tune parameters) of the MPI
model with CR that allow to get the best possible
description of the experimental data. Since both CR
models can be regarded as an extension of the cluster
model [36], which is used for hadronization in Herwig,
the tune of Herwig with CR models may require a
simultaneous re-tuning of the hadronization model pa-
rameters to a wide range of experimental data, primar-
ily from LEP (see Appendix D from Ref. [14]). There-
fore, we start this section by examining whether the
description of LEP data is sensitive to CR parameters.

4.1 Validation against e+e� LEP data

Already in Section 3 we have seen that the colour
structure of LEP final states is well-defined by the
perturbative parton shower evolution. Moreover, the
CR model does not change this structure significantly.
Therefore, although CR is an extension of hadroniza-
tion, we can expect that the default hadronization pa-
rameters are still valid in combination with CR. This
was confirmed by comparing Herwig results with and
without CR against a wide range of experimental data
from LEP [41–49]. As an example we show a compari-
son of Herwig without and with CR (using the main
tunes for both CR methods presented in this paper) to
two LEP observables in Fig. 10. The full set of plots,
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Figure 3: Herwig results compared to ATLAS data.
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[3] T. Sjöstrand, S. Mrenna, and P. Skands. JHEP 05 (2006) 026, arXiv:hep-ph/0603175.
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Fig. 4 Formation of clusters,
which we represent by ovals here.
Colour lines are dashed. The left
diagram shows colour-singlet clus-
ters formed according to the dom-
inating colour structure in the
1/N

c

expansion. The right di-
agram shows a possible colour-
reconnected state: the partons of
the clusters A and B are arranged
in new clusters, C and D.

v
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s
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Fig. 3 For the hard subprocess a valence quark v is extracted
from the proton. Since the valence quark parton distribu-
tion functions dominate at large momentum fractions x and
small scales Q

2, the initial-state shower, which is generated
backwards starting from the partonic scatter, commonly ter-
minates on a valence quark. This situation is shown in the
leftmost figure. If the perturbative evolution still terminates
on a sea (anti)quark or a gluon, as indicated in the other
figures, one or two additional non-perturbative splittings are
performed to force the evolution to end with a valence quark.
The grey-shaded area indicates this non-perturbative region,
whereas the perturbative parton shower happens in the region
below.

2.1 Plain colour reconnection

A first model for colour reconnection has been imple-
mented in Herwig as of version 2.5 [39]. We refer to it
as the plain colour reconnection model (PCR) in this
paper. The following steps describe the full procedure:

1. Create a list of all quarks in the event, in random

order. Perform the subsequent steps exactly once for
every quark in this list.

2. The current quark is part of a cluster. Label this
cluster A.

3. Consider a colour reconnection with all other clus-
ters that exist at that time. Label the potential re-
connection partner B. For the possible new clusters
C and D, which would emerge when A and B are re-
connected (cf. Fig. 4), the following conditions must
be satisfied:
– The new clusters are lighter,

mC + mD < mA + mB , (1)

where mi denotes the invariant mass of cluster
i.

– C and D are no colour octets.
4. If at least one reconnection possibility could be

found in step 3, select the one which results in the
smallest sum of cluster masses, mC + mD. Accept
this colour reconnection with an adjustable proba-
bility p

reco

. In this case replace the clusters A and
B by the newly formed clusters C and D.

5. Continue with the next quark in step 2.

The parameter p
reco

steers the amount of colour recon-
nection in the PCR model. Because of the selection rule
in step 4, the PCR model tends to replace the heaviest
clusters by lighter ones. A priori the model is not guar-
anteed to be generally valid because of the following
reasons: The random ordering in the first step makes
this algorithm non-deterministic since a di↵erent or-
der of the initial clusters, generally speaking, leads to
di↵erent reconnection possibilities being tested. More-
over, apparently quarks and antiquarks are treated dif-
ferently in the algorithm described above.

2.2 Statistical colour reconnection

The other colour reconnection implementation studied
in this paper overcomes the conceptual drawbacks of
the PCR model. We refer to this model as statistical

colour reconnection (SCR) throughout this work. In the
first place, the algorithm aims at finding a cluster con-
figuration with a preferably small colour length, defined
as

� ⌘
N

clX

i=1

m2

i , (2)

where N
cl

is the number of clusters in the event and mi

is the invariant mass of cluster i. In the definition of the
colour length we opt for squared masses to give cluster
configurations with similarly heavy clusters precedence
over configurations with less equally distributed cluster
masses.

Clearly, it is impossible to locate the global mini-
mum of �, in general, since an event with 100 parton

“Colour length”                reduced by reconnection

Massive leading clusters reduced

Similar need in string model

Gieseke, Röhr, Siódmok, arXiv:1206.2205

Colour Reconnection
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• No sign of deviation from Standard Model (yet) 
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Figure 1: The reconstructed dijet mass distribution with statistical uncertainties (filled points with error

bars) fitted with a smooth functional form (solid line). The bin-by-bin significance of the data-fit differ-

ence in Gaussian standard deviations is shown in the lower panel, using positive values for excesses and

negative values for deficits. If a p-value greater than 50% is found the corresponding significance is not

shown (see text).

The choice of dijet mass binning was motivated by the absolute resolution of the signal in the dijet

mass distribution. The m j j resolution was evaluated using Monte Carlo as described in Ref. [3] and it

was found to improve from 7% at 1 TeV to less than 4% at 3 TeV. The analysis of the mass spectrum

begins with this distribution normalised to events per bin. The maximum-likelihood fit to determine the

four parameters of the smooth function is intended to be applied to a distribution in events per GeV,

while retaining integer bin contents to account for Poisson statistics. The bin-width correction required

to bridge these units is performed within the fitting procedure.

To test the degree of global consistency between the data and the fitted background, the p-value of

the fit is determined by calculating the χ2-value from the data and comparing this result to the χ2 distri-

bution obtained from pseudo-experiments drawn from the background fit, as described in the previous

publication [1]. In the current analysis, the χ2/NDF = 15.5/18 = 0.86, corresponding to a p-value of

0.61, showing that there is good agreement between the data and the fit.

The BumpHunter algorithm [14, 15] is used to establish the presence or absence of a localised res-

onance in the dijet mass spectrum, assuming Poisson statistics, and taking proper account of the “look-

elsewhere effect” [16], as described in greater detail in previous publications [10, 17]. Furthermore, to

prevent any new physics signal from biasing the background estimate, the region corresponding to the

2 In mass bins with a small expected number of events, where the observed number of events is similar to the expectation,

the Poisson probability of a fluctuation at least as high (low) as the observed excess (deficit) can be greater than 50%, as a result

of the asymmetry of the Poisson distribution. When the significance is below zero in a bin, it is not meaningful, and the bar is

not drawn in this case.

3

3

large tail at low mass values.

A data-driven method is used to estimate the background from QCD multijet production. We
fit the following parameterization to the data:

d⇥

dmjj
=

P0(1 � x)P1

xP2+P3 ln (x) , (1)

with the variable x = mjj/
⇥

s and four free parameters P0, P1, P2, and P3. This functional
form was used in previous searches [1, 5, 6, 36] to describe both data and QCD predictions. In
Fig. 1 we show the fit, which has a chi-squared (�2) of 30.65 for 35 degrees of freedom, and the
difference between the data and the fit value, normalized to the statistical uncertainty of the
data. No deviations that are statistically significant are observed between the distribution of
the data points and the smooth fit through all the data. The highest mass event (5.15 TeV) is
shown in Fig. 3. We proceed to set upper limits on the cross section of new physics processes.
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Figure 1: Dijet mass spectrum from wide jets (points) compared to a smooth fit (solid) and
to predictions [31] including detector simulation of QCD and signal resonances. The QCD
prediction has been normalized to the data (see text). The error bars are statistical only. The
bin-by-bin fit residuals, (data-fit)/⇥data, are shown at the bottom.

4 Limits
We use the dijet mass spectrum from wide jets, the background parameterization, and the dijet
resonance shapes to set specific limits on new particles decaying to the parton pairs qq (or
qq̄), qg, and gg. A separate limit is determined for each final state (qq, qg, gg) because of the
dependence of the dijet resonance shape on the number of gluons.

The dominant sources of systematic uncertainty are described below:

CMS PAS EXO-12-059 ATLAS CONF-2012-148
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Event Generators

PYTHIA

HERWIG

SHERPA

Dipole-type parton shower, string hadronization

v6 Fortran; v8 C++

v6 Fortran; Herwig++

Angular-ordered parton shower, cluster hadronization

Dipole-type parton shower, cluster hadronization

C++

6

http://projects.hepforge.org/herwig/

http://www.thep.lu.se/∼torbjorn/Pythia.html

http://projects.hepforge.org/sherpa/

“General-purpose event generators for LHC physics”, 	

A Buckley et al., arXiv:1101.2599, Phys. Rept. 504(2011)145

http://projects.hepforge.org/herwig/
http://www.thep.lu.se
http://projects.hepforge.org/sherpa/
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Generator Citations

7

• Most-cited article only for each version	


• 2014 is extrapolation (Jan to Aug x1.5)
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Other relevant software 
(with apologies for omissions)

Other Relevant Software

Some examples (with apologies for many omissions):
Other event/shower generators: PhoJet, Ariadne, Dipsy, Cascade, Vincia

Matrix-element generators: MadGraph/MadEvent, CompHep, CalcHep,
Helac, Whizard, Sherpa, GoSam, aMC@NLO

Matrix element libraries: AlpGen, POWHEG BOX, MCFM, NLOjet++,
VBFNLO, BlackHat, Rocket

Special BSM scenarios: Prospino, Charybdis, TrueNoir

Mass spectra and decays: SOFTSUSY, SPHENO, HDecay, SDecay

Feynman rule generators: FeynRules

PDF libraries: LHAPDF

Resummed (p?) spectra: ResBos

Approximate loops: LoopSim

Jet finders: anti-k? and FastJet

Analysis packages: Rivet, Professor, MCPLOTS

Detector simulation: GEANT, Delphes

Constraints (from cosmology etc): DarkSUSY, MicrOmegas

Standards: PDF identity codes, LHA, LHEF, SLHA, Binoth LHA, HepMC

Can be meaningfully combined and used for LHC physics!

Torbjörn Sjöstrand Challenges for QCD Theory slide 21/248

Sjöstrand, Nobel Symposium, May 2013
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Parton Shower Monte Carlo
http://mcplots.cern.ch/

• Leading-order (LO) normalization        need next-to-LO (NLO)	


• Worse for high pT and/or extra jets        need multijet merging

• Hard subprocess: qq̄ ! Z0/W±

http://projects.hepforge.org/herwig/
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• Fairly good overall description of data, but…	


• Hard subprocess: LO no longer adequate	


• Parton showers: need matching to NLO	


✤ Also multijet merging	


✤ NLO showering?	


• Hadronization: string and cluster models	


✤ Need new ideas/methods	


• Underlying event due to multiple interactions	


✤ Colour reconnection necessary
10

Summary on Event Generators
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Improving Event 
Generation
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Improving Event Generation

12

Hard subprocess
qq ! Z0qqe.g.
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Hard subprocessNLO
(virtual correction)

Improving Event Generation
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Hard subprocessNLO
(real emission)

Improving Event Generation
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+Parton showering 
= Double counting??

Hard subprocessNLO

Improving Event Generation
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Hard subprocessMultijet

Improving Event Generation
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+Parton showering 
= Double counting??

Hard subprocessMultijet

Improving Event Generation
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• Two rather different objectives:	


• Matching parton showers to NLO matrix elements, without 
double counting	


✤ MC@NLO	


✤ POWHEG	


• Merging parton showers with LO n-jet matrix elements, 
minimizing jet resolution dependence	


✤ CKKW	


✤ Dipole	


✤ MLM merging

18

Matching & Merging

Frixione, BW, 2002

Nason, 2004

Catani, Krauss, Kühn, BW, 2001

Lönnblad, 2001

Mangano, 2002
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• Compute parton shower contributions (real and 
virtual) at NLO	


✤ Generator-dependent	


• Subtract these from exact NLO	


✤ Cancels divergences of exact NLO!	


• Generate modified no-emission (LO+virtual) and 
real-emission hard process configurations	


✤ Some may have negative weight	


• Pass these through parton shower etc.	


✤ Only shower-generated terms beyond NLO

19

MC@NLO matching
S Frixione & BW, JHEP 06(2002)029
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• Expanding gives NLO result 
20

finite virtual divergent

d�MC = B (�B) d�B


�MC (0) +

RMC (�B ,�R)

B (�B)
�MC (kT (�B ,�R)) d�R

�

⌘ B d�B [�MC (0) + (RMC/B) �MC (kT ) d�R]

d�NLO =

"
B (�B) + V (�B)�

Z X

i

Ci (�B ,�R) d�R

#
d�B +R (�B ,�R) d�B d�R

⌘

B + V �

Z
C d�R

�
d�B +R d�B d�R

d�MC@NLO =


B + V +

Z
(RMC � C) d�R

�
d�B [�MC (0) + (RMC/B) �MC (kT ) d�R]

+ (R�RMC) �MC (kT ) d�B d�R

>finite   0<
MC starting from no emission

MC starting from one emission

S Frixione & BW, JHEP 06(2002)029

MC@NLO matching
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• POsitive Weight Hardest Emission Generator	


• Use exact real-emission matrix element to generate 
hardest (highest relative pT) emission configurations	


✤ No-emission probability implicitly modified	


✤ (Almost) eliminates negative weights	


✤ Some uncontrolled terms generated beyond NLO	


• Pass configurations through parton shower etc

21

POWHEG matching
P Nason, JHEP 11(2004)040
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• NLO with (almost) no negative weights	


• High pT always enhanced by

22

�R (pT ) = exp


�
Z

d�R
R (�B ,�R)

B (�B)
✓ (kT (�B ,�R)� pT )

�

B (�B) = B (�B) + V (�B) +

Z "
R (�B ,�R)�

X

i

Ci (�B ,�R)

#
d�R

d�PH = B (�B) d�B


�R (0) +

R (�B ,�R)

B (�B)
�R (kT (�B ,�R)) d�R

�

K = B/B = 1 +O(↵S)

arbitrary NNLO

d�MC = B (�B) d�B


�MC (0) +

RMC (�B ,�R)

B (�B)
�MC (kT (�B ,�R)) d�R

�
P Nason, JHEP 11(2004)040

POWHEG matching
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• Objective:  merge LO n-jet matrix elements 
with parton showers such that:	


✤ Multijet rates for jet resolution > Qcut are 
correct to LO (up to Nmax)	


✤ Shower generates jet structure below Qcut 

(and jets above Nmax)	


✤ Leading (and next) Qcut dependence cancels

23

Multijet Merging
*

CKKW: Catani et al., JHEP 11(2001)063

MLM: Mangano et al., NP B632(2002)343

-L: Lonnblad, JHEP 05(2002)063

* ALPGEN or MadGraph, n<Nmax

E
q

Qcut
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Vector boson 
production
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Z0 at Tevatron

• Absolute normalization: 
LO too low	


• POWHEG agrees with 
rate and distribution

http://mcplots.cern.ch/

http://projects.hepforge.org/herwig/
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Z0 at LHC

• Normalized to data	


• POWHEG agrees with distribution (and NNLO)

10 5 Rapidity Distribution Results

|y|
0 0.5 1 1.5 2 2.5 3 3.5

/d
|y

|
σ

) d
σ

(1
/

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
CMS

 = 7 TeVs at  -1 L dt = 36 pb∫

 combined)µdata (e and 

 + CT10POWHEG

Figure 2: The normalized differential cross section for Z bosons as a function of the absolute
value of rapidity, combining the muon and electron channels. The error bars correspond to
the experimental statistical and systematic uncertainties added in quadrature. The shaded area
indicates the range of variation predicted by the POWHEG simulation for the uncertainties of
the CT10 PDFs.

14 6 Transverse Momentum Distribution Results
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Figure 6: The Z-boson transverse momentum distribution found from combining the muon
and electron channels, compared to the predictions of the POWHEG generator interfaced with
PYTHIA using the Z2 tune. The error bars correspond to the statistical and systematic uncertain-
ties added in quadrature. The band around the theoretical prediction includes the uncertainties
due to scale variations and PDFs. The horizontal error bars indicate the bin boundaries, and the
data points are positioned at the center-of-gravity of the bins, based on the POWHEG prediction.
The inset figure shows the low qT region on a linear scale.

12 5 Results
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CMS, PRD85(2012)032002 CMS PAS SMP-12-025
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• Asymmetry probes parton distributions

27

W asymmetry at LHC

POWHEG matrix elements

[K. Hamilton, J. Tully, P. Richardson – JHEP 0810 (2008) 015]

Drell-Yan pp � Z � l+l� at Tevatron Run II, pp � W � l �̄ at LHC 7 TeV
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Figure 2: The lepton charge asymmetry from W-boson decays in bins of absolute pseudorapidity for the
three di�erent experiments ATLAS, CMS and LHCb. The asymmetry results of the LHCb and CMS
Collaborations are obtained from the muon channel only and have been communicated within the LHC
Electroweak Working Group by representatives of the respective collaborations.
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16 10 Results
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Figure 1: Left: The W + n-jets cross section, in inclusive jet multiplicity bins, measured by ATLAS 11. Right:
the lepton charge asymmetry in jet multiplicity bins for W events, as measured by CMS 13.

(typically Emiss
T

> 25 GeV). Both experiments use the anti-kt algorithm to reconstruct jets,
albeit with different radius parameter settings (R = 0.4 at ATLAS, 0.5 at CMS). Cross sections
are generally presented within a fiducial volume, and corrected to the level of particles entering
the detector, to minimise dependence on theoretical corrections.

The first benchmark is to measure the inclusive jet rates produced in association with the
W or Z (see Fig. 1) 11 12 13. Both experiments find the predictions of ALPGEN and SHERPA,
and the latest NLO predictions from BLACKHAT, provide a good description of the data,
within uncertainties. The data uncertainties are dominated by the uncertainty on the jet energy
scale. This, along with some other uncertainties, can be partially cancelled by taking ratios,
such as W + n-jets/W + (n − 1)-jets, as measured at CMS 13. ATLAS measure also the ratio
of W+jet/Z+jet as a function of the jet pT threshold (see Fig. 2) 14, which benefits from this
cancellation while also testing the evolution of the predictions with increasing scale, and being
sensitive to any new physics appearing preferentially in one of the W or Z channels. CMS also

measure the W charge asymmetry (AW = σ(W+)−σ(W−)
σ(W+)+σ(W−)) in bins of inclusive jet multiplicity 13

(see Fig. 1). The data show a trend for reduced charge asymmetry at higher jet multiplicity,
possibly due to the increased importance of gluon instead of valence quark initial states. This
trend is reproduced in event generators which include explicit matrix elements for multiple
jet production, but not in PYTHIA which relies on the parton shower to produce multiple jets.
ATLAS also measure a number of differential distributions in V+jet production, from individual
jet momenta and rapidity (y) distributions, to correlations between jets and the boson, such as
∆y(lepton, jet), ∆y(jet, jet), dijet mass distributions in different jet bins. These distributions
pick out many different aspects of the underlying physics. For example, the azimuthal angular
separation, ∆φ(jet, jet), (see Fig. 2) highlighting the failure of the parton shower only approach in
PYTHIA to produce well separated jets, and is also sensitive to multiple hard parton interactions
producing a separate balanced (back-to-back) jet system in association with the Z.

3 V + Heavy Flavour Jets

Further information on the underlying physics can be obtained by identifying the flavour of
hadrons produced within jets. Measuring the production of W+charm, for example, gives a

!

• Very good agreement with predictions from merged simulations, 
while parton shower alone starts to fail for njet ≥ 2

28

W+jets at LHC
ATLAS, PRD85(2012)092002

{merged
(PS only)

(PS only)

CMS, JHEP01(2012)010
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Top quark pair 
production
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Top pair production

Alioli, Nason, Oleari, Re, JHEP 06(2010)043CMS PAS TOP-12-027
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Fig. 1 The distribution of (a) lepton pT and (b) b-tagged jet pT for the selected events compared to the MC@NLO simulation
of tt̄ events. The data is shown as closed (black) circles with the statistical uncertainty. The MC@NLO prediction is normalised
to the data and is shown as a solid (red) line. The overflow events at high pT are added into the final bin of each histogram.
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of tt̄ events. The data is shown as closed (black) circles with the statistical uncertainty. The MC@NLO prediction is normalised
to the data and is shown as a solid (red) line. The overflow events at high pT are added into the final bin of each histogram.
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• Reconstructed top mass depends on kinematics	


• But different generators track data well with a 
common input mass
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12 4 Results

4.3 b-quark observables

The b-quarks carry the colour charge of their parent top quark and are thus colour-connected
to either initial state radiation or the beam remnants. To test the sensitivity to the b-quark
kinematics we have studied transverse momentum (pT,b) and pseudo-rapidity (|⇥b|) of the b-
quark from the hadronic top quark decay and the spatial correlations between the b’s from the
two top quarks (�Rbb and ��bb). These are shown in Figs. 9, 10, 11 and 12, respectively. The
limited sample sizes allow no clear separation of different models in events with high b-jet pT
(Fig. 9c).
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Figure 9: Differential measurements as a function of the pT of the b-jet assigned to the hadronic
decay branch: (a) Number of permutations per pT,b,had bin; (b) mt from the 1D analysis; (c)
JES and (d) mt from the 2D analysis, respectively. The systematic uncertainties are added in
quadrature to the statistical uncertainties of the data. The hatched areas indicate the statistical
uncertainties on the simulated samples.

8 4 Results

4.2 Initial and final state radiation

To look for effects due to initial and final state radiation (ISR/FSR), we investigate the jet mul-
tiplicity, transverse hadronic energy (HT, defined as the scalar sum of the pT of the four leading
jets), invariant mass and transverse momentum of the tt system. We note that the jet pT thresh-
old cut of 30 GeV used in the analysis will exclude any effects from softer radiation. The results
are shown in Figs. 5, 6, 7, and 8, respectively.
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Figure 5: Differential measurements as a function of HT, defined as the scalar sum of the pT of
the four leading jets: (a) Number of permutations per HT bin; (b) mt from the 1D analysis; (c)
JES and (d) mt from the 2D analysis, respectively. The systematic uncertainties are added in
quadrature to the statistical uncertainties of the data. The hatched areas indicate the statistical
uncertainties on the simulated samples.

4.2 Initial and final state radiation 9

We observe a small dependence on the pT of the tt system and in the HT and mtt distributions
that is well described by all of the simulations. Below HT of 200 GeV and mtt of 400 GeV there
is a strong turn-on effect. For the jet multiplicity we observe indications of a small sensitivity
as a function of increasing jet multiplicity. However, the limited statistics of the current dataset
preclude any firm conclusions.
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Figure 6: Differential measurements as a function of the invariant mass of the tt system: (a)
Number of permutations per mtt bin; (b) mt from the 1D analysis; (c) JES and (d) mt from the
2D analysis, respectively. The systematic uncertainties are added in quadrature to the statis-
tical uncertainties of the data. The hatched areas indicate the statistical uncertainties on the
simulated samples.
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6. Decay of “odd” clusters, if 
large cluster mass, and 

decays to hadrons

q
q
_

q
q

q

q

q
_

q
_

q
_

q–
3. Gluon splitting

b
e

W
t

t
_q

_ nuq

1. Hard Process

g

g

b

g

g

g

2. Shower evolution

g

g

b

g

g

g

2. Shower evolution
B

h
hh

hh

h h

4. Formation of 
“even” clusters 

and cluster decay 
to hadrons

5. Formation of 
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• Study dependence of reconstructed mass on “odd” clusters
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e

W
t

t
_q

_ nuq

Controlled by perturbative 
shower evolution, mostly 
insensitive to hadronization 
modeling

Out-of-cone radiation, 
controlled by perturbative 

shower evolution, minimally 
sensitive to hadronization 

modeling

Partly shower evolution, partly 
color reconnection, ambiguous 
paternity
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• Dependence of reconstructed mass on “odd” clusters ~ 1 GeV

34
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• Matched NLO not adequate for >2 extra jets	


• Merged multijets better there (for ds/s)

35
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LHC Cross Section Summary 

36

A. Pich                                                                             Theory Highlights & Outlook                                                               6 

Good agreement between theory and experiment 

• No significant deviations from SM (yet)
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• Interesting excess of (single) b quark jets
37

But all is not perfect ...
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Fig. 10 The unfolded dijet flavour fractions for each leading jet pT bin (black points) with PYTHIA 6.423 (squares), Herwig++ 2.4.2 (circles) and
POWHEG+PYTHIA 6.423 (filled triangles) predictions overlaid. The error bars on the data points show statistical uncertainties only, whereas the
full uncertainties appear as shaded bands.

KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1
(Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and
BNL (USA) and in the Tier-2 facilities worldwide.
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• NLO calculations generally refer to inclusive cross 
sections e.g. s(W+>n jets)	


• Multijet merging does not preserve them, because 
of mismatch between exact real-emission and 
approximate (Sudakov) virtual corrections	


• When correcting this mismatch, one can 
simultaneously upgrade them to NLO	


• There remains the issue of merging scale 
dependence beyond NLO (large logs)

38
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• Many competing schemes (pp, under development)	


✤ MEPS@NLO (SHERPA)	


✤ FxFx (aMC@NLO)	


✤ UNLOPS (Pythia 8)	


✤ MatchBox (Herwig++)	


✤ MiNLO (POWHEG)  Hamilton et al., arXiv:1212.4504	


✤ GENEVA  Alioli, Bauer et al., arXiv:1212.4504	


• Some key ideas in LoopSim
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• Scale dependences almost eliminated

40
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Figure 9: Jet multiplicity in W-boson production, as measured by ATLAS [46]. The MC results
were obtained by merging up to two additional partons at LO, and zero and one additional par-
ton at NLO. MC results are shown for three different merging scales (top panels) and for three
different renormalisation/factorisation scales (bottom panels). Effects of multiple scatterings and
hadronisation are included. Left panels: Results of NL3. Right panels: Results of UNLOPS.

In figure 9, we show that the jet multiplicity is well under control in NLO merged

predictions. The left panel of Figure 8 shows that, as expected, it is not possible to

describe the number of zero-jet events with a W+jet NLO calculation. This is of course

exactly the strength of merged calculations: Observables with different jet multiplicities

can be described in a single inclusive sample.

The transverse momentum of the hardest jet in association with a W-boson is shown

in figure 10 and the right panel of Figure 8. It is clear that the NLO merged results do

not agree with data. We have chosen this particular observable because it our exhibits

the most unsatisfactory description of data that we have encountered while testing our

NLO merging methods. The reason for this disagreement is multifold. First, we have

already mentioned that correcting for inclusive NLO input produces harder p⊥1 tails. The

– 31 –
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Figure 9: Jet multiplicity in W-boson production, as measured by ATLAS [46]. The MC results
were obtained by merging up to two additional partons at LO, and zero and one additional par-
ton at NLO. MC results are shown for three different merging scales (top panels) and for three
different renormalisation/factorisation scales (bottom panels). Effects of multiple scatterings and
hadronisation are included. Left panels: Results of NL3. Right panels: Results of UNLOPS.

In figure 9, we show that the jet multiplicity is well under control in NLO merged

predictions. The left panel of Figure 8 shows that, as expected, it is not possible to

describe the number of zero-jet events with a W+jet NLO calculation. This is of course

exactly the strength of merged calculations: Observables with different jet multiplicities

can be described in a single inclusive sample.

The transverse momentum of the hardest jet in association with a W-boson is shown

in figure 10 and the right panel of Figure 8. It is clear that the NLO merged results do

not agree with data. We have chosen this particular observable because it our exhibits

the most unsatisfactory description of data that we have encountered while testing our

NLO merging methods. The reason for this disagreement is multifold. First, we have

already mentioned that correcting for inclusive NLO input produces harder p⊥1 tails. The
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The cross sections for the tt̄H process are estimated up
to NLO QCD [47–51].
The total cross sections for SM Higgs boson produc-

tion at the LHC with mH = 125GeV are predicted to
be 17.5 pb for

√
s = 7TeV and 22.3 pb for

√
s =

8TeV [52, 53].
The branching ratios of the SM Higgs boson as a

function of mH , as well as their uncertainties, are calcu-
lated using the HDECAY [54] and PROPHECY4F [55,
56] programs and are taken from Refs. [52, 53]. The
interference in the H→ ZZ(∗)→ 4ℓ final states with iden-
tical leptons is taken into account [53, 55, 56].

Table 1: Event generators used to model the signal and background
processes. “PYTHIA” indicates that PYTHIA6 and PYTHIA8 are
used for simulations of

√
s = 7TeV and

√
s = 8 TeV data, respec-

tively.

Process Generator
ggF, VBF POWHEG [57, 58]+PYTHIA
WH, ZH, tt̄H PYTHIA
W+jets, Z/γ∗+jets ALPGEN [59]+HERWIG
tt, tW, tb MC@NLO [60]+HERWIG
tqb AcerMC [61]+PYTHIA
qq̄→ WW MC@NLO+HERWIG
gg→ WW gg2WW [62]+HERWIG
qq̄→ ZZ POWHEG [63]+PYTHIA
gg→ ZZ gg2ZZ [64]+HERWIG
WZ MadGraph+PYTHIA, HERWIG
Wγ+jets ALPGEN+HERWIG
Wγ∗ [65] MadGraph+PYTHIA
qq̄/gg→ γγ SHERPA

The event generators used to model signal and back-
ground processes in samples of Monte Carlo (MC) sim-
ulated events are listed in Table 1. The normalisations
of the generated samples are obtained from the state of
the art calculations described above. Several different
programs are used to generate the hard-scattering pro-
cesses. To generate parton showers and their hadroni-
sation, and to simulate the underlying event [66–68],
PYTHIA6 [69] (for 7 TeV samples and 8TeV sam-
ples produced with MadGraph [70, 71] or AcerMC) or
PYTHIA8 [72] (for other 8 TeV samples) are used. Al-
ternatively, HERWIG [73] or SHERPA [74] are used
to generate and hadronise parton showers, with the
HERWIG underlying event simulation performed using
JIMMY [75]. When PYTHIA6 or HERWIG are used,
TAUOLA [76] and PHOTOS [77] are employed to de-
scribe tau lepton decays and additional photon radiation
from charged leptons, respectively.

The following parton distribution function (PDF) sets
are used: CT10 [78] for the POWHEG, MC@NLO,
SHERPA, gg2WWand gg2ZZ samples; CTEQ6L1 [79]
for the ALPGEN, MadGraph and HERWIG samples;
and MRSTMCal [80] for the PYTHIA6, PYTHIA8 and
AcerMC samples.
Acceptances and efficiencies are obtained mostly

from full simulations of the ATLAS detector [81] us-
ing Geant4 [82]. These simulations include a realistic
modelling of the pile-up conditions observed in the data.
Corrections obtained frommeasurements in data are ap-
plied to account for small differences between data and
simulation (e.g. large samples of W, Z and J/ψ decays
are used to compare lepton reconstruction and identifi-
cation efficiencies).

4. H → ZZ(∗) → 4ℓ channel

The search for the SM Higgs boson through the
decay H → ZZ(∗) → 4ℓ, where ℓ = e or µ, pro-
vides good sensitivity over a wide mass range (110-
600 GeV), largely due to the excellent momentum reso-
lution of the ATLAS detector. This analysis searches
for Higgs boson candidates by selecting two pairs of
isolated leptons, each of which is comprised of two lep-
tons with the same flavour and opposite charge. The
expected cross section times branching ratio for the pro-
cess H → ZZ(∗) → 4ℓ with mH = 125 GeV is 2.2 fb for√
s = 7 TeV and 2.8 fb for

√
s = 8 TeV.

The largest background comes from continuum
(Z(∗)/γ∗)(Z(∗)/γ∗) production, referred to hereafter as
ZZ(∗). For low masses there are also important back-
ground contributions from Z + jets and tt̄ production,
where charged lepton candidates arise either from de-
cays of hadrons with b- or c-quark content or from mis-
identification of jets.
The 7 TeV data have been re-analysed and combined

with the 8 TeV data. The analysis is improved in several
aspects with respect to Ref. [83] to enhance the sensitiv-
ity to a low-mass Higgs boson. In particular, the kine-
matic selections are revised, and the 8 TeV data anal-
ysis benefits from improvements in the electron recon-
struction and identification. The expected signal sig-
nificances for a Higgs boson with mH = 125 GeV are
1.6 σ for the 7 TeV data (to be compared with 1.25 σ
in Ref. [83]) and 2.1 σ for the 8 TeV data.

4.1. Event selection

The data are selected using single-lepton or dilepton
triggers. For the single-muon trigger, the pT threshold
is 18 GeV for the 7 TeV data and 24 GeV for the 8 TeV

3
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Hamilton, Nason, Oleari & 
Zanderighi, arXiv:1212.4504

Z � e+e� production total cross sections in nb at the 14 TeV LHC

KR,KF 1, 1 1, 2 2, 1 1, 1
2

1
2 , 1

1
2 ,

1
2 2, 2

ZJ-MiNLO NLO 1.916(5) 2.065(6) 1.776(2) 1.662(3) 2.18(1) 2.022(6) 1.987(3)

Z NLO 2.039(3) 2.100(3) 2.015(2) 1.938(2) 2.068(3) 1.984(2) 2.092(3)

ZJ-MiNLO LO 1.3827(5) 1.7322(6) 1.1806(4) 1.0348(3) 2.1280(7) 1.5677(5) 1.4831(5)

Z LO 1.793(2) 2.014(2) 1.793(2) 1.555(2) 1.793(2) 1.555(2) 2.014(2)

Table 6: Total cross section for Z� � e+e� production, obtained with the ZJ-MiNLO and the
Z programs, both at full NLO level and at leading order, for di�erent scales combinations. The
maximum and minimum are highlighted.
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Figure 1: Comparison between the H+PYTHIA result and the HJ-MiNLO+PYTHIA result for the
Higgs-boson rapidity distribution at the LHC at 8 TeV. The left plot shows the 7-point scale-
variation band for the H generator, while the right plot shows the HJ-MiNLO 7-point band.

also the rapidity distributions are in good agreement. We thus show in fig. 1 the rapidity

distribution of the Higgs boson at the 8 TeV LHC, computed with the H and with the HJ-

MiNLO generators, both interfaced to PYTHIA 6 [37] for shower. We have used the Perugia-0

tune of PYTHIA (that is to say, PYTUNE(320)). Hadronization, underlying event and multi-

parton collisions were turned o�. The two plots show the scale-variation band for each

generator. The band is obtained as the upper and lower envelope of the results obtained

by setting the scale factor parameters (KR,KF) to (1, 1), (1, 2), (2, 1), (1, 12), (
1
2 , 1), (

1
2 ,

1
2)

and (2, 2). We see considerable agreement between the two approaches, with the scale-

variation band of the HJ-MiNLO result being slightly larger.

In figs. 2 and 3 we show the Higgs transverse momentum distributions. We begin

by noticing that the central values of the H and HJ-MiNLO generators are in very good

agreement. This is not a surprise, since in the H generator, the parameter hfact, that

separates the real cross section contribution into the sum of a singular and a finite one,

was set to the value MH/1.2, motivated by the fact that this yields better agreement with

the NNLO result.

We notice that, for large transverse momenta, the HJ-MiNLO generator has a smaller

scale variation band with respect to the H one. We expect this behaviour, since the HJ-

MiNLO generator achieves NLO accuracy for one-jet inclusive distributions, while the H

generator is only tree-level accurate. We also notice that the scale uncertainty band of

HJ-MiNLO widens at small transverse momentum. This behaviour is also expected, since,
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Figure 2: Comparison between the H+PYTHIA result and the HJ-MiNLO+PYTHIA result for the Higgs
boson transverse-momentum distribution. The bands are obtained as in fig. 1.
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Figure 3: Same as fig. 2 for a di�erent pH
T range.

in that direction, we approach the strong coupling regime. Observe also that the H result

does not show a realistic scale uncertainty in the pH
T < MH region. This too is understood,

and it follows from the fact that this region is dominated by S-type events (see refs. [36, 38]

for a detailed explanation).

As a last point, we see from fig. 3, that a noticeable di�erence in shape is present in

the very small transverse-momentum region. This again does not come as a surprise, since

the POWHEG-generated Sudakov form factor in the H generator di�ers by NNLL terms, and

also by non-singular contributions, from the HJ-MiNLO one. Notice also that, unlike in the

H case [38], the scale variation in the HJ-MiNLO generator induces a change in shape of the

transverse momentum spectrum in the Sudakov region, leading to a better understanding

of the associated uncertainty.

We now turn to the case of W� production. Motivated by the discussion given for

the total cross section case, we consider only a 3-point scale variation, i.e. KR = KF =

{1/2, 1, 2} for the WJ-MiNLO generator. In fig. 4 we show the l� rapidity distribution at

the Tevatron computed with the W and WJ+MiNLO generators. We essentially see no shape

di�erence in this distribution, therefore, as for the inclusive cross section, we find that the

WJ+MiNLO central value is about 5% below the W one. The WJ band is slightly larger than

– 22 –

Born term in POWHEG (i.e. by setting the bornonly flag to 1), and by downgrading the

Sudakov form factor to pure NLL accuracy, i.e. we set B2 to zero.

In the MiNLO case, the central value is chosen according to the procedure discussed

earlier, with more than one renormalization scale for each phase space point. In the H

fixed order calculation, we choose as central renormalization and factorization scales the

boson mass. From the table, it is clear that the standard NLO result and the integrated

Higgs boson production total cross sections in pb at the LHC, 8 TeV

KR,KF 1, 1 1, 2 2, 1 1, 1
2

1
2 , 1

1
2 ,

1
2 2, 2

HJ-MiNLO NLO 13.33(3) 13.49(3) 11.70(2) 13.03(3) 16.53(7) 16.45(8) 11.86(2)

H NLO 13.23(1) 13.28(1) 11.17(1) 13.14(1) 15.91(2) 15.83(2) 11.22(1)

HJ-MiNLO LO 8.282(7) 8.400(7) 5.880(5) 7.864(6) 18.28(2) 17.11(2) 5.982(5)

H LO 5.741(5) 5.758(5) 4.734(4) 5.644(5) 7.117(6) 6.996(6) 4.748(4)

Table 1: Total cross section for Higgs boson production at the 8 TeV LHC, obtained with the
HJ-MiNLO and the H programs, both at full NLO level and at leading order, for di�erent scales
combinations. The maximum and minimum are highlighted.

HJ-MiNLO one are fairly consistent, both at the NLO and at the LO level. At the NLO

level, the renormalization-scale variation dominates the uncertainty band, and it turns out

to be very similar for the HJ-MiNLO and H results, with the first one being slightly shifted

upwards. The central values are even closer. Notice that the factorization scale variation

is wider for the HJ-MiNLO result, a fact that we will comment on later.

At leading order the HJ-MiNLO central result exceeds the fixed order one by almost

50%. We again see that the renormalization scale variation dominates the uncertainties.

The scale variation, however, is quite larger than that of the fixed order result.

For W� production we have considered both the LHC at 8 TeV configuration (tab. 2)

and the Tevatron at 1.96 TeV (tab. 3). Here we notice that the WJ-MiNLO NLO result

W� � e��̄ production total cross sections in nb at the LHC, 8 TeV

KR,KF 1, 1 1, 2 2, 1 1, 1
2

1
2 , 1

1
2 ,

1
2 2, 2

WJ-MiNLO NLO 4.35(1) 4.65(1) 4.031(7) 3.818(8) 4.84(2) 4.62(2) 4.462(8)

W NLO 4.612(8) 4.738(8) 4.552(8) 4.425(7) 4.687(8) 4.530(8) 4.703(8)

WJ-MiNLO LO 3.182(1) 3.862(1) 2.713(1) 2.4531(1) 5.006(2) 3.792(2) 3.305(1)

W LO 4.002(6) 4.379(7) 3.999(6) 3.566(6) 3.999(6) 3.566(6) 4.379(7)

Table 2: Total cross section for W� � e��̄ production at the 8 TeV LHC, obtained with the
WJ-MiNLO and the W programs, both at full NLO level and at leading order, for di�erent scales
combinations. The maximum and minimum are highlighted.

has a much wider scale-variation band than the fixed-order one. In both cases, the band

is larger by about a factor of 3. The central value is lower in both cases by about 4-5%.

In the leading order case, the WJ-MiNLO scale band is more than twice as large as the fixed

order one at the LHC. At the Tevatron, the scale variation for the W LO result is clearly

too small, the NLO result being incompatible with it. On the other hand, for both LHC

and Tevatron predictions, if only symmetric scale variations are considered (i.e. the last

– 18 –



Bryan Webber Burg Liebenzell, Sept 2014

• FxFx: Match/merge MC@NLO+Herwig6

44

Higgs+jets

Figure 6: As in fig. 3, with N = 2.

to disappear, and the merging-parameter dependence reduced, when pcut
T

becomes large.

We finally turn to discussing the case of the N = 2, sharp-D function, Sudakov-

reweighted merging; that is, we increase the largest multiplicity by one unit w.r.t. what

was done before. The settings are the same as in the N = 1 case, and figs. 6, 7, and 8 are

the analogues of figs. 3, 4, and 5 respectively (with the exception of one panel in fig. 8).

The numerators of the ratios that appear in the upper insets are the same as before for

the H + 0j and H + 1j cases; that for H + 2j is obviously specific to N = 2. In the lower

insets, together with the ratios that allow one to assess the merging systematics, we have

plotted (as histograms overlaid with open circles) the ratios of the N = 1 results over the

N = 2 ones, both for µQ = 50 GeV. We have also recomputed the Alpgen predictions, by

adding the H + 3 parton sample, for consistency with N = 2. The corresponding results

will not be shown in the plots, since these are already quite busy, and there is no difference
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Figure 7: As in fig. 4, with N = 2.

at all in the patterns discussed above, except in a very few cases which we shall comment

upon when appropriate.

The common feature of all but one of the observables presented in figs. 6–8 is that

they are extremely close, in both shape and normalization, to their N = 1 counterparts

of figs. 3–5. This is highly non-trivial, since the individual i-parton contributions are

different in the two cases. The exception is the pseudorapidity of the second-hardest jet

(upper right panel of fig. 7), which the inclusion of the 2-parton sample turns into a more

central distribution, as anticipated in the discussion relevant to fig. 4, and brings it very

close to the Alpgen result obtained with the same µQ.

The small impact of the increase of the largest multiplicity is also generally in agree-

ment with what is found in Alpgen, where the inclusion of the H +3 parton contribution

changes the fully-inclusive rate by +0.3%. The effects on differential observables are also
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the H + 0j and H + 1j cases; that for H + 2j is obviously specific to N = 2. In the lower

insets, together with the ratios that allow one to assess the merging systematics, we have

plotted (as histograms overlaid with open circles) the ratios of the N = 1 results over the

N = 2 ones, both for µQ = 50 GeV. We have also recomputed the Alpgen predictions, by

adding the H + 3 parton sample, for consistency with N = 2. The corresponding results

will not be shown in the plots, since these are already quite busy, and there is no difference
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Frederix & Frixione, arXiv:1209.6215
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Frixione, Torrielli, Zaro, arXiv:1304.7927

Figure 1: Higgs boson transverse-momentum (top) and rapidity (bottom) distributions.
Main frame: aMC@NLO matched with HERWIG6 (black solid), virtuality-ordered
Pythia6 (red dashed) and HERWIG++ (blue dot-dashed). Upper (middle) inset:
ratios of aMC@NLO (POWHEG) over the fixed-order NLO, with the same colour
pattern as the main frame. Lower inset: scale (red-dashed) and PDF (black solid)
uncertainties for aMC@NLO+HERWIG6. See text for further details.

12

Figure 2: Same pattern as in figure 1 for the hardest-jet transverse momentum (top) and
rapidity (bottom).

13

Figure 3: Same pattern as in figure 1 for the second hardest-jet transverse momentum
(top) and rapidity (bottom).

14
• Matched MC@NLO and POWHEG 
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Figure 4: Observed di↵erential cross sections of the Higgs bosons decaying into two isolated photons,
for p��T , |y��|, | cos ✓⇤|, and p j1

T . Systematic uncertainties are presented in grey, and the black bars repre-
sent the quadratic sum of statistical and systematic errors. The hatched histograms present theoretical
predictions for the Standard Model at

p
s = 8 TeV and mH = 126.8 GeV. Their width represents the

theory uncertainties from missing higher order corrections, the PDF set used, the simulation of the un-
derlying event, and the H ! �� branching fraction. The sum of VBF with WH, ZH, and tt̄H is denoted
XH, and simulated as described in Section 3.1. These are added to the simulated ggH predictions from
POWHEG, MINLO, and HRes.
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Figure 2: Di↵erential unfolded cross sections for pT,H , yH , m34, | cos ✓⇤|, njets, and pjet
T in the

H ! ZZ⇤ ! 4` decay channel compared to di↵erent theoretical calculations of the ggF process: Powheg,
Minlo and HRes2. The contributions from VBF, ZH/WH and tt̄H are determined as described in Sec. 2
and added to the ggF distributions. All theoretical calculations are normalized to the most precise SM
inclusive cross section predictions currently available [54]. The error bars on the data points show the
total (stat � syst) uncertainty, while the grey bands denote the systematic uncertainties. The bands of the
theoretical prediction indicate the total uncertainty.
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Monte Carlo Higgs ET
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Figure 6: Parton-level transverse energy distribution in Higgs boson production at the LHC at 8
and 14 TeV. Red: resummed and matched to NLO. Green: HERWIG++ with Matrix Element correc-
tion, no reweighting. Black: HERWIG++/MC@NLO before reweighting. Blue: HERWIG++/MC@NLO
after reweighting.

Fig. 7 we show the Higgs boson transverse momentum distribution, qT , before and after

applying the reweighting procedure, compared to the equivalent distribution obtained by

the HQT program [9,32]. Evidently, the MC@NLO distribution seems to agree already quite

well with the HQT prediction before reweighting. The reweighting procedure makes the

distribution fall o↵ faster at high qT which is consistent with the change in shape observed

in Figure 6. Figure 8 shows the rapidity distribution of the Higgs boson, yH , before and

after the reweighting, clearly showing that the e↵ect on this distribution is negligible, thus

verifying that the reweighting does not alter physics in the forward direction.

Figure 7: Higgs boson transverse momentum distribution at the LHC at 8 and 14 TeV. Red:
QHT calculation. Black: HERWIG++/MC@NLO before reweighting. Blue: HERWIG++/MC@NLO after
reweighting.

4.2 ET at hadron level

The e↵ects of hadronization can be studied by enabling the cluster hadronization model in
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RW = reweighted to agree with resummed+matched ET

Underlying event and hadronization NOT included 

Grazzini, Papaefstathiou, Smillie, BW, 1403.3394 
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Monte Carlo Higgs qT
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Reweighting improves agreement with HQT (= resummed+matched qT)

RW = reweighted to agree with resummed+matched ET
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Monte Carlo Higgs ET
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RW = reweighted to agree with resummed+matched ET

Underlying event and hadronization INCLUDED

Strong dependence on minimum hadron pT
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Higgs ET from jets?
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Suggested by G Salam:

Less sensitive to underlying event and hadronization 

Parton level ≈ ET of leading n jets (anti-kt, R=0.7)

Papaefstathiou, BW, prelim.

ET (GeV)

Partons (no UE)
Leading 3 jets (inc UE)

Hadrons (no UE)
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 Selecting VBF
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Monte Carlo Higgs qT & ET
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Massless coloured vs

Big difference in qT

massive colourless exchange

Small difference in ET

A Papaefstathiou, BW

14 TeV

14 TeV

ggF

ggF
VBF

VBF
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Leading jets pT
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Two hard leading jets in VBF
14 TeV

ggF

ggF

VBF

VBF

14 TeV



Bryan Webber Burg Liebenzell, Sept 2014

Leading jets Mjj and Dhjj
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Cuts (~CMS):

pT(j1), pT(j2) > 30 GeV

M(j1j2) > 500 GeV

Dh(j1j2) > 3.5

14 TeV

14 TeV

ggF

ggF

VBF

VBF
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Mode BR% ggF(raw) VBF(raw) ggF(cut) VBF(cut)

bb 56.10 10,000,000 720,000 96,000 170,000

WW 23.13 4,200,000 300,000 40,000 71,000

gg 8.49 1,500,000 110,000 15,000 26,000

tt 6.16 1,100,000 79,000 11,000 19,000

ZZ 2.90 520,000 37,000 5,000 8,900

cc 2.83 510,000 37,000 4,800 8,700

gg 0.23 41,000 2,900 390 710

Zg 0.16 29,000 2,100 270 490

Selecting VBF

56

For 300 fb-1 at 14 TeV:

Cuts enhance VBF/ggF by ~25
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Beyond Standard 
Model Simulation
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BSM Simulation
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• Main generators have some BSM models built in	


✤ Pythia 6 has the most models	


✤ Herwig++ has careful treatment of SUSY spin 
correlations and off-shell effects	


• Trend is now towards external matrix element 
generators:  FeynRules + MadGraph, ...	


• QCD corrections and matching/merging still 
needed
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Figure 3: Jet multiplicity distributions for pmin
T =50 GeV jets in the one-lepton tt̄ and W + jets control

regions (CR) for di�erent b-jet multiplicities. Monte Carlo predictions are before fitting to data. Other
details as for Fig. 1. The teal band in the ratio plot indicates the experimental uncertainties on the
Monte Carlo prediction and also includes the Monte Carlo statistical uncertainty. Additional theoretical
uncertainties are not shown.
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Figure 7: Emiss
T /

�
HT distributions for the multi-jet + M�J stream with the signal region selection, other

than the final Emiss
T /

�
HT requirement. The figures on the left are for events with M�J > 340 GeV, while

those on the right are for M�J > 420 GeV. The minimum multiplicity requirement for pmin
T = 50 GeV,

R = 0.4 jets increases from eight (top) to nine (middle) and finally to ten jets (bottom). Other details as
for Fig. 1. 20
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1 Introduction

Many extensions of the Standard Model of particle physics predict the presence of TeV-scale strongly
interacting particles that decay to lighter, weakly interacting descendants. Any such weakly interacting
particles that are massive and stable can contribute to the dark matter content of the universe. The
strongly interacting parents would be produced in the proton-proton interactions at the Large Hadron
Collider (LHC) [1], and such events would be characterized by significant missing transverse momentum
from the unobserved weakly interacting daughters, and jets from emissions of quarks and/or gluons.

In the context of R-parity conserving supersymmetry (SUSY) [2], the strongly interacting parent
particles are the partners of the quarks (squarks, q̃) and the partners of the gluons (gluinos, g̃), and are
produced in pairs. The lightest supersymmetric particle (LSP) is stable, providing a candidate that can
contribute to the relic dark matter density in the universe [3].

If kinematically accessible, the squarks and gluinos are produced in the pp collisions at the LHC.
They can be expected to decay in cascades, the nature of which depends on the mass hierarchy within
the model. Individual cascade decays may include gluino decays to top squarks (stop), t̃,

g̃ ⇥ t̃ + t̄ (1a)

followed by the top squark decay to a top quark and a neutralino, �̃0
1,

t̃ ⇥ t + �̃0
1. (1b)

Alternatively, if the top squark is heavier than the gluino, the three body decay,

g̃ ⇥ t + t̄ + �̃0
1 (2)

may result. Other possibilities include decays involving intermediate charginos, neutralinos, and/or
squarks including bottom squarks. A pair of cascade decays will produce a large number of Standard
Model particles, together with a pair of LSPs, one from the end of each cascade. The LSPs are assumed
to be stable and weakly interacting, and so result in missing transverse momentum.

In this note we consider final states with large numbers of jets together with significant missing trans-
verse momentum in the absence of isolated electrons or muons, using the pp collision data recorded by
the ATLAS experiment during 2012 at a centre-of-mass energy of

⇤
s = 8 TeV. The corresponding inte-

grated luminosity is 20.3 fb�1. Searches for new phenomena in final states with large jet multiplicities –
requiring from at least six to at least nine jets – and missing transverse momentum have previously been
reported by the ATLAS collaboration using LHC pp collision data corresponding to 1.34 fb�1 [4] and to
4.7 fb�1 [5] at

⇤
s = 7 TeV. Searches with explicit tagging of jets from bottom quarks (b-jets) in multi-jet

events were also performed by ATLAS [6] and CMS [7, 8, 9]. These searches found no significant excess
over the Standard Model expectation and provided stringent limits on various supersymmetric models,
including decays such as (2) and a mSUGRA/CMSSM [10] model that includes strong production pro-
cesses. The analysis presented in this note extends previous analyses by reaching higher jet multiplicities
and utilizing new sensitive variables.

