

Light Stop Decay in the MSSM with Minimal Flavour Violation

in collaboration with M. Mühlleitner, JHEP 1104:095,2011 Eva Popenda | 5.10.2011

INSTITUTE FOR THEORETICAL PHYSICS

www.kit.edu

Outline

Introduction and Motivation

- 2 The FCNC decay ${ ilde t}_1 \ o \ c \ + \ { ilde \chi}_1^0$ at tree level
- One-loop calculation and renormalisation
- ④ Numerical analysis
- Conclusions

Introduction

- Precision measurements in flavour physics:
 - In agreement with predictions of Standard Model (SM)
 - Observed flavour violation can be described by Cabibbo-Kobayashi-Maskawa (CKM) mechanism of SM
 - ➡ New Physics cannot contain much more flavour violation than SM
- Minimal supersymmetric extension of SM (MSSM):

In general many new flavour violating sources

- = "New Physics Flavour Problem"
- Minimal Flavour Violation (MFV):

Provides solution, agrees with precision measurements

- All flavour changing transitions are governed by the CKM matrix
- No flavour changing, neutral currents (FCNC) at tree level at $\mu = \mu_{MFV}$

Supergravity models

Flavour independent scalar mass terms at high scale M_P : MFV arises naturally

FCNC decay ${\widetilde t_1} \ ightarrow \ c \ + \ {\widetilde \chi_1^0}$

Name	Spin 0	Spin 1/2	Mass eigenstates
Higgsino	H_d^0, H_u^0	$\tilde{H}^0_d, \ \tilde{H}^0_u$	
Wino	W ⁰	Ŵ⁰	$ ilde{\chi}^{0}_{1} ilde{\chi}^{0}_{2} ilde{\chi}^{0}_{3} ilde{\chi}^{0}_{4}$
Bino	B^0	\tilde{B}^0	
Stop	\tilde{t}_L, \tilde{t}_R	t_L, t_R	$\tilde{t}_1 \tilde{t}_2$

• Light stop \tilde{t}_1 arises naturally

• In MFV no tree level coupling $\tilde{t}_1 - c - \tilde{\chi}_1^0$ at μ_{MFV} \Rightarrow Decay mediated via one-loop diagrams with charged particles in loops

FCNC decay ${ ilde t}_1 \ o \ c \ + \ { ilde \chi}_1^0$

Name	Spin 0	Spin 1/2	Mass eigenstates
Higgsino	H_d^0, H_u^0	$\tilde{H}^0_d, \ \tilde{H}^0_u$	
Wino	W ⁰	Ŵ⁰	$ ilde{\chi}^{0}_{1} ilde{\chi}^{0}_{2} ilde{\chi}^{0}_{3} ilde{\chi}^{0}_{4}$
Bino	B ⁰	\tilde{B}^0	
Stop	\tilde{t}_L, \tilde{t}_R	t_L, t_R	$\tilde{t}_1 \tilde{t}_2$

• Light stop \tilde{t}_1 arises naturally

- In MFV no tree level coupling t
 ₁ − c − χ
 ₁⁰ at μ_{MFV} ⇒ Decay mediated via one-loop diagrams with charged particles in loops
- Suppressed by small CKM matrix elements: $|V_{cb}| = 0.04$
- For scenarios with light \tilde{t}_1 with $m_c + m_{\tilde{\chi}_1^0} < m_{\tilde{t}_1} < m_W + m_b + m_{\tilde{\chi}_1^0}$

 \Rightarrow Dominant decay mode: $\tilde{t}_1 \rightarrow c + \tilde{\chi}_1^0$

Phenomenology

- Exclusion limits from Tevatron assume $BR(\tilde{t}_1 \rightarrow c + \tilde{\chi}_1^0) = 1$
 - Analysis of 2 c-jets and large MET final state

Phenomenology

KIT Karbruhe Institute of Technology

- Exclusion limits from Tevatron assume $BR(\tilde{t}_1 \rightarrow c + \tilde{\chi}_1^0) = 1$
 - Analysis of 2 c-jets and large MET final state

Light stop searches in this scenario

- Light stops can be discovered at LHC $pp \rightarrow \tilde{t}_1 \tilde{t}_1^* b \bar{b}, \tilde{t}_1 \rightarrow c + \tilde{\chi}_1^0$ Signature: Large MET + 2 b-flavoured jets [Bornhauser, Drees, Grab & Kim '10]

Phenomenology

- Exclusion limits from Tevatron assume $BR(\tilde{t}_1 \rightarrow c + \tilde{\chi}_1^0) = 1$
 - Analysis of 2 c-jets and large MET final state
- Light stop searches in this scenario
 - Light stops can be discovered at LHC $pp \rightarrow \tilde{t}_1 \tilde{t}_1^* b \bar{b}, \tilde{t}_1 \rightarrow c + \tilde{\chi}_1^0$ Signature: Large MET + 2 b-flavoured jets
 - Stop decay length measurements: CKM suppression in MFV \rightarrow large \tilde{t}_1 lifetimes Test minimal flavour violation by observing secondary vertices

Existing work

- Approximate calculation:
- Calculation with no FCNC at high scale MP
- Taking into account only leading log $\Rightarrow \ln(M_P^2/M_W^2)$
- In this work:
 - Complete one-loop calculation of ${ ilde t}_1 o c + { ilde \chi}_1^0$ in MFV
 - Full renormalization program, including finite non-logarithmic terms

 \Rightarrow Study importance of neglected non-logarithmic pieces in previous work

5.10.2011 5/15

[Bornhauser, Drees, Grab & Kim '10]

[Hikasa & Kobayashi '87]

[Hiller & Nir '08]

Resummation

Assumption of MFV not invariant under RGE's

- [D'Ambrosio, Giudice, Isidori, Strumia '02]
- Weak interactions affect squark and quark mass matrices differently
- Squark and quark mass matrices cannot be diagonalized simultaneously
- Top superpartner receives admixture from charm superpartner

$$\Rightarrow$$
 FCNC coupling between $\tilde{t}_1 - c - \tilde{\chi}_1^0$ at tree level

$$\tilde{t}_1$$
 \neq 0 at any $\mu \neq \mu_{MFV}$

- Solving renormalization group equations (RGE) for scalar soft SUSY breaking squark masses: Resummation of large logarithm
- Exact one-loop result = First order in expansion in powers of α

$$\underline{\alpha} \left(A_1 \log + A_0 \right) + \underline{\alpha^2} \left(B_2 \log^2 + \underline{B_1 \log} + B_0 \right) + \underline{\alpha^3} \left(C_3 \log^3 + \ldots \right) + \ldots$$

- Comparison of exact one-loop result and tree level FV decay:
 - ⇒ Estimate importance of resummation of large logarithms

Calculation: Tree level

In MFV the decay is forbidden at $\mu = \mu_{MFV}$:

What does that mean for corresponding expressions?

Flavour mixing in the SM:

 $\overline{q_L} m q_R$ with $q_L = U^{qL} q^{(m)} \quad q_R = U^{qR} q^{(m)} \quad q = u, d$

- Unitary Matrices $U^{qL\dagger}U^{qL} = 1_{3x3}$
- $U^{qL,R}$ diagonalize mass matrix m: $U^{uL} m U^{uR} = m_{\text{Diag}}$
- CKM-Matrix $V^{CKM} = U^{uL\dagger} U^{dR}$
- No further flavour transitions possible in SM

Calculation: Tree level

Flavour- & RL-mixing in MSSM:

$$\begin{pmatrix} \tilde{u}_{1} \\ \tilde{c}_{1} \\ \tilde{t}_{1} \\ \tilde{u}_{2} \\ \tilde{c}_{2} \\ \tilde{t}_{2} \end{pmatrix} = \begin{pmatrix} Squark- \\ mixing- \\ matrix : \widetilde{W} \\ (6 \times 6) \end{pmatrix} \begin{pmatrix} \tilde{u}_{L} \\ \tilde{c}_{L} \\ \tilde{u}_{R} \\ \tilde{c}_{R} \\ \tilde{t}_{R} \end{pmatrix}$$

Factorization in MFV:

- Unitary matrix $\widetilde{W}^{\dagger}\widetilde{W} = \mathbf{1}_{6x6}$
- Diagonalizes mass matrix: $\widetilde{W}^{\dagger}M^{\widetilde{q}}\widetilde{W} = M^{\widetilde{q}}_{\text{Diag}}$
- In general: Many, new flavour violating sources

$$\widetilde{W} = \begin{pmatrix} U^{uL} & 0 \\ 0 & U^{uR} \end{pmatrix} \begin{pmatrix} \cos \theta_{\widetilde{u}_i} & \sin \theta_{\widetilde{u}_i} \\ -\sin \theta_{\widetilde{u}_i} & \cos \theta_{\widetilde{u}_i} \end{pmatrix} = U \cdot \underbrace{W}_{\text{flavour diagonal}}$$

+ Process vanishes at tree level: $\widetilde{t}_1 \quad \cdots \quad \widetilde{t}_1 \quad \sim W_{ct} = 0$

One-loop: Feynman diagrams & Divergencies

Field renormalization

At one-loop level 3 types of diagrams contribute:

 $\tilde{\chi}_1^0$

Squark self-energies

Quark self-energies

Divergencies

ĩ

Divergencies

Vertex diagrams

 $\tilde{\chi}_1^0$

1. Field renormalization

Divergencies

On-shell scheme

Propagator in higher orders:

$$\frac{i}{k^2 - m^2} \rightarrow \frac{i}{k^2 - m^2 + \hat{\Sigma}}$$

 On-shell renormalization condition: m keeps meaning of physical mass

$$\hat{\Sigma}(m^2) = 0$$

Field renormalization

Vertex Counterterm

At one-loop level 3 types of diagrams contribute:

Mixing matrices

• Renormalization of quark $U^{qL,R}$ and squark mixing matrices \widetilde{W} necessary

$$U_{ij}^{(0)} = (\delta_{ik} + \delta U_{ik})U_{kj} \qquad \widetilde{W}_{su}^{(0)} = (\delta_{st} + \delta \widetilde{W}_{st})\widetilde{W}_{tu}$$

MFV imposed on U, \widetilde{W} at scale μ_{MFV} U, \widetilde{W} unitary \Rightarrow Antihermitian counterterms:

$$\delta U_{ik} = \frac{1}{4} (\delta Z_{ik} - \delta Z_{ki}^*) \qquad \delta \widetilde{W}_{st} = \frac{1}{4} (\delta \widetilde{Z}_{st} - \delta \widetilde{Z}_{ts}^*)$$

[Denner & Sack '90]

• Finite part of counterterm depends on renormalization scheme:

Minimal Subtraction \Rightarrow gauge independent

[Degrassi, Gambino, Slavich '06]

$$\delta U_{ik} = \frac{1}{4} (\delta Z_{ik}^{Div} - \delta Z_{ki}^{*Div})_{|\rho^2=0} \qquad \delta \widetilde{W}_{st} = \frac{1}{4} (\delta \widetilde{Z}_{st}^{Div} - \delta \widetilde{Z}_{ts}^{*Div})$$

 \Rightarrow Result depends on MFV scale μ_{MFV}

Results: Formulas & Scenarios

$$\Gamma(\tilde{t}_1 \to c \tilde{\chi}_1^0) = \frac{g^2}{16\pi^2} \frac{(m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0})^2}{m_{\tilde{t}_1}^3} |F_B|^2$$

Complete one-loop calculation:

$$F_R \approx \dots V_{cb} V_{tb}^* \dots \log \frac{\mu_{MFV}^2}{m_{loop}^2} + \text{'finites'}$$

Calculation by Hikasa/Kobayashi:

$$F_R^{H/K} \approx \dots V_{cb} V_{tb}^* \dots \log \frac{M_P^2}{m_W^2}$$

For numerical analysis: mSUGRA framework

- Flavour independent parameters at GUT scale $M_{GUT} = 10^{16} \text{GeV} = \mu_{MFV}$:
- Scenarios with very light stop: $\tilde{\chi}_1^0$ LSP and \tilde{t}_1 NLSP

[SPheno, Porod '03] [SOFTSUSY, Allanach '02]

- \Rightarrow possible decay modes ${ ilde t}_1 o c + { ilde \chi}_1^0$
 - $\begin{aligned} \tilde{t}_1 &\to u + \tilde{\chi}_1^0 \\ \tilde{t}_1 &\to \tilde{\chi}_1^0 \, b \, f \bar{f} \end{aligned}$

dominating $V_{cb} \approx 0.04$ suppressed by $V_{ub} \approx 0.003$ suppressed due to phase space

Results: Widths

Comparison of exact one-loop formula to approximation by H/K

$$m_{ ilde{t}_1} = 130 \; {
m GeV} \quad m_{ ilde{\chi}^0_1} = 92 \; {
m GeV} \quad m_{ ilde{\chi}^+_1} = 175 \; {
m GeV}$$

Γ ^{1-loop} [GeV]	Г ^{н/к} [GeV]	
5.862 10 ⁻⁹	6.446 10 ⁻⁹	

[SUSY-HIT, Djouadi, Mühlleitner, Spira '07]

- Exact and approximate decay width differ by O(10)%
- Finite terms extracted one-loop formula contribute with $\sim 3-5\%$ to F_R
- Finite terms account for difference of form factors
 - \Rightarrow 10% effect in decay widths
- Difference in branching ratios negligible

Results: Resummation effects

Renormalization group approach: Includes resummation of large logarithms

$$\tilde{t}_1$$
 $\widetilde{W}_{\tilde{t}_1\tilde{c}_1} = 0$ at $\mu_{MFV} = 10^{16} \text{GeV}$

MFV assumption is not RGE invariant and holds only at scale $\mu_{MFV} = 10^{16} \text{GeV}$

Flavour off-diag matrix element = Result of RG evolution down to EWSB scale

 \Rightarrow tree level FCNC decay at EWSB scale

$$\tilde{t}_{1} \cdots \tilde{t}_{1} \sim \widetilde{W}_{\tilde{u}_{1}\tilde{c}_{L}} \neq 0 \qquad F_{R}^{FV} = -\sqrt{2} \left[\frac{Z_{11}}{6} \tan \theta_{W} + \frac{Z_{12}}{2} \right] \widetilde{W}_{\tilde{u}_{1}\tilde{c}_{L}}$$

Comparison of one-loop MFV to FV tree level result:

Γ ^{1-loop} [GeV]	Γ ^{FV} [GeV]	
$5.862 \cdot 10^{-9}$	$3.006 \cdot 10^{-10}$	

Results: Branching ratios

- ${ ilde t}_1 o { ilde \chi}_1^0 u$: Resummed flavour off-diag matrix element ${\widetilde W}_{{ ilde u}_1 { ilde u}_1}$
- $\tilde{t}_1 \rightarrow \tilde{\chi}_1^0 b f \bar{f'}$: Calculation including tree level FV couplings not available
 - \Rightarrow Additional contributions expectetd to be small due to CKM suppression

branching ratio	$BR(ilde{t}_1 o ilde{\chi}_1^0 c)$	$BR(\tilde{t}_1 o \tilde{\chi}_1^0 u)$	$BR(\tilde{t}_1 \to \tilde{\chi}_1^0 b f \overline{f}')$
Exact 1-loop	0.9443	0.0053	0.0504
Resummed TL	0.4884	0.0032	0.5084

- Decay width of 4 body decay unchanged in both cases
- Branching ratio of $\tilde{t}_1 \rightarrow \tilde{\chi}_1^0 u$ always suppressed by 2 orders of magnitude
- Resummation effects reduce $\Gamma(\tilde{t}_1 \rightarrow \tilde{\chi}_1^0 c)$ by factor ~ 20
 - \Rightarrow Decrease of branching ratio by factor 1/2
 - \Rightarrow No longer in agreement with BR=1, as used in all analyses

 \Rightarrow Resummation effects important for large scale $\mu_{MFV} = M_{GUT}$

Summary & Outlook

- Complete one-loop calculation of $\tilde{t}_1 \rightarrow c + \tilde{\chi}_1^0$ in MFV, including finite terms, which do not depend on log μ_{MFV}
- Full renormalization program, including gauge-independent renormalization of mixing matrices
- Comparison to existing approximative formula by Hikasa/Kobayashi: Difference in partial width O(10)% because of finite terms
- Comparison to tree level decay with FV coupling due to RGE evolution
 - \rightarrow Resummation effects important for large $\mu_{\textit{MFV}}$
 - → Big impact on branching ratio
- Next step: Improve predictions for light stop decay width by calculating one-loop corrections to FV tree level decay

Feynman diagrams

Results: Analysis for different μ_{MFV}

With decreasing μ_{MFV} :

- One-loop MFV result approaches resummed FV tree level result
- One-loop MFV result better than approximate formula by Hikasa/Kobayashi

For numerical analysis:

Scenarios with different μ_{MFV} but the same mass spectrum \Rightarrow achieved by adjusting input parameters at high scale

Results: Analysis for different μ_{MFV}

Size of decay width: Does not only depend on size of log Coefficient of logarithmic term:

Small stop decay widths \rightarrow Long stop lifetimes \rightarrow Secondary vertex

[Hiller & Nir '08]

- Observing secondary vertex: Strong support to MFV principle
- Measuring lifetime: Information on size of flavour changing coupling

Results: Branching ratios, exact formula

(2) $m_{\tilde{t}_1} = 130 \text{ GeV}$ $m_{\tilde{\chi}_1^0} = 92 \text{ GeV}$ $m_{\tilde{\chi}_1^+} = 175 \text{ GeV}$ $M_0 = 200 \text{ GeV}$ $M_{1/2} = 230 \text{ GeV}$ $A_0 = -895 \text{ GeV}$ $\tan \beta = 10$ $\operatorname{sign}(\mu) = +$

branching ratio	$BR(ilde{t}_1 o ilde{\chi}_1^0 c)$	$BR(ilde{t}_1 o ilde{\chi}_1^0 u)$	$BR(\tilde{t}_1 \to \tilde{\chi}_1^0 b f \overline{f}')$
Scenario(1)	0.9944	0.0056	$4.587 \cdot 10^{-5}$
Scenario(2)	0.9443	0.0053	0.0504

- FCNC decay dominating in both scenarios
- Decay into up-quark suppressed by 2 orders of magnitude
- 4-body decay is less important in (1), due to reduced phase space
- Effect on BR of interest only at the percent level

Results: Branching ratios, exact formula vs. H/K

(1)
$$m_{\tilde{t}_1} = 104 \text{ GeV}$$
 $m_{\tilde{\chi}_1^0} = 92 \text{ GeV}$ $m_{\tilde{\chi}_1^+} = 175 \text{ GeV}$
(2) $m_{\tilde{t}_1} = 130 \text{ GeV}$ $m_{\tilde{\chi}_1^0} = 92 \text{ GeV}$ $m_{\tilde{\chi}_1^+} = 175 \text{ GeV}$

Exact 1-loop result:

branching ratio	$BR(ilde{t}_1 o ilde{\chi}_1^0 c)$	$BR(ilde{t}_1 o ilde{\chi}_1^0 u)$	$BR(\tilde{t}_1 \to \tilde{\chi}_1^0 b f \bar{f}')$
Scenario(1)	0.9944	0.0056	$4.587 \cdot 10^{-5}$
Scenario(2)	0.9443	0.0053	0.0504

Approximation by H/K:

branching ratio	$BR(ilde{t}_1 o ilde{\chi}_1^0 c)$	$BR(ilde{t}_1 o ilde{\chi}_1^0 u)$	$BR(\tilde{t}_1 \to \tilde{\chi}_1^0 b f \bar{f}')$
Scenario(1)	0.9944	0.0056	4. · 10 ⁻⁵
Scenario(2)	0.9486	0.0053	0.0460

Results: Branching ratios, 1-loop vs. FV TL

(1)
$$m_{\tilde{t}_1} = 104 \text{ GeV}$$
 $m_{\tilde{\chi}_1^0} = 92 \text{ GeV}$ $m_{\tilde{\chi}_1^+} = 175 \text{ GeV}$
(2) $m_{\tilde{t}_1} = 130 \text{ GeV}$ $m_{\tilde{\chi}_1^0} = 92 \text{ GeV}$ $m_{\tilde{\chi}_1^+} = 175 \text{ GeV}$

Exact 1-loop result:

branching ratio	$BR(ilde{t}_1 o ilde{\chi}_1^0 c)$	$BR(\tilde{t}_1 \to \tilde{\chi}_1^0 u)$	$BR(\tilde{t}_1 \to \tilde{\chi}_1^0 b f \bar{f}')$
Scenario(1)	0.9944	0.0056	$4.587 \cdot 10^{-5}$
Scenario(2)	0.9443	0.0053	0.0504

Resummed FV TL:

branching ratio	$BR(\tilde{t}_1 o ilde{\chi}_1^0 c)$	$BR(ilde{t}_1 o ilde{\chi}_1^0 u)$	$BR(\tilde{t}_1 \to \tilde{\chi}_1^0 b f \bar{f}')$
Scenario(1)	0.9925	0.0066	8.956 · 10 ⁻⁴
Scenario(2)	0.4884	0.0032	0.5084

Results: Analysis for different μ_{MFV}

With decreasing μ_{MFV} :

- One-loop MFV result approaches resummed FV tree level result
- One-loop MFV result better than approximate formula by Hikasa/Kobayashi

For numerical analysis:

Scenarios with different μ_{MFV} but the same mass spectrum

 $\mathcal{A} = -\mu^2 + A_b^2 + M_{\tilde{b}_R}^2 + c_\beta^2 (M_W^2 (t_\beta^2 - 1) + M_A^2 t_\beta^2) + m_t A_b \tan \theta_t$

Light Stop Searches at the LHC in Events with two bJets and Missing Energy

[Bornhauser, Drees, Grab, Kim '10]

Production of $\tilde{t}_1 \tilde{t}_1^* b \bar{b}$ including pure QCD as well as mixed electroweakQCD contributions

 $pp
ightarrow ilde{t}_1 ilde{t}_1^* b \overline{b} \ ilde{t}_1
ightarrow c + ilde{\chi}_1^0$

Small $\tilde{t}_1 - \tilde{\chi}_1^0$ mass splitting \Rightarrow cjets too soft to be useful

Signature: large missing energy + 2 b-flavoured jets

FIG. 10: Statistical signal significance at the LHC with $\sqrt{s} = 14$ TeV as a function of the stop and neutralino mass. The red, green and turquoise region corresponds to an excess of at least 5 σ , 3 σ and 2 σ , respectively, for an integrated luminosity of 100 fb⁻¹. The chargino mass is fixed by Eq. (1). The parameter space below the black curve is excluded by Tevatron searches [27], while in the region *above* the blue curve, the stop pair plus single jet ("monojet") signal has significance ≥ 5 [30]. The parameter region where \tilde{t}_1 decays into a charm and a neutralino are expected to dominate is given by the condition $m_{\tilde{\chi}^0} + m_e < m_{\tilde{t}_1} < m_{\tilde{\chi}^0_1} + m_{W} + m_{W}$.

Measuring Flavor Mixing with Minimal Flavor Violation at the LHC

[G. Hiller & Y. Nir, arXiv:0802.0916]

Challenging task: Experimentally establishing MFV, in case it holds Under certain circumstances measuring mixing with MFV models might be possible

- Stop NLSP, $m_{\tilde{t}_1} m_{\tilde{\chi}_1^0} \lesssim m_b \qquad \Rightarrow \tilde{t}_1 \to c + \tilde{\chi}_1^0$ dominating
- 1) Flavour suppression need for secondary vertex = unique to MFV models Observing secondary vertex → strong support to MFV principle
- Measuring lifetime → information on size of flavour changing coupling (after higgsino/gaugino decomposition of neutralino + left/right decomposition of stop known)

Calculation: Tree level I

In MFV framework the decay is forbidden \tilde{t}_1 = 0 at tree level: at tree level:

What does that mean for our terms?

Flavour mixing in the SM:

 $\overline{\Psi_{Li}^q}m_{ij}\Psi_{Ri}^q$ with $\Psi_{Li}^q = U_{ik}^{qL}q_k^{(m)}$ $\Psi_{Ri}^q = U_{im}^{qR}q_m^{(m)}$ q = u, d

• Unitary matrices $U^{qL\dagger}U^{qL} = 1$

• $U^{qL,R}$ diagonalise mass matrix m_{ij} : $U^{uL}_{ki}m_{ij}U^{uR}_{im} = m_k \delta_{km}$

- CKM matrix $V^{CKM} = U^{uL\dagger} U^{dR}$
- no further flavour transitions possible

Calculation: Tree level II

Flavour & LR mixing in the MSSM:

$$\begin{pmatrix} \widetilde{u}_{1} \\ \widetilde{c}_{1} \\ \widetilde{t}_{1} \\ \widetilde{u}_{2} \\ \widetilde{c}_{2} \\ \widetilde{t}_{2} \end{pmatrix} = \begin{pmatrix} squark \\ mixing \\ matrix : \widetilde{W} \\ (6 \times 6) \end{pmatrix} \begin{pmatrix} \widetilde{u}_{L} \\ \widetilde{c}_{L} \\ \widetilde{u}_{R} \\ \widetilde{c}_{R} \\ \widetilde{t}_{R} \end{pmatrix}$$

Mixing matrix factorises in MFV:

- Unitary matrix $\widetilde{W}^{\dagger}\widetilde{W} = 1$
- Diagonalises mass matrix: $\widetilde{W}^{\dagger}M^{\widetilde{q}}\widetilde{W} = M^{\widetilde{q}}_{\text{Diag}}$
- In general: Lots of new flavour violating sources

$$\widetilde{W} = \begin{pmatrix} U^{uL} & 0 \\ 0 & U^{uR} \end{pmatrix} \begin{pmatrix} \cos \theta_{\widetilde{u}_i} & -\sin \theta_{\widetilde{u}_i} \\ \sin \theta_{\widetilde{u}_i} & \cos \theta_{\widetilde{u}_i} \end{pmatrix} = U \cdot \underbrace{W}_{\text{flavour diagonal}}$$
rocess vanishes at tree level: $\widetilde{t}_1 \quad \cdots \quad \cdots \quad \overset{c}{\underset{\widetilde{x}_1^n}{}} \sim W_{ct} = 0$

Calculation: Tree level III

Mixing matrix factorises in MFV:

$$\widetilde{W} = \begin{pmatrix} U^{uL} & 0 \\ 0 & U^{uR} \end{pmatrix} \begin{pmatrix} \cos \theta_{\widetilde{u}_i} & -\sin \theta_{\widetilde{u}_i} \\ \sin \theta_{\widetilde{u}_i} & \cos \theta_{\widetilde{u}_i} \end{pmatrix} = U \cdot \underbrace{W}_{\text{flavour diagonal}}$$

MFV hypothesis not renormalization group invariant

[G.D'Ambrosio et al., arXiv:0207036]

At weak scale:

- Scalar mass terms obtained by solving RGE's
- Weak interactions affect squark and quark mass matrices differently
- Squark and quark mass matrices cannot be diagonalized simultaneously
- \Rightarrow stop state receives admixture from scharm

Renormierung: 1. Squarkfelder

Einführen der Renormierungskonstanten:

$$\begin{split} \tilde{q}_{j}^{0} &= \widetilde{Z}_{jk} \tilde{q}_{k} \qquad j, k = 1, 2...6 \\ \widetilde{Z}_{jk} &= \delta_{jk} + \frac{1}{2} \delta \widetilde{Z}_{jk} \end{split}$$

Einsetzen in die Lagrangedichte führt auf renormierte Selbstenergie:

$$\begin{split} \tilde{t}_1 & \cdots & \tilde{c}_L \\ & = i \, \hat{\Sigma}_{\tilde{t}_1 \tilde{c}_1}(q^2) = i \, \Sigma_{\tilde{t}_1 \tilde{c}_1}(q^2) \\ & - \frac{1}{2} \left(m_{\tilde{c}_1}^2 \, \delta \widetilde{Z}_{\tilde{t}_1 \tilde{c}_1} + m_{\tilde{t}_1}^2 \, \delta \widetilde{Z}_{\tilde{c}_1 \tilde{t}_1}^* \right) \end{split}$$

- \Rightarrow Teilchenpropagator in höherer Ordnung: $\frac{i}{k^2 m^2 + \hat{\Sigma}(k^2)}$
 - On-shell Renormierungsbedingung m soll Bedeutung der physikalischen Masse behalten:

$$\hat{\Sigma}_{\tilde{t}_1\tilde{c}_1}(m_{\tilde{t}_1}^2) = 0 \qquad \Rightarrow \delta \tilde{Z}_{\tilde{t}_1\tilde{c}_1} = \frac{2}{m_{\tilde{c}_1}^2 - m_{\tilde{t}_1}^2} \Sigma_{\tilde{t}_1\tilde{c}_1}(m_{\tilde{t}_1}^2)$$

Renormierung: 2. Quarkfelder

Einführen der Renormierungskonstanten:

$$q_{\{L,R\},i}^{0} = Z_{ik}^{\{L,R\}} q_{\{L,R\},k} \qquad Z_{ik}^{\{L,R\}} = \delta_{ik} + \frac{1}{2} \delta Z_{ik}^{\{L,R\}}$$

Einsetzen in die Lagrangedichte führt auf renormierte Selbstenergie:

$$t \longrightarrow c \qquad = \hat{\Sigma}^{tc}(\rho^2) \\ = i [\underline{p} \hat{\Sigma}_{L}^{tc} P_{L} + \underline{p}' \hat{\Sigma}_{R}^{tc} P_{R} + P_{L} \hat{\Sigma}_{S}^{tc} + P_{R} \hat{\Sigma}_{S}^{*,ct}] \\ fur m_{c}=0, \rightarrow 0$$

$$\hat{\Sigma}_{S}^{tc}(\rho^{2}) = \Sigma_{S}^{tc}(\rho^{2}) - \frac{m_{t}}{2} \delta Z_{tc}^{*,R}$$

$$\hat{\Sigma}_{S}^{*,ct}(\rho^{2}) = \Sigma_{S}^{*,ct}(\rho^{2}) - \frac{m_{t}}{2} \delta Z_{tc}^{*,L}$$

• On-shell Renormierungsbedingung: $\bar{u}(p)\hat{\Sigma}^{tc}(p^2)|_{(p^2=m_c^2=0)}=0$

$$\Rightarrow \delta Z_{tc}^{*,L} = \frac{2}{m_t} \Sigma_S^{*,ct}(0) \qquad \delta Z_{tc}^{*,R} = \frac{2}{m_t} \Sigma_S^{tc}(0) = 0$$