

Top Quark Physics and Silicon Detectors: Key Ingredients for the LHC Menu

Annual Workshop of the DFG Research Training Group 1694 "Elementary Particle Physics at Highest Energy and Precision"

Bad Liebenzell, October 5–7, 2011

www.kit.edu

Your Server's Scientific Life on One Slide

- Fixed-target spectrometer using the HERA proton beam
- Muon pretrigger, nuclear effects in J/ψ production
- Postdoc: CDF (University of Rochester, Yale University)
 - Properties of the top quark, especially search for flavor changing neutral currents in top decays
 - Co-leader of the CDF silicon group
 - Co-convener of the CDF tracking group
- Young Investigator Group leader: ATLAS (DESY)
 - Preparation for the upgrade of the ATLAS silicon detectors
 - Precision measurements of the top production cross section
 - Co-convener of the ATLAS top reconstruction group
- Professor at KIT since July 2011: CMS

Your LHC Menu for Today

Appetizers: Little Bites of Top and Silicon

Main Course: Top Physics

Dessert: What's Next at the LHC?

Appetizers

A Brief History of the Top Quark

- 1977: discovery of the bottom quark → first quark of the 3rd generation
- ✓ 1980ies: search for "light" top quarks in the decay W⁺ → tb
- 1992: first indication for "heavy" top quarks at the Tevatron (Fermilab, near Chicago)
- 1995: Tevatron experiments CDF and DØ publish discovery of the top quark with a mass of about 175 GeV

The Discovery of the Top Quark

Finding the sixth quark involved the world's most energetic collisions and a cast of thousands

by Tony M. Liss and Paul L. Tipton

[Scientific American, September 1997]

VIOLENT COLLISION between a proton and an antiproton (*center*) creates a top quark (*red*) and an antitop (*blue*). These decay to other particles, typically producing a number of jets and possibly an electron or positron.

Top – The Special One

- Large mass: mt ≈ 173 GeV (40×mb, approx. mass of a gold atom)
- Mass close to scale of electroweak symmetry breaking (EWSB)
 → Yukawa coupling f ≈1:

$$\mathcal{L}_{Y,t} = f \, \frac{v}{\sqrt{2}} \, \overline{t}_L t_R \equiv m_t \, \overline{t}_L t_R$$

 \rightarrow important role in models that explain EWSB

Top is the only <u>"free</u>" quark: life time much smaller than hadronization time

$$au = rac{1}{\Gamma} pprox (1.5\,{ extrm{GeV}})^{-1} < rac{1}{\Lambda_{ extrm{QCD}}} pprox (0.2\,{ extrm{GeV}})^{-1}$$

 \rightarrow No bound states \rightarrow Spin transfered to decay products

10/07/2011

Tevatron Run II: 2001–2011

Tevatron Run II: 2001–2011

7

Institut für Experimentelle Kernphysik (IEKP)

LHC – the Large Hadron Collider

LHC Accelerator: proton-proton and lead-lead collisions

CERN accelerator complex, about 100 m under ground LHC circumference: ~27 km Lake Geneva

LHC – the Large Hadron Collidor **CMS Experiment:**

LHC Accelerator: proton-proton and

lead-lead collisions

8

multi-purpose experiment

CERN accelerator complex, about 100 m under ground LHC circumference: ~27 km

ATLAS Experiment: multi-purpose experiment

Lake Geneva

nphysik (IEKP)

LHC – the Large Hadron Collidor CMS Experiment:

LHC Accelerator: proton-proton and lead-lead collisions

ALICE Experiment: heavy ion physics

multi-purpose experiment

CERN accelerator complex, about 100 m under ground LHC circumference: ~27 km

Quark Physics and Silicon Detectors

λο Cenous LHCb Experiment: matter/antimatter symmetry

ATLAS Experiment: multi-purpose experiment

nphysik (IEKP)

Basic Ingredients of a Collider Detector

Tracking, Vertexing, B-Tagging

Tracking & vertexing

- Charged particle tracking at small distances (~5 cm) from collision point: precise reconstruction of vertices
- Charged particle tracking at large distances (~1 m): precise momentum measurement

Tracking, Vertexing, B-Tagging

Tracking & vertexing

- Charged particle tracking at small distances (~5 cm) from collision point: precise reconstruction of vertices
- Charged particle tracking at large distances (~1 m): precise momentum measurement

 Identify hadrons with b-quarks via their long lifetimes (picoseconds)
 → parts of the tracks come from displaced secondary vertex

Tracking, Vertexing, B-Tagging

Tracking & vertexing

- Charged particle tracking at small distances (~5 cm) from collision point: precise reconstruction of vertices
- Charged particle tracking at large distances (~1 m): precise momentum measurement

Identify hadrons with b-quarks via their long lifetimes (picoseconds) → parts of the tracks come from displaced secondary vertex

CMS: "particle flow" integrates
 tracking and calorimetry
 → improved jet reconstruction