Events are first selected with large jet multiplicities, with requirements ranging from at least seven
to at least ten jets, reconstructed using the anti-kt clustering algorithm [11] and jet distance parameter of
R = 0.4. Significant missing transverse momentum is also required in the event. An additional selection
based on the number of b-jets gives enhanced sensitivity to models which predict either more or fewer
b-jets than the Standard Model background. In a complementary stream of the analysis, the R = 0.4 jets
are re-clustered into large (R = 1.0) composite jets to form an event variable, the sum of the masses of
the composite jets, which gives additional discrimination in models with a large number of objects in
the final state [12]. Events containing isolated, high-pT electrons or muons are vetoed in order to reduce
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⇤
s = 8 TeV. The corresponding inte-

grated luminosity is 20.3 fb�1. Searches for new phenomena in final states with large jet multiplicities –
requiring from at least six to at least nine jets – and missing transverse momentum have previously been
reported by the ATLAS collaboration using LHC pp collision data corresponding to 1.34 fb�1 [4] and to
4.7 fb�1 [5] at

⇤
s = 7 TeV. Searches with explicit tagging of jets from bottom quarks (b-jets) in multi-jet

events were also performed by ATLAS [6] and CMS [7, 8, 9]. These searches found no significant excess
over the Standard Model expectation and provided stringent limits on various supersymmetric models,
including decays such as (2) and a mSUGRA/CMSSM [10] model that includes strong production pro-
cesses. The analysis presented in this note extends previous analyses by reaching higher jet multiplicities
and utilizing new sensitive variables.

Events are first selected with large jet multiplicities, with requirements ranging from at least seven
to at least ten jets, reconstructed using the anti-kt clustering algorithm [11] and jet distance parameter of
R = 0.4. Significant missing transverse momentum is also required in the event. An additional selection
based on the number of b-jets gives enhanced sensitivity to models which predict either more or fewer
b-jets than the Standard Model background. In a complementary stream of the analysis, the R = 0.4 jets
are re-clustered into large (R = 1.0) composite jets to form an event variable, the sum of the masses of
the composite jets, which gives additional discrimination in models with a large number of objects in
the final state [12]. Events containing isolated, high-pT electrons or muons are vetoed in order to reduce
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Figure 19: Same as Fig. 18, but modified Pythia such that the starting scale for the shower is always set to
pPWG
T , see text.

both Herwig++ showers predict higher rates than the NLO calculation up to pj3T � 400GeV
and agree quite well with each other, the Pythia result ranges slightly below the NLO curve
for pj3T & 100GeV and deviates up to 30% from the Herwig++ shower results.

Considering the rapidity distributions of the second and the third hardest jet depicted in
Fig. 20 we observe that all showers essentially reproduce the NLO result for the second jet
(this also holds for the hardest jet). The results of the third jet show, however, rather large
di�erences between the showers, again as in the case of undecayed q̃ in the central region of
the detector. While Pythia ranges only slightly above the NLO prediction, the Herwig++
showers (in particular the default shower) predict higher rates around yj3 = 0.

These di�erences can again be attributed to a large extent to di�erences in the IS shower.
Turning o� ISR, the Dipole shower and Pythia predict (within O(10%)) identical yj3 distri-
butions. The Herwig++ default shower, however, still deviates by more than 20% from this
result. The pj3T curves for the Herwig++ showers are still nearly identical for pj3T > 100GeV,
while the di�erence to Pythia is reduced to < 10%. However, for soft jets the default shower
deviates by up to +15% from the other two shower MCs. To clarify if these e�ects are caused
solely by the missing truncated shower in Herwig++ or if the di�erences in the shower al-
gorithms (especially the size of the available phase space for radiation) are responsible for the
observed discrepancies would require more detailed studies.

A further interesting observable for the comparison of the jet structure of an event with a
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Figure 4: Feynman diagrams contributing to real emission matrix elements with qq initial states and an emitted
gluon. Diagrams which lead to soft and collinear divergencies are depicted in (a) and (b), the diagram in (c) is
IR finite.

file of the SM, in the MSSM model file no counterterms are specified. These have been added
according to the renormalization procedure described above. It has been checked explicitly that
this procedure renders the calculation UV finite. After canceling all UV divergencies by renor-
malization the IR divergencies remain. These will cancel against the IR divergencies of the real
emission diagrams by applying the Catani-Seymour subtraction formalism [64, 65].

The matrix elements of the real emission can be classified in two di�erent topologies. The
first topology contains diagrams with two quarks in the initial state and an additionally emitted
gluon:

qi qj � q̃i q̃j g . (4)

The t-channel diagrams contributing to this process are shown in Fig. 4. The second topology
is comprised of diagrams with a quark and a gluon in the initial state and an emitted, massless
antiquark. These diagrams are depicted in Fig. 5. Apart from implementing the process

g qi � q̃i q̃j q̄j (5)

it is important to include for i ⇥= j also

g qj � q̃i q̃j q̄i (6)

in order to account for all possible initial state configurations. Both topologies lead to IR/collinear
divergencies. Diagrams with qq initial states, which contain soft and collinear divergencies, are
collected in Figs. 4 (a) and (b). The diagrams with qg initial states which emit a massless
anti-quark, result in collinear divergencies only. The corresponding diagram is shown in Fig. 5
(a).

The soft and collinear divergencies are subtracted by the Catani-Seymour dipoles which
have been generated using the SuperAutoDipole 1.0 package [66, 67]. SuperAutoDipole
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Figure 5: Feynman diagrams contributing to real emission matrix elements with qg initial states. The diagram
in (a) gives rise to collinear singularities. The diagrams in (b) and (c) are IR finite. The diagrams in (c) can
contribute to the production of a squark and a resonant gluino.

itself provides an interface with the program MadGraph 4.4.30 [68, 69], which automatically
produces a code for the squared matrix elements of the real emission diagrams by calling the
HELAS subroutines based on the helicity amplitude formalism [70].
The dipoles needed to render the real emission matrix elements finite are organized in pairs of
potentially collinear partons with an additional reference to a spectator particle. For diagrams
with two quarks in the initial state this gives rise to twelve individual dipoles: The emitted
gluon can be collinear or soft and in each case any of the other three particles in the initial or
final state can serve as spectator particle. For diagrams with a quark and a gluon in the initial
state only three dipoles are necessary: The emitted antiquark can only become collinear to the
initial state gluon while the other three particles can act as the spectator particle. Hence, the
counterterms d⇥A which are subtracted from the squared real emission matrix elements read:

d⇥A
qq =

12�

i=1

Dqq
i and d⇥A

qg =
3�

i=1

Dqg
i . (7)

The real emission diagrams in Fig. 5 (c) have to be handled with care in parameter regions
where the gluino is heavier than one or both squarks in the final state. In this case these dia-
grams give rise to another kind of singularity since the intermediate gluino can be produced
on-shell. The subtraction procedure for these divergencies is described in detail in Sec. 2.2.

Having subtracted the counterterm d⇥A from the real emission matrix elements the IR
divergencies in the virtual corrections are still left. With the choice of dipoles as published in
[64, 65] the counterterms in Eq. (7) can be integrated analytically over the one-parton phase
space. This integration yields the so-called I-terms and PK-terms which can be evaluated in
the 2-particle phase space used for the Born matrix elements and virtual corrections. The former
contain all the 1/� poles that are necessary to cancel the poles in the virtual contributions. The
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• Standard Model has (so far) been spectacularly 
confirmed at the LHC	


• Monte Carlo event generation of (SM and BSM) 
signals and backgrounds plays a big part	


• Matched NLO and merged multi-jet generators 
have proved essential	


✤  Automation and NLO merging in progress	


✤ NNLO much more challenging	


• Still plenty of scope for new discoveries!
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