Search for CP Violation in $D^0 \to K^0_S \pi^+ \pi^-$

Michael Feindt, Michal Kreps, Thomas Kuhr, Felix Wick

Institut für Experimentelle Kernphysik

October 6, 2011

CPV in $D^0 \rightarrow K^0_S \pi^+ \pi^-$

Overview and Motivation

- considered decay: $D^0 \to K^0_S \pi^+ \pi^-$
- study of resonant substructure (Dalitz plot)
- $\bullet\,$ production flavor tagged: $D^*(2010)^+ \to D^0\,\pi^+$ respective $D^*(2010)^- \to \bar{D^0}\,\pi^-$
- search for time-integrated CPV (very small in SM)
- no hints for CPV in charm sector up to now
- further applications of $D^0 \to K^0_S \, \pi^+ \, \pi^- \colon$
 - D^0 - $\overline{D^0}$ mixing (time-dependent Dalitz analysis)
 - CKM angle γ from $B^{\mp} \rightarrow D K^{\mp}$ (problem: $K \pi$ separation)

Signal Selection

- hadronic trigger requires two displaced tracks with $p_T > 2 \text{ GeV}/c$ (selection of secondary vertex decays)
- use integrated luminosity of $\approx 6.0 \, {\rm fb}^{-1}$
- NeuroBayes

training based on real data only by means of ${}_{s}\mathcal{P}lot$ weights (improved sideband subtraction) \Rightarrow no need for simulated events

Resonant Substructure (Dalitz Plot)

$$m_{D^0}^2 + m_{K_S^0}^2 + m_{\pi^+}^2 + m_{\pi^+}^2 = M_{K_S^0\pi^+}^2 + M_{K_S^0\pi^-}^2 + M_{\pi^+\pi^-}^2$$

- K⁰_Sπ⁻: K^{*}(892)⁻, K^{*}₀(1430)⁻ K^{*}₂(1430)⁻, K^{*}(1410)⁻
- $\pi^+\pi^-$: $\rho(770)$, ω , $f_0(980)$ $f_2(1270)$, $f_0(1370)$, $\rho(1450)$, $f_0(600)$, σ_2
- $K_S^0 \pi^+$ (DCS): $K^*(892)^+$ $K_0^*(1430)^+$, $K_2^*(1430)^+$

on nonresonant

Relative Reconstruction Efficiency

- phase space flat over Dalitz plot
- efficiency varies strongly (hadronic trigger)
- determined with simulated events (generated nonresonantly)

Felix Wick (KIT) CPV in $D^0 \rightarrow K^0_S \pi^+ \pi^-$ October 6, 2011 5 / 15

Applied Dalitz Model

• decay rate of $D \rightarrow A B C$ depends on complex matrix element \mathcal{M}

$$d\Gamma = \frac{|\mathcal{M}|^2}{256\pi^3 M_D^3} dM_{AB}^2 dM_{BC}^2$$

Isobar model

$$\mathcal{M} = a_0 \cdot e^{i\delta_0} + \sum_j a_j \cdot e^{i\delta_j} \cdot \mathcal{A}_j$$

- a_j , δ_j : relative amplitudes and phases (fit parameters)
- fixed reference resonance $a_{
 ho(770)}=1$, $\delta_{
 ho(770)}=0$
- $a_0 \cdot e^{i\delta_0}$: nonresonant contribution
- A_j : individual complex matrix elements (Breit-Wigner with spin-dependent angular factor)

Likelihood Function

binned maximum likelihood method

$$-\ln \mathcal{L}(\vec{a}) = -\sum_{j=1}^{J} n_j \ln \mu_j + \sum_{j=1}^{J} \mu_j + \sum_{j=1}^{J} \ln(n_j!)$$

- \vec{a} : free parameters
- n_j : number of entries in bin j
- μ_i : expected number of entries in bin *i*
- fit function

$$\begin{split} \mu(M^2_{K^0_S\pi^-}, M^2_{\pi^+\pi^-}) &= T \cdot \epsilon(M^2_{K^0_S\pi^-}, M^2_{\pi^+\pi^-}) \cdot |\mathcal{M}(M^2_{K^0_S\pi^-}, M^2_{\pi^+\pi^-})|^2 \\ &+ (1-T) \cdot \epsilon(M^2_{K^0_S\pi^-}, M^2_{\pi^+\pi^-}) \cdot |\mathcal{M}(M^2_{K^0_S\pi^+}, M^2_{\pi^+\pi^-})|^2 \\ &+ B(M^2_{K^0_S\pi^-}, M^2_{\pi^+\pi^-}) \end{split}$$

•
$$(1-T)$$
: mistag fraction (free fit parameter)
• $\epsilon(M^2_{K^0_S\pi^-}, M^2_{\pi^+\pi^-})$: relative efficiency over Dalitz plot
• $B(M^2_{K^0_S\pi^-}, M^2_{\pi^+\pi^-})$: background distribution

Felix Wick (KIT) CPV in $D^0 \rightarrow K^0_S \pi^+ \pi^-$ October 6, 2011 7 / 15

Fit Results

Felix Wick (KIT)

CPV in $D^0 \rightarrow K^0_S \pi^+ \pi^-$

October 6, 2011 8 / 15

Fit Fractions

- correspond to individual resonance contributions to total decay rate
- calculated from fitted amplitudes and phases

$$FF_{r} = \frac{\int |a_{r}e^{i\delta_{r}}\mathcal{A}_{r}|^{2}dM_{K_{S}^{0}\pi^{-}}^{2}dM_{\pi^{+}\pi^{-}}^{2}}{\int |\sum_{j}a_{j}e^{i\delta_{j}}\mathcal{A}_{j}|^{2}dM_{K_{S}^{0}\pi^{-}}^{2}dM_{\pi^{+}\pi^{-}}^{2}}$$

$$FF_{K^*(892)^-} = (59.44 \pm 0.29)\%$$

$$FF_{\rho(770)} = (21.08 \pm 0.20)\%$$

$$FF_{f_0(980)} = (5.20 \pm 0.23)\%$$

. . .

Felix Wick (KIT)

CPV in $D^0 \to K^0_S \pi^+ \pi^-$

Search for CPV in Dalitz Fit

• separate D^0 and $\overline{D^0}$ samples (from D^{*+} and D^{*-})

 D^0 - $\overline{D^0}$ differences and fit projections:

calculate fit fraction asymmetries:

$$\mathcal{A}_{\rm FF} = \frac{{\rm FF}_{D^0} - {\rm FF}_{\bar{D^0}}}{{\rm FF}_{D^0} + {\rm FF}_{\bar{D^0}}}$$

CPV in $D^0 \to K^0_S \pi^+ \pi^-$ October 6, 2011 10 / 15

Results for $\mathcal{A}_{\mathrm{FF}}$

Resonance	$\mathcal{A}_{\mathrm{FF}}$ [%]
$K^{*}(892)^{-}$	$-0.05 \pm 0.39 \pm 0.41$
$K_0^*(1430)^-$	$0.48 \pm 2.89 \pm 3.54$
$K_2^*(1430)^-$	$4.80 \pm 2.93 \pm 4.05$
$K^{*}(1410)^{-}$	$-13.66 \pm 5.95 \pm 7.83$
$\rho(770)$	$0.09 \pm 0.17 \pm 0.13$
ω	$-11.76 \pm 5.77 \pm 1.58$
$f_0(980)$	$-0.20 \pm 1.84 \pm 1.60$
$f_2(1270)$	$-4.10 \pm 4.00 \pm 2.35$
$f_0(1370)$	$5.63 \pm 15.47 \pm 21.77$
$\rho(1450)$	$1.96 \pm 9.87 \pm 5.21$
$f_0(600)$	$-0.70 \pm 2.31 \pm 3.46$
σ_2	$2.65 \pm 7.67 \pm 4.66$
$K^{*}(892)^{+}$	$-1.00 \pm 4.05 \pm 2.75$
$K_0^*(1430)^+$	$4.30 \pm 8.33 \pm 10.59$
$K_2^*(1430)^+$	$-13.56 \pm 13.59 \pm 15.88$

Overall integrated CP Asymmetry

•
$$\mathcal{A}_{CP} = \frac{\int \frac{|\mathcal{M}|^2 - |\overline{\mathcal{M}}|^2}{|\mathcal{M}|^2 + |\overline{\mathcal{M}}|^2} dM_{K_S^0 \pi^-}^2 dM_{\pi^+ \pi^-}^2}{\int dM_{K_S^0 \pi^-}^2 dM_{\pi^+ \pi^-}^2}$$

 statistical uncertainty determined by random parameter sets generated according to full covariance matrix of Dalitz fit

- $\mathcal{A}_{CP} = -0.004 \pm 0.006 \pm 0.005$
- value from CLEO for comparison: $\mathcal{A}_{CP} = 0.009 \pm 0.021 \stackrel{+0.010}{_{-0.043}} \stackrel{+0.013}{_{-0.037}}$

Direct vs. Indirect CPV

• slow D^0 mixing allows approximation:

$$\mathcal{A}_{CP} = a_{CP}^{\mathrm{dir}} + \frac{\langle t \rangle}{\tau} \cdot a_{CP}^{\mathrm{ind}}$$

\$\mathcal{A}_{CP}\$ measured
assuming \$a_{CP}^{dir} = 0\$

$$\rightarrow a_{CP}^{\text{ind}} = -0.0018 \pm 0.0026 \pm 0.0022$$

Felix Wick (KIT)

CPV in $D^0 \rightarrow K^0_S \pi^+ \pi^-$

Model-independent Approach

- binning of D^0 and $\bar{D^0}$ Dalitz plots
- consider significance asymmetry per bin $\frac{N_{D^0} N_{\bar{D^0}}}{\sqrt{N_{D^0} + N_{\bar{D^0}}}}$
- sum of squares of significance asymmetries per bin corresponds to χ^2 , NDF $\hat{=}$ Dalitz plot bins minus 1 (normalization), $\rightarrow p$ -value

Felix Wick (KIT) CPV in $D^0 \rightarrow K^0_S \pi^+ \pi^-$ October 6, 2011 14 / 15

Conclusion

- $D^0 \to K^0_S \, \pi^+ \, \pi^-$, first full Dalitz fit at hadron collider
- results compatible and comparable in precision to B-factories
- $\, \bullet \,$ production flavor tagged by $D^*(2010)^+ \rightarrow D^0 \, \pi^+$
- search for time-integrated CPV in Dalitz fit
- most precise determinations of CP violating quantities
- no hints for CPV
- complementary verification by model-independent approach

Backup

Individual Matrix Elements \mathcal{A}_j

A_j consist of Breit-Wigner part and spin-dependent angular factor
 for spin-0 resonances

$$\mathcal{A}_r(ABC|0) = F_D \cdot F_r \cdot \frac{1}{M_r^2 - M_{AB}^2 - iM_r\Gamma_{AB}}$$

o for spin-1 resonances

$$\mathcal{A}_r(ABC|1) = F_D \cdot F_r \cdot \frac{M_{AC}^2 - M_{BC}^2 + \frac{(M_D^2 - M_C^2)(M_B^2 - M_A^2)}{M_r^2}}{M_r^2 - M_{AB}^2 - iM_r\Gamma_{AB}}$$

- spin-2 ...
- mass-dependent width Γ_{AB}

$$\Gamma_{AB} = \Gamma_r \cdot \left(\frac{p_{AB}}{p_r}\right)^{2J+1} \cdot \left(\frac{M_r}{M_{AB}}\right) \cdot F_r^2$$

• F_D , F_r : spin-dependent Blatt-Weisskopf penetration factors for D^0 respective the different intermediate resonances

Felix Wick (KIT) CPV in $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ October 6, 2011 17 / 15

Dalitz Fit Results

Resonance	a	δ [°]	FF [%]
$K^{*}(892)^{-}$	1.774 ± 0.010	130.0 ± 0.7	59.44 ± 0.29
$K_{*}^{*}(1430)^{-}$	1.677 ± 0.038	17.0 ± 1.4	4.01 ± 0.17
$K_{*}^{*}(1430)^{-}$	1.219 ± 0.027	305.9 ± 1.5	2.17 ± 0.09
$K^{*}(1410)^{-}$	0.877 ± 0.042	131.0 ± 2.6	0.72 ± 0.07
o(770)	1	0	21.08 ± 0.20
$\omega(782)$	0.038 ± 0.002	110.9 ± 1.7	0.52 ± 0.05
$f_0(980)$	0.453 ± 0.010	205.5 ± 2.1	5.20 ± 0.23
$f_{2}(1270)$	1.048 ± 0.033	340.1 ± 2.5	0.80 ± 0.05
$f_0(1370)$	0.727 ± 0.067	28.5 ± 6.6	0.34 ± 0.06
o(1450)	2.298 ± 0.151	346.9 ± 3.8	0.45 ± 0.06
$f_0(600)$	1.450 ± 0.051	193.8 ± 1.8	10.38 ± 0.41
σ_{2}	0.210 ± 0.022	165.7 ± 8.4	0.56 ± 0.04
$K^{*}(892)^{+}$	0.182 ± 0.008	318.5 ± 1.8	0.63 ± 0.05
$K_{*}^{*}(1430)^{+}$	0.621 ± 0.036	121.7 ± 3.5	0.55 ± 0.06
$K_{2}^{*}(1430)^{+}$	0.282 ± 0.030	232.0 ± 5.7	0.12 ± 0.02
Nonresonant	3.437 ± 0.123	112.7 ± 2.3	6.71 ± 0.47
Sum			113.7

Felix Wick (KIT)

CPV in $D^0 \rightarrow K^0_S \pi^+ \pi^-$

Efficiency Discrepancies between D^0 and $\overline{D^0}$

- \bullet differences between D^0 and $\bar{D^0}$ efficiencies over the Dalitz plot can fake CPV
- can originate from $p_T(\pi_{D^{*+}})$ -dependent $\pi_{D^{*+}}$ charge asymmetry

• \rightarrow reweighting of $\bar{D^0}$ Dalitz plot according to deviations between $p_T(\pi_{D^{*+}})$ and $p_T(\pi_{D^{*-}})$ distributions

Felix Wick (KIT) CPV in $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ October 6, 2011 19 / 15

Systematic Uncertainties

experimental sources

- efficiency asymmetries varying over Dalitz plot
 - \rightarrow repeat fits without reweighting $\bar{D^0}$ Dalitz plot
- asymmetries of D^0 and $\bar{D^0}$ background
 - \rightarrow repeat fits with separate D^0 and $\bar{D^0}$ background samples
- modeling uncertainties
 - included resonances

 \rightarrow repeat fits when excluding $K^*(1410)^-$, $f_0(1370), \, \sigma_2, \, K_2^*(1430)^+$, or nonresonant contribution

discrepancies between fit and data

 \rightarrow repeat fits when excluding Dalitz plot regions with largest discrepancies

Fit Discrepancies

• exclude regions with largest discrepancies

Felix Wick (KIT)

CPV in $D^0 \rightarrow K^0_S \pi^+ \pi^-$