LHC Choice for Tracking Detectors: Silicon

Example: hybrid pixel detectors

- Detector = semiconductor diode with pn junction in reverse bias \rightarrow depletion zone
- Charged particles ionize detector material \rightarrow electron/hole pairs induce signal

Main Course

Central Questions in Top Quarks Physics

Central Questions in Top Quarks Physics

Central Questions in Top Quarks Physics

Analyzing Top Quark Events

- Top decay in the standard model: B(t → Wb) ≈ 100%
- Challenging signature: multiple leptons & jets, missing E_T (MET)
- tt decay signatures characterized by W decays:
 - All-Hadronic: 45% of all decays, large QCD background
 - Lepton+Jets: 30% of all decays, moderate backgrounds
 - Dilepton: 5% of all decays, very clean, but small branching fraction

Top Flavor-Changing Neutral Currents

- Flavor-changing neutral currents (FCNC)
 - Standard model: no FCNC on tree level
 - Quantum corrections: suppression via GIM mechanism
- FCNC in top physics
 - Extremely small branching fractions in the standard model, e.g. B(t → Zq) ≈ 10⁻¹⁴
 - Some new physics models: B(t \rightarrow Zq) up to 10⁻⁴
- Tevatron (also HERA and LHC): Search for FCNC both in top quark production and decay

Model	B(t→Zc)
Standard Model	O(10 ⁻¹⁴)
Quark Singlet with q = 2/3	O(10 ⁻⁴)
Two Higgs Doublets	O(10 ⁻⁷)
MSSM	O(10 ⁻⁶)
SUSY with R-Parity Violation	O(10 ⁻⁵)
[after J.A. Aguilar-Saavedra, Acta Phys. Polon. B35 (2004) 2695]	

Search for $t \rightarrow Zq$ at CDF

- Challenge: irreducible background from SM Z+jets production $\rightarrow mass \chi^2$
- Template fit to determine signal and background contributions
- No evidence for a signal:
 - Limit on FCNC branching fraction B(t \rightarrow Zq) < 3.7% (95% C.L.)
 - Improved only recently by DØ: B(t \rightarrow Zq) < 3.2% (95% C.L.)
 - First LHC result from 2010 data (ATLAS): $B(t \rightarrow Zq) < 17\%$ \rightarrow will be competitive very soon

Search for $t \rightarrow Zq$ at CDF

- Challenge: irreducible background from SM Z+jets production $\rightarrow mass \chi^2$
- Template fit to determine signal and background contributions
- No evidence for a signal:
 - Limit on FCNC branching fraction B(t \rightarrow Zq) < 3.7% (95% C.L.)
 - Improved only recently by DØ: B(t \rightarrow Zq) < 3.2% (95% C.L.)
 - First LHC result from 2010 data (ATLAS): $B(t \rightarrow Zq) < 17\%$ \rightarrow will be competitive very soon

- Search for $t \rightarrow Zq$ at CDF
 - Challenge: irreducible background from SM Z+jets production $\rightarrow mass \chi^2$
 - Template fit to determine signal and background contributions
- No evidence for a signal:
 - Limit on FCNC branching fraction B(t \rightarrow Zq) < 3.7% (95% C.L.)
 - Improved only recently by DØ: B(t \rightarrow Zq) < 3.2% (95% C.L.)
 - First LHC result from 2010 data (ATLAS): $B(t \rightarrow Zq) < 17\%$ \rightarrow will be competitive very soon

Search for $t \rightarrow Zq$ at CDF

- Challenge: irreducible background from SM Z+jets production $\rightarrow mass \chi^2$
- Template fit to determine signal and background contributions
- No evidence for a signal:
 - Limit on FCNC branching fraction $B(t \rightarrow Zq) < 3.7\% (95\% C.L.)$
 - Improved only recently by DØ: B(t \rightarrow Zq) < 3.2% (95% C.L.)
 - First LHC result from 2010 data (ATLAS): $B(t \rightarrow Zq) < 17\%$ \rightarrow will be competitive very soon

Intermezzo: What is Template Fitting?

Poisson likelihood function:

$$L(\beta) = \prod_{\text{bins } i} \frac{\nu_i(\beta)_i^n e^{-\nu_i(\beta)}}{n_i!}$$

- Compare number of events n in each bin to expected number v(β)
- Maximize L (minimize –In L) best "overall compromise" for parameter of interest β
- Limitations of this approach:
 - Underlying assumption: template shape is perfectly known
 - Reality: templates are often built from MC simulation or data "sidebands"
 Jimited statistics, systematic shape uncertainties (e.g. non-perfect simulation)

Intermezzo: What is Template Fitting?

Improvement: template morphing

- Allow templates shape to vary within the uncertainties
- Interpolate between few templates with a "morphing parameter" δ (e.g. δ = 0 for nominal shape)

 Add morphing parameter as additