

BSM $\Phi \rightarrow \tau \tau$ search

23.09.2014, GK Workshop Bad Liebenzell Felix Frensch on behalf of the CMS collaboration

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Higgs Bosons in the MSSM

- 2 Higgs doublets in MSSM
- 8 degrees of freedom
 - \rightarrow 3 Gauge-Bosons W⁺, W⁻, Z
 - → 5 Higgs-Bosons
 - h, A, H, H⁺, H⁻
- On tree level Higgs masses defined by m_Δ and tanβ
 - \mathbf{m}_{A} mass of pseudoscalar A
 - tanβ ratio of the vacuum expectation values of the Higgs doublets
- Couplings to down-type quarks usually enhanced
- Pseudoscalar A decays into fermions
 - Motivation for the considered MSSM Higgs production processes (ggΦ, bbΦ) and ττ decay channels

Analyzed channels and datasets

eµ + eτ + µµ + µτ + ττ

■ 4.9 fb⁻¹ at 7TeV and 19.8 fb⁻¹ at 8TeV

T uses only 8TeV dataset (=18.3 fb⁻¹)

Shape analysis

Invariant di-τ mass used as final discriminator between signal and background

Paper:
 HIG-13-021

Analysis Flow

Triggers

Distinct triggers for each channel

- $\mu\tau$: $\mu > 17$ GeV + isolated $\tau > 20$ GeV
- e_{τ} : e > 22 GeV + isolated $\tau > 20$ GeV
- eµ : μ > 17(8) GeV + e > 8(17) GeV
- μμ : μ > 17 GeV + μ > 8 GeV
- $\tau\tau$: 2 isolated τ > 35 GeV

Reconstruction of Di-τ System

Determine invariant mass of di-τ system with maximum likelihood method

- Estimate of di-τ system, to be true for given value of m_π
- Inputs: four-vector information of visible leptons, x- and y- component of E_⊥ on event basis.
- Free Parameters: φ, $θ^*$, m_{vv} per τ (4-6 parameters)
- Full integration of kernel to determine maximum for given m₁
 - Scan of m_{π} from m_{τ} up to 2TeV
- 10-20% resolution of the reconstructed m_π mass depending on decay mode

Event selection

Two well reconstructed, isolated leptons of opposite sign:

channel	р _т	lηl	ρ _τ	 η
еμ	> 20 GeV (e/µ)	< 2.3 (e/µ)	> 10 GeV (µ/e)	< 2.3 (µ/e)
еτ	> 24 GeV (e)	< 2.1 (e)	> 20 GeV (t)	< 2.1 (t)
μμ	> 20 GeV (µ)	< 2.1 (µ)	> 10 GeV (μ)	< 2.1 (µ)
μτ	> 20 GeV (µ)	< 2.1 (µ)	> 20 GeV (τ)	< 2.3 (t)
ττ	> 45 GeV (τ)	< 2.1 (t)	> 45 GeV (τ)	< 2.1 (t)

eτ, μτ: M_τ < 30 GeV

• $\mu\mu$: Special BDT trained for rejection of $Z/\gamma^* \rightarrow \mu\mu$ events

Event categorization

Make use of production signatures to maximize sensitivity

0000

No further categorization to minimize model dependency

0000

Discrimination of signal from backgrounds

Invariant di- τ mass plots

Plots show the di-τ mass distribution in the μτ channel for both categories after performing the global fit

Here: S/B ≈ 0.1

Here: S/B ≈ 0.01

$H \rightarrow \tau \tau$: Cross section limits

Calculate σ^*BR limit on one process while the other is left floating freely

Expected limit is computed with a pseudo dataset including the SM Higgs boson at 125 GeV next to the nominal SM backgrounds

2D scan

- 2D scan performed in the ggΦ→ττ – bbΦ→ττ plane (40000 scan points at each mass)
- At each point compute: $\Delta(\chi^2) = \chi^2$ (bestfit) - χ^2 (point)
- Bestfit: $\Delta(\chi^2) = 0.00$ 68% CL: $\Delta(\chi^2) = 2.30$ 95% CL: $\Delta(\chi^2) = 5.99$

$H \rightarrow \tau \tau$: comparison with models

- Search for single narrow resonance
- Likelihood scan of $gg\Phi bb\Phi m_{\Phi}$ space projected to $gg\Phi bb\Phi$ plane
 - \blacksquare m_{Φ} from 90-1000 GeV scanned
 - Possibility to compare observation to model predictions

2D database

- All 40000 grid points for each mass are provided in a txt file
 - Four columns in txt file:

 $m_{_{\! \Phi}}$ ggFtt bbFtt D($\chi^2)$

Scans performed for different settings of the likelihoods

🛢 L (data	BG)	observed
📱 L (data	B	G+h _{sm})
📱 L (asimov _i	。 BG)	expected
📱 L (asimov _i	_{b+SMHiggs} B	G+h _{sм})

Masses:

- 125 GeV
- 90 250 GeV in 10 GeV
- 250 500 GeV in 25 GeV
- 500 1000 GeV in 50 GeV

From model independent to model dependent

From model independent to model dependent

Model dependent interpretations: Different statistical approaches

Paper Approach:

Take into account the discovered Higgs boson at 125 GeV

Hypothesis test of MSSM vs SM \rightarrow (h+H+A + BG) vs (h_{SM} + BG)

Limits on MSSM benchmarks

Summary

- **H** $\rightarrow \tau \tau$ is a excellent channel to search for additional Higgs bosons
- Full dataset of 2011 and 2012 have been analyzed
- Results interpreted in model independent ways as well as in various MSSM models

Awaiting BSM discovery in LHC RUN II

Backup

Trigger and Object Selection

Karlsruhe Institute of Technology

Objects

Muons and Electrons

- Muons Require tight particle-flow (PF) muon identification criteria
- Electrons Identified using a BDT discriminator
- Cuts against electrons coming from photon conversions
- Solation_{R<0.4} < 0.10·p_τ(e/μ) applying $\Delta\beta$ corrections to address pile-up

Taus

- Reconstructed using the Hadron plus Strips (HPS) algorithm
- **HPS** Combined $\Delta\beta$ 3Hit algorithm used for isolation
- Apply anti-muon and anti-electron discriminators
- PF Jets
 - B-Jets tagged by medium WP of "Combined Secondary Vertex" (CSV)
- MVA missing transverse energy E_{τ}
 - Improves resolution by about 40% in typical 2012 pile-up conditions

Triggers

		HLT Path	L1 Seed	Luminosity			
		$e au_{had}$ channel					
ετ 🚽	1 C	Ele15_CaloIdVT_CaloIsoT_TrkIdT_TrkIsoT_LooseIsoPFTau20	SingleEG12	1.1 fb			
		Ele15_CaloIdVT_CaloIsoT_TrkIdT_TrkIsoT_TightIsoPFTau20	SingleEG12	0.7 fb			
	J	Ele18_CaloIdVT_CaloIsoT_TrkIdT_TrkIsoT_MediumIsoPFTau20	SingleEG15	1.7 fb			
	5	Ele20_CaloIdVT_CaloIsoT_TrkIdT_TrkIsoT_MediumIsoPFTau20	SingleEG18	0.9 fb			
		Ele20_CaloIdVT_CaloIsoT_TrkIdT_TrkIsoT_MediumIsoPFTau20	SingleEG20	0.0023 fb			
		Ele20_CaloIdVT_CaloIsoRhoT_TrkIdT_TrkIsoT_LooseIsoPFTau20	1	0.7 fb			
		Ele22_eta2p1_WP90Rho_LooseIsoPFTau20	2	18.7 fb			
		$mu\tau_{had}$ channel					
	ſ	IsoMu12_LooseIsoPFTau10	SingleMu7	0.02 fb			
		IsoMu15_LooseIsoPFTau15	SingleMu10	2.0 fb			
μτ)	IsoMu15_eta2p1_LooseIsoPFTau20	SingleMu14_eta2p1	2.5 fb			
		IsoMu18_eta2p1_LooseIsoPFTau20	SingleMu16er	1.6 fb			
		IsoMu18_eta2p1_LooseIsoPFTau20	SingleMu16er	0.7 fb			
	L	IsoMu17_eta2p1_LooseIsoPFTau20	SingleMu14er	18.7 fb			
	$ au_{had} au_{had}$ channel						
ππ		DoubleMediumIsoPFTau35_Trk5_eta2p1	3	3.9 fb			
		DoubleMediumIsoPFTau35_Trk1_eta2p1	3	14.2 fb			
HLT Path Et Elei5.CaloIdVT.CaloIsoT.Trk Elei5.CaloIdVT.CaloIsoT.Trk Elei20.CaloIdVT.CaloIsoT.Trk Ele20.CaloIdVT.CaloIsoT.Trk Ele20.CaloIdVT.CaloIsoRhoT. Ele22.eta2p1.WP90Rho.LooseI Ele22.eta2p1.WP90Rho.LooseI IsoMu15.LooseIsoPFTau15 IsoMu15.eta2p1.LooseIsoPFTa IsoMu18.eta2p1.LooseIsoPFTa IsoMu18.eta2p1.LooseIsoPFTa IsoMu17.eta2p1.LooseIsoPFTa Tt DoubleMediumIsoPFTau35.Trk DoubleMediumIsoPFTau35.Trk DoubleMediumIsoPFTau35.Trk Mu8.Ele17.CaloIdL Mu8.Ele17.CaloIdL Mu8.Ele17.CaloIdI.CaloIsoVL Mu17.Ele8.CaloIdT.CaloIsoVL Mu17.Ele8.CaloIdT.CaloIsoVL Mu17.Ele8.CaloIdT.CaloIsoVL Mu17.Ele8.CaloIdT.CaloIsoVL Mu17.Ele8.CaloIdT.CaloIsoVL Mu17.Ele8.CaloIdT.CaloIsoVL Mu17.Ele8.CaloIdT.CaloIsoVL Mu17.Ele8.CaloIdT.CaloIsoVL Mu17.Ele8.CaloIdT.CaloIsoVL Mu17.Ele8.CaloIdT.CaloIsoVL Mu17.Ele8.CaloIdT.CaloIsoVL Mu17.Ele8.CaloIdT.CaloIsoVL Mu17.Ele8.CaloIdT.CaloIsoVL Mu17.Ele8.CaloIdT.CaloIsoVL Mu17.Ele8.CaloIdT.CaloIsoVL Mu17.Ele8.CaloIdT.CaloIsoVL Mu17.Ele8.CaloIdT.CaloIsoVL Mu17.Ele8.CaloIdT.CaloIsoVL	$e\mu$ channel	<i>e</i> μ channel					
	1	Mu8_Ele17_CaloIdL	MuOpen_EG12	0.9 fb			
		Mu8_Ele17_CaloIdT_CaloIsoVL	MuOpen_EG12	3.1 fb			
	Mu8_Ele17_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL	4	20.5 fb				
Ope		Mu17_Ele8_CaloIdL	Mu7_EG5	3.6 fb			
•	L	Mu17_Ele8_CaloIdT_CaloIsoVL	Mu12_EG5	0.3 fb			
		Mu17_Ele8_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL	Mu12_EG7	20.5 fb			
		$\mu\mu$ channel					
μμ -{	J	IsoMu17		1.1 fb			
	٦.	Mu13_Mu8	~	3.7 fb			
		Mul/_Mu8	Ll_DoubleMu_10_Open	19.4 fb			

¹ SingleIsoEG18er or SingleEG20

² SingleIsoEG18er or SingleIsoEG20er or SingleEG22

³ L1_DoubleTauJet44er or L1_DoubleJetC64

⁴ Mu3p5_EG12 or Mu0pen_EG12

Main triggers are highlighted

Trigger control plots

Electrons and Muons

- Muons (POG recommended)
 - Require tight particle-flow (PF) muon identification criteria

- Electrons (POG recommended)
 - Identified using a BDT discriminator
 - Cuts against electrons coming from photon conversions

- Isolation_{R<0.4} < 0.10·p_T(e/μ) (POG recommended definition) (except in eµ channel: Iso_{R<0.4} < 0.15·p_T(e/μ) in η < 1.479)
 - Applying $\Delta\beta$ corrections to address pile-up

$$Isolation_{R<0.4} = \sum p_T^{charged} (\Delta z < 2mm) + max(p_T^{h0} + p_T^{\gamma} - \Delta \beta, 0)$$

Trigger control plots

Reconstruction of τ 's with CMS

Decay Mode	BR	
$\tau \rightarrow evv$	17%	
$\tau \rightarrow \mu \nu \nu$	18%	
$\tau \rightarrow h\nu$	12%	
$\tau \rightarrow h h^0 \nu$	37%	
$\tau \rightarrow hhhv$	15%	

Reco of hadronic decay modes:

- Isolation (based on energy deposits in rings of ∆R≤0.5)
- Discrimination against e's (based on shower shape info and E/p)
- Discrimination against μ 's

Hadronic decaying Taus

Reconstructed using the Hadron plus Strips (HPS) algorithm

- Correct tau energy scale with the tau mass
 - Fitting MC to data → a shift in respect to data would indicate a incorrect tau energy scale

Hadronic tau Isolation

- Isolation defined as: $Isolation_{R<0.5} = \sum p_T^{charged} (\Delta z < 2mm) + max (p_T^{\gamma} \Delta \beta, 0)$
- Moved from MVA (=HCP 2012) approach to more simple HPS Combined $\Delta\beta$ 3Hit algorithm
 - Slightly better than MVA mainly due to loosened 'number of Hit requirement'
- After optimization in each channel:
 - Isolation_{R<0.5} < 1.5 GeV (for eτ, μτ),
 - Isolation_{$R<0.5} < 1.0 GeV (for <math>\tau\tau$)</sub>

Hadronic tau isolation

Isolation defined as: $Isolation_{R<0.5} = \sum p_T^{charged} (\Delta z < 2mm) + max (p_T^{\gamma} - \Delta \beta, 0)$

- Applying Δβ corrections to address pile up
- Comparison of MVA1 with new trained MVA2 (new since HCP2012)

Hadronic tau Isolation

New working point

Tau discriminator from leptons faking tauons

- Anti-muon discriminator
 - Working-points defined by different τ identification efficiencies and μ→τ fake rates
 - Different channels chose different WPs (optimizing sensitivity)
- Anti-electron discriminator
 - In HCP2012 a combination of two MVA discriminators has been used
 - New training with single MVA: MVA3 gives better e → tau fake rejection
 - Working-points defined by output of multivariate discriminator trained to remove e→τ fakes
 - Different channels chose different WPs (optimizing sensitivity)

Muons

- Muon candidates require to pass the tight particle-flow (PF) muon identification criteria
 - Global and PF muon
 - > 0 pixel hits
 - > 5 tracker layer hits
 - > 0 hits in muon system
 - > 1 matches segments
 - $\chi^2 / N_{DOF} < 10.0$ for global track fit
 - Transverse impact parameter of track reconstructed in pixel and strip silicon detectors d_{IP} < 2 mm with respect to the primary vertex</p>

■ Isolation_{R<0.4} < 0.10·p_T(μ) (expect in eµ channel: Iso_{R<0.4} < 0.15·p_T(µ) in η < 1.479)

Applying $\Delta\beta$ corrections to address pile up

 $Isolation_{R<0.4} = \sum p_T^{charged} (\Delta z < 2mm) + max(p_T^{h0} + p_T^{\gamma} - \Delta \beta, 0)$

Electrons

- Identified using a multivariate discriminator based on a BDT
 - Trained to separate electrons from jets faking electrons
 - Loose (eµ) and Tight (e τ) working points are defined
- Electron track associated to a hit in each layer of the Pixel detector which is crossed by the track
 - Removes electron candidates coming from photon conversions
- Reject electron candidate if track with opposite sign near and if both could be fitted to same vertex
 - Removes electron candidates coming from photon conversions

■ Isolation_{R<0.4} < 0.10·p_T(e) (expect in eµ channel: Iso_{R<0.4} < 0.15·p_T(e) in η < 1.479) ■ Applying $\Delta\beta$ corrections to address pile up Isolation_{R<0.4} = $\sum p_T^{charged} (\Delta z < 2mm) + max (p_T^{h0} + p_T^{\gamma} - \Delta \beta, 0)$

Other Objects

- NVA missing transverse energy E_{τ}
 - Improves resolution by about 40% in typical 2012 pile-up conditions
- Transverse mass M_{τ} (for $e\tau$, $\mu\tau$) and D_{τ} variable (for $e\mu$)
 - used to suppress various sources of backgrounds mainly W+jets
- PF Jets
 - p_T > 30 GeV, |η| < 4.7</p>
 - Require loose identification criteria to reject fakes
 - Loose working-point of "full ID" MVA discriminators against pile-up jets
 - Secondary Vertex" (CSV) Jets with $p_{T} > 20$ GeV and "Combined Secondary Vertex" (CSV) discriminator of d > 0.679 are considered b-tagged (medium WP)
Missing transverse energy E_{τ}

- - Utilizes the fact that pile-up predominately produces unclustered energy and low p_T jets while leptons and high p_T jets originate from hard-scatter interactions
 - Reduces the sensitivity to pile-up significantly
 - Improves resolution by about 40% in typical 2012 pile-up conditions
 - **Used for reducing backgrounds (**with \mathbb{E}_{T} based variables M_{T} and D_{z})

Z-recoil corrections are applied

- correct for residual differences in \not{E}_{τ} response and resolution between data and MC
- Applied to $Z/\gamma^* \rightarrow II$ (e, μ , τ), W+jets and signal samples

Transverse mass M_{T} and P_{L} variable

M_T is computed using the transverse mass of the electron (muon) plus the missing transverse energy of the event

$$M_{T} = \sqrt{\left(P_{T}^{\ell} + \not\!\!\!E_{T}\right)^{2} - \left(\left(P_{x}^{\ell} + \not\!\!\!E_{x}\right)^{2} + \left(P_{y}^{\ell} + \not\!\!\!E_{y}\right)^{2}\right)}$$

The quantity $D_{\zeta} = P_{\zeta} - 1.85 \cdot P_{\zeta}^{vis}$ utilizes the fact that the angle between the neutrinos and the visible tau decay products is typically small

$$P_{\zeta} = \vec{P}_T^{vis_1} + \vec{P}_T^{vis_2} + \not\!\!\!E_T$$
$$P_{\zeta}^{vis} = \vec{P}_T^{vis_1} + \vec{P}_T^{vis_2}$$

Both used to suppress various sources of backgrounds mainly W+jets

Jets

- Particle-flow jets, |η| < 4.7</p>
- Anti- k_{T} algorithm with distance parameter R=0.5
- Require jet candidates to pass a set of loose jet identification criteria
 - Rejection of fake jets
- Loose working-point of the "full ID" MVA-based jet identification discriminator
 - Suppress jets originating from pile-up
- Fastjet-p-based jet energy corrections applied in order to compensate pile-up effects
- Secondary Vertex" (CSV) discriminator of d > 0.679 are considered b-tagged (medium WP)
- Jets and b-tagged Jets are used for final event categorization

Event Selection

Event selection in eµ

- Pass any eµ trigger
- Two opposite sign leptons
- Electron:
 - Pass loose MVA based electron identification
 - $p_{T} > 10 \text{ GeV}, |\eta| < 2.3,$ $Iso_{R<0.4} < 0.10 \cdot p_{T} \text{ for } |\eta| > 1.479, Iso_{R<0.4} < 0.15 \cdot p_{T} \text{ for } |\eta| < 1.479$
- Muon
 - Passing tight PF muon identification
 - p₁ > 10 GeV, |η| < 2.1,</p>

 $Iso_{_{R<0.4}} < 0.10 \cdot p_{_{T}} \text{ for } |\eta| > 1.479, Iso_{_{R<0.4}} < 0.15 \cdot p_{_{T}} \text{ for } |\eta| < 1.479$

- One of the lepton is required to have p_T > 20 GeV with respect to the used trigger
- If >2 leptons in event \rightarrow chose the leptons with the highest sum $p_{\tau}(e) + p_{\tau}(\mu)$

$$P_{\zeta} - 1.85 \cdot P_{\zeta}^{\text{vis}} > -20 \text{ GeV}$$

Event selection in $e\tau$

- Pass any eτ trigger
- Two opposite sign leptons
- Electron
 - Tight MVA based electron identification
 - **p**_T > 24 GeV, $|\eta| < 2.1$, $|so_{R<0.4} < 0.10 \cdot p_{T}$
 - No second electron with loosened requirements

Tau

p_T > 20 GeV, $|\eta| < 2.3$, Iso_{R<0.5} < 1.5 GeV

Medium working-point of MVA3 anti-e discriminator

- Loose working-point of anti-μ discriminator
- If >2 leptons in event \rightarrow chose the leptons with the highest sum $p_{\tau}(e) + p_{\tau}(\tau)$

M₁ < 30 GeV</p>

Event selection in µµ

- Pass any μμ trigger
- Two opposite leptons
- Muon
 - Pass tight PF muon identification
 - $p_{T}(\mu_{1}) > 20 \text{ GeV}, \ p_{T}(\mu_{2}) > 10 \text{ GeV}, \ |\eta| < 2.1 (2.4 \text{ depending on used trigger}), \\ Iso_{R<0.4} < 0.10 \cdot p_{T} \text{ if } p_{T} > 10 \text{ GeV}, Iso_{R<0.4} > 0.15 \cdot p_{T} \text{ if } p_{T} > 20 \text{ GeV})$
- A BDT is trained to reject $Z/\gamma^* \rightarrow \mu\mu$ events, BDT_{$\tau\tau} > -0.35$ for B-tag and > -0.5 for no-B-tag category</sub>

Event selection in $\mu\tau$

- Pass any μτ trigger
- Two opposite sign leptons
- Muon
 - Tight PF muon identification
 - **p**_T > 20 GeV, $|\eta| < 2.1$, $|so_{R<0.4} < 0.10 \cdot p_{T}$
 - No second muon with loosened requirements

Tau

- **p**_T > 20 GeV, $|\eta| < 2.3$, Iso_{R<0.5} < 1.5 GeV
 - Loose working-point of the cut-based anti-e discriminator
 - Tight working-point of anti-μ discriminator
- If >2 leptons in event → chose the leptons with the highest sum $p_{\tau}(\mu) + p_{\tau}(\tau)$
- M₁ < 30 GeV</p>

Event selection in $\tau\tau$

- Pass ττ trigger
 - Parked datasets (di-tau trigger is used)
 - No jet is needed to trigger events
- Two opposite sign taus

Tau

- Pass medium working-point of HPS combined isolation 3-hits discriminator
- p_τ > 45 GeV, |η| < 2.3</p>
- Loose working-point of MVA3 anti-e discriminator
- If >2 taus in event \rightarrow chose taus with the lowest sum $Iso_{R<0.5}(\tau_1) + Iso_{R<0.5}(\tau_2)$

Background Estimation

Z/γ^* → ττ backgrounds estimations

- Embedding technique
 - Select $Z/\gamma^* \rightarrow \mu\mu$ events in data
 - Replace muons by simulated tau decays
 - Normalized to $Z/\gamma^* \rightarrow \mu\mu$ measured in control region
 - Use scale-factor method to obtain yield in $Z/\gamma^* \rightarrow \tau\tau$ after event selection by using MC for $Z/\gamma^* \rightarrow \tau\tau$ in control region and $Z/\gamma^* \rightarrow \mu\mu$ after event selection
- Small additional background fraction arises from events in which one tau escapes detection and the reconstructed e, μ , τ is due to a fake
 - **Taken from MC Z**/ $\gamma^* \rightarrow \tau \tau$

QCD background estimation

- General idea in all channels:
 - Find QCD dominated control region and correct it by subtracting other backgrounds
 - Extrapolate to QCD signal region
- ττ:
 - Measure fake rate scale factors in SS as ratio of anti-isolated/isolated
 - Apply factors to anti-isolated OS region to obtain OS isolated region (=signal region)
- eμ:
 - Using the fake-rate technique
 - Probability e_{fake} for loose electron candidates to pass electron ID and ISO is measured in QCD dominated control region
 - Categorization cuts and e_{fake} is applied to obtain the QCD background in b-tag and no-b-tag separately
- eτ, μμ, μτ:
 - Define OS and SS anti-isolated (invert isolation in e or μ) regions and SS isolated region
 - Measure ratio of OS/SS in anti-isolated region
 - Apply ratio to SS isolated region to obtain OS isolated region (=signal region)

W+jets background estimation

- Important background for $e\tau$ and $\mu\tau$
- Shape from MC; Normalization from data
- High M_{τ} sideband is build in each category by inverting the $M_{\tau} < 30$ GeV cut to $M_{\tau} > 70$ GeV
- The extrapolation factor of the ratio sideband/signalband is obtained by using MC W+jets

$Z/\gamma^* \rightarrow$ ee and $Z/\gamma^* \rightarrow \mu\mu$ background estimation

μμ:

- Largest background for μμ
- Perform fit of DCA: Z/H $\rightarrow \tau\tau$ and Z $\rightarrow \mu\mu$ to data
- Derive (BDT_{red}, m_{µµ})–dependent scale-factors for Z $\rightarrow \mu\mu$ MC
- Before the fit is performed QCD, W+jets, tt, single top and di-boson backgrounds are subtracted from data

- eµ, eτ, µτ and ττ:
 - Modeled using MC
 - In $e\tau$ corrected for $e \rightarrow \tau$ fakes

BDT based MVA selection

- Following preselection and event categorization, BDT based MVA selection is applied
- Variables used as an input to BDT
 - Inter-muon DCA significance
 - Dimuon pt to the scalar sum of muons' pt ratio
 - Dimuon eta
 - Azimuthal angle between missing pt and mu+ pt
 - Decay angle of mu+ in the rest frame of dimuon system (Z candidate)
 - Angle between by mu+ pt and dimuon production plane in the rest frame of the dimuon system
 - Validity of collinear approximation (binary variable)
- Event is accepted in the final sample if it passes cut on BDT discriminant
 - Optimized separately for each event category (b-tag & no-b-tag) and data period (7TeV & 8TeV)

Other background estimation

tī

- Shape from MC; Normalization from data
- Derive MC correction factors in eµ t̄t control region
 - Correction factors applied to tt MC in all channels
- TeV MC is normalized to measured inclusive cross-section from CMS
- 8TeV MC is normalized to NNLO

Single top and di-boson

- Contributions are small
 - 3% in μτ 8TeV b-tag
- Fully rely on MC

Control plots for eµ (postfit)

Control plots for et (postfit)

Control plots for µµ (postfit)

Control plots for µµ (postfit)

observed

Ζ→ττ

🔲 tī

QCD

Ζ→μμ

📖 bkg. uncertainty

electroweak

Control plots for $\mu\tau$ (postfit)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CMS Preliminary, \sqrt{s} = 8 TeV, L = 19.8 fb⁻¹

Events

5000

4000

3000

2000

1000

ĺО

Control plots for $\tau\tau$ (postfit)

Invariant Mass Plots

Invariant mass plots – eµ

Invariant mass plots – eτ

Invariant mass plots – µµ

Invariant mass plots – $\mu\tau$

Invariant mass plots – $\tau\tau$

Uncertainties

No changes with respect to PAS **HIG-13-021**

Yield uncertainties

- trigger, identification, isolation efficiency
 - 2% for electrons
 - 2% for muons
 - 6% for taus (identification efficiency)
 - **3%** (4.5% per leg) for the hadronic tau leg in $e\tau$ and $\mu\tau$ ($\tau\tau$) trigger
- $e \rightarrow \tau$ and $\mu \rightarrow \tau$ fake rates
 - 30% for both coming from scale-factor measurements ($e \rightarrow \tau$) and Tau POG recommendations ($\mu \rightarrow \tau$)
- Jet energy scale
 - Provided as function of p_{τ} and η by JetMET POG
- B-tag scale-factors
 - Provided by the BTV POG
- Luminosity
 - 4.4%

Yield uncertainties

- Z/γ*→II
 - eµ, eτ, μτ, ττ: 5%
 - μμ: Obtained by varying the DCASig(2μ) shape templates within uncertainties
- Z/γ*→ττ
 - **5%** for no-b-tag category
 - 15% for b-tag category
- tt, single top, di-boson
 - 15% from cross-section uncertainty
- W+jets
 - Normalization uncertainty: Obtained from data using the high M_T sideband method
 - Extrapolation uncertainty: Obtained by using the 'Ersatz' method

Yield uncertainties

QCD

Normalization uncertainty:

$$\delta_{norm} = \sqrt{\delta_{stat}^2 + \delta_{extra}^2}$$

- $\delta_{stat} : Statistical uncertainty of yield of the QCD dominated region$
- δ_{extra} : Uncertainty of the extrapolation factors

Channel	$\sqrt{s} = 7$ TeV data		$\sqrt{s} = 8$ TeV data	
	no–B–tag category	B-tag category	no–B–tag category	B-tag category
eτ _{had}	10%	20%	10%	20%
$\mu \tau_{had}$	10%	20%	10%	20%
$ au_{had} au_{had}$	- \ }	-	35%	35%
еµ	30%	$12\%^{1}$	30%	$9\%^{1}$
μμ	15%	50%	10%	25%

¹ additional uncertainty specific to the B-tag category, added in quadrature to the 30% uncertainty attributed to the no-B-tag category

Shape uncertainties

- e, μ, τ energy scale
 - 1% (2.5%) for electrons in the barrel (endcap)
 - 1% for muons in the mm channel (in all others negligible)
 - 3% for taus
- Z-recoil correction
 - Uncertainties on $\not{\not{E}}_{\tau}$ resolution and response are accounted for by varying the Z-recoil corrections parameters within the uncertainties determined within the method

Statistical Treatment

No changes with respect to PAS **HIG-13-021**

Bin-by-bin (bbb) uncertainties

- Allowed bbb for all backgrounds in all channels
- Add bbb uncertainty if the bin-error/bin-content > 5%
 - 2003 added
- Drop bbb uncertainty if pulls of bin-by-bin uncertainties • size of the prefit uncertainty < 10% of bin-content</p>
 - 1696 dropped

Tail-fitting

 For the high mass tails (typically M_π
> 150 GeV) of several backgrounds an analytic fit is performed

 $f = \exp[-m_{\tau\tau}/(c_0 + c_1 m_{\tau\tau})]$

- Used to estimate background in bins where MC-statistic is limited
- Uncertainties on the shape of the fit function are accounted by adding two shape nuisance parameters (corresponding to the two free parameters in the fit)
- Corrects for possible systematic miss modeling of the high mass tails

	no-btag	btag
e-mu (7TeV)	EWK,ttbar,Fakes	EWK,ttbar
e-mu (8TeV)	EWK,ttbar,Fakes	EWK,ttbar
e-tau (7TeV)	QCD,W	-
e-tau (8TeV)	QCD,TT,W	QCD,TT,W
mu-tau (7TeV)	QCD,W	QCD
mu-tau (8TeV)	QCD,TT,W	TT,W
tau-tau (8TeV)	QCD	QCD

Goodness of Fit

No changes with respect to PAS **HIG-13-021**

Goodness-of-fit test

- The Goodness-of-fit test checks how well our statistical model describes the observation (blue arrow)
 - In a simple assumption it could be compared to a χ^2 test

Synchronization

No changes with respect to PAS **HIG-13-021**

Synchronization

- Idea is to have at least two independent groups looking at each channel
 - Both groups do the complete analyses till delivering datacards
 - Used as independent cross checks
 - Used to debug

Synchronization of the expected Limit in the $m_{_{\!A}}$ -tan β plane

Synchronization of the expected Limit in the $m_{_{\!A}}$ -tan β plane

Synchronization of the observed Limit in the $m_{_{\!A}}\text{-}tan\beta$ plane

Synchronization of the observed Limit in the $m_{_{\!A}}$ -tan β plane

Results

2D crosscheck with Feldman-Cousins

- Black lines are taken from 68% and 95% contours of the likelihood scan
- Dark and light blue is 68% and 95% contours of Feldman-Cousins
- Same grid has been used (200*200 points)
 - For each gridpoint FC toys have to be thrown
- Took >20h to run FC with low number of toys (O(50))
- Agreement with likelihood scan is good

MSSM benchmark scenarios

- Following a paper by M. Carena et al.: "MSSM Higgs boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle" - arXiv:1302.7033
- Seven (CP conserveing) scenarios are proposed which camin corporate a Higgs at 125 GeV while maintaining consistency with experimental results
 - \mathbf{m}_{h}^{mod+} and \mathbf{m}_{h}^{mod-} : allowed paramter space is maximized
 - **m** $_{h}^{mod+}$: better agreement with (g-2) $_{\mu}$ measurement
 - **m**_h^{mod-}-: better agreement with BR(b \rightarrow s γ) measurement
 - **light-stau**: enhances the $h \rightarrow \gamma \gamma$ rate due to suppression of $h \rightarrow bb/\tau \tau$ rate
 - Motivated by excess in ATLAS measurement
 - **light-stop**: suppression of the $gg\Phi$ rate due to the presence of light stop
 - tauphobic: light scalar Higgs boson with suppressed couplings to down-type fermions
 - Iow-m_H: heavy Higgs boson at 125GeV. Light scalar below LEP due to reduced couplings to vector bosons.

MSSM benchmark scenarios

	Scenario				
Parameter	m_h^{\max}	$m_h^{\mathrm{mod}+}$	$m_h^{\text{mod}-}$		
m_A	90-1000 GeV	90-1000 GeV	90-1000 GeV		
tanβ	0.5-60	0.5-60	0.5-60		
M _{SUSY}	1000 GeV	1000 GeV	1000 GeV		
μ	200 GeV	200 GeV	200 GeV		
M_1	(5/3) $M_2 \tan^2 \theta_W$	(5/3) $M_2 \tan^2 \theta_W$	(5/3) $M_2 \tan^2 \theta_W$		
M_2	200 GeV	200 GeV	200 GeV		
X_t	2 M _{SUSY}	$1.5 M_{SUSY}$	-1.9 M _{SUSY}		
A_b, A_t, A_τ	$A_b = A_t = A_\tau$	$A_b = A_t = A_\tau$	$A_b = A_t = A_\tau$		
m _ğ	1500 GeV	1500 GeV	1500 GeV		
$m_{\tilde{l_3}}$	1000 GeV	1000 GeV	1000 GeV		

*light-stop and m_h^{max} differ slightly from those proposed in original paper on previous slide

	Scenario				
Parameter	light-stop	light-stau	tau-phobic	low-M _H	
m_A	90-600 GeV	90-1000 GeV	90-1000 GeV	110 GeV	
tanβ	0.7-60	0.5-60	0.9-50	1.5-9.5	
M _{SUSY}	500 GeV	1000 GeV	1500 GeV	1500 GeV	
μ	400 GeV	500 GeV	2000 GeV	300-3100 GeV	
M_2	400 GeV	200 GeV	200 GeV	200 GeV	
M_1	340 GeV	(5/3) $M_2 \tan^2 \theta_W$	(5/3) $M_2 \tan^2 \theta_W$	(5/3) $M_2 \tan^2 \theta_W$	
X_t	2 M _{SUSY}	$1.6 M_{SUSY}$	2.45 M _{SUSY}	$2.45 M_{SUSY}$	
A_b, A_t, A_τ	$A_b = A_t = A_\tau$	$A_b = A_t, A_\tau = 0$	$A_b = A_t = A_\tau$	$A_b = A_t = A_\tau$	
$m_{\tilde{g}}$	1500 GeV	1500 GeV	1500 GeV	1500 GeV	
$m_{\tilde{l}_3}$	1000 GeV	245 GeV	1000 GeV	1000 GeV	

m_{A} -tan β Limits – technical

- Chose a certain MSSM Higgs Sector model (here mhmax)
 - \bullet σ , BR and mass for each (neutral) Higgs-Boson is then defined
- At each m_A/tanβ point the signal constitutes of the contribution of the three neutral Higgs-Bosons
- The final shape template for a certain m_A /tan β point is obtained by summing the individual templates up over all Higgs-Bosons weighting them by σ *BR/tan β
 - The deviation by $tan\beta$ has purely technical reason to obtain limits on $tan\beta$
 - Individual templates are obtained by using horizontal template morphing
 - MC signal samples range from 90 to 1000 GeV

From model independent to model dependent

From model independent to model dependent

MSSMvsBG

- In the past a MSSM signal in addition to non Higgs SM background was tested against the non Higgs SM background
 - Presence of a SM like Higgs boson at 125 GeV was not taken into account

$$q_{MSSMvsBG} = -2\ln\frac{L[data|\mu \cdot s + BG]}{L[data|\hat{\mu} \cdot s + \hat{BG}]}$$

The quantity "q_{MSSMvsBG}" is called Profile Likelihood

- s = h+H+A (fully determined MSSM parameter space point)
- BG = Standard Model backgrounds, but not the SM Higgs boson.
 - Examples: ZTT, ttbar, VV, QCD, ZLL, W
- The denominator is maximized for all μ >0
- The nominator is maximized for a specific μ (we only test μ =1)
- Used statistical methods:
 - Asymptotic CL_s (Profile likelihood as test-statistic)

Calculating the limit

- Calculate at each (m_A/tanβ) point the asymptotic CL_s; scanning for each m_A from high tanβ to low tanβ (illustrated for m_A=700GeV)
 - $CL_s > 0.05 \rightarrow not excluded$
 - $CL_s < 0.05 \rightarrow excluded$
 - Separately for -2σ, -1σ, exp, +1σ, +2σ, obs exclusion curves
- Use interpolation for points inbetween
 (illustrated for tanβ = 30 to 35; observed limit)

Limits in $tan\beta$ -m_A plane comparison of expected Limits

MSSM m_h^{max} scenario

Cross check with same hypotheses

Tested is the agreement between the old and the new statistical approach using the same alternative (h+A+H + BG) and the same null hypothesis (BG)

Good agreement - already with low number O(5000) of toys for full $CL_s!$ (More toys are used for the published plots)

Construction of the CL_s-like limit

Example: $m_A = 300 \text{ GeV}$, m_h^{max} scenario

Why MSSMvsSM?

- In any case BG only is the wrong null hypothesis, since there is a Higgs boson at 125 GeV (> 3σ in H $\rightarrow \tau\tau$ alone).
- Question here: is it the SM or a MSSM Higgs boson (→ test of different hypotheses)?
 - E.g. single Higgs boson (like in SM) versus three Higgs bosons (like in MSSM).
- Using the old approach, MSSMvsBG, the presence of a single Higgs boson at 125 GeV can favor the MSSM hypothesis over the BG only hypothesis for a large parameter space.
 - Results cannot be interpreted any more.
- This is explicitly shown in an extreme example on slide 123.
 - Used pseudo-dataset with h_{SM}+BG.
 - Scaled 8TeV lumi to 500 fb^{-1} to make effect plain clear.

Signal templates ($m_A = 800 \text{GeV}$) for different tan β

- 📕 μτ no-b-tag 8 TeV
- Shown is the ggH yield as a combination of all the neutral MSSM Higgs Bosons **Φ=h+A+H**
- Events in m_π < 300 GeV mainly originate from h</p>
- Events in m_π > 300 GeV mainly originate from A and H

Masses:

- H and A ~ 800 GeV
 - h ~ 130 GeV

At high m_{Δ} and low tan β the gg \rightarrow h contributes the most to the exclusion.

For small A/H peaks the shape looks similar to a 125 GeV Higgs boson one
 If sensitivity for the h is reached, the BG only expected limit will exclude the MSSM plane down to low tanβ, since h is independent from tanβ.

MSSMvsSM and MSSMvsBG scaled to 500fb⁻¹

The expected limit is BG only. For low $tan\beta$ and high m_A it's driven by the little h which σ *BR is pretty constant.

A and H have negligible σ in this regions.

The expected limit includes additional to the BG a SM Higgs boson at 125 GeV.

Is this only a future issue (with more lumi)?

Answer is clearly NO!

- In high m_A the -2σ already reaches sensitivity to the h peak.
- Here σ*BR(A+H) << σ*BR(h) therefore h_{SM} can fake MSSM since A+H peak is negligible small.
- Effect visible as a broad
 -2 sigma band.

Why MSSMvsSM: Conclusion

- For high m_A and medium to low tan β the little Higgs h of the gluongluon fusion process dominates the contribution to the exclusion limit.
- In this region the A/H peak is small.
- So for testing BG against MSSM+BG a SM Higgs signal will be assigned to the MSSM+BG hypothesis rather than to the BG only hypothesis and therefore we see a "fake" discovery.
 - We are testing two (possible) false hypothesis against each other. (MSSM not yet discovered, and BG only no longer true)
- In contrast: For testing SM+BG against MSSM+BG a SM Higgs signal will NOT be assigned to the MSSM+BG hypothesis but to the SM+BG hypothesis

Why is the MSSMvsBG in some regions more sensitive than the MSSMvsSM and vice versa?

- Quantity CL for expected limit (simplified):
 - $CL_{s}(MSSMvsBG) = L(asimov_{BG} | h+A+H + BG) / L(asimov_{BG} | BG)$ $\approx L(asimov_{RG} | h+A+H + BG)$
 - CL_s(MSSMvsSM) = L(asimov_{BG+hSM} | h+A+H + BG) / L(asimov_{BG+hSM} | h_{SM} + BG)
 - \approx L(asimov_{BG+hSM} | h+A+H + BG)

Why is the MSSMvsBG in some regions more sensitive than the MSSMvsSM and vice versa?

h_{SM} and h+A+H shape look different:
 L(asimov_{BG} | h+A+H + BG) > L(asimov_{BG+hSM} | h+A+H + BG)
 CL_s(MSSMvsBG) > CL_s(MSSMvsSM)

→ MSSMvsSM has lower CL_s therefore is more sensitive!

This is true for regions with Shape of h, A or H \neq shape of h_{SM}

Why is the MSSMvsBG in some regions more sensitive than the MSSMvsSM and vice versa?

m_A = 140 GeV / tanβ = 1:
 m_h = 85.2 GeV, m_H = 203.8 GeV

h_{SM} and h+A+H shape look similar:
 L(asimov_{BG} | h+A+H + BG) < L(asimov_{BG+hSM} | h+A+H + BG)
 CL_s(MSSMvsBG) < CL_s(MSSMvsSM)

→ MSSMvsBG has lower CL_s therefore is more sensitive!

This is true for regions with Shape of h, A or H \approx Shape of h_{SM}

Why are we senstive to low $tan\beta$ regions?

- For low m_A the σ*BR has at around tanβ=4 (exact value depends on m_A). Here we have destructive interference in the gluon-gluon fusion loop. For lower and higher tanβ the σ*BR rises.
- On the right an example is shown for the MSSM m_h^{max} scenario at m_A = 140 GeV

Why do we reach maximum sensitivity at ~140GeV?

- The acceptance*signal_{eff} is increasing for increasing m_A and fixed tanβ
- The σ^*BR is falling for increasing m_A and fixed tan β
- The product of both leads to a maximum at around 140 GeV
- Used degenerated mass mode
 - $m_{A} > 130 \text{GeV} \rightarrow \text{take A+H}$
 - m =130GeV → take h+A+H
 - m_{Δ} <130GeV \rightarrow take h+A

Theory Tools

HIGLU

- http://arxiv.org/abs/hep-ph/9510347
- 📕 ggh@ nnlo
 - http://arxiv.org/abs/hep-ph/0201206, http://arxiv.org/abs/hep-ph/0208096
- bbh@ nnlo (bbh 5flavour)
 - http://arxiv.org/abs/hep-ph/0304035
- bbh 4flavour
 - http://arxiv.org/abs/hep-ph/0309204
- SusHi
 - http://arxiv.org/abs/1212.3249
- FeynHiggs
 - http://arxiv.org/abs/hep-ph/9812320, http://arxiv.org/abs/hep-ph/0611326, http://arxiv.org/abs/hep-ph/0212020, http://arxiv.org/abs/hep-ph/9812472
- HDecay
 - http://arxiv.org/abs/hep-ph/9704448
- Santander matching
 - http://arxiv.org/abs/1112.3478

Workflow for creation of MSSM scenario files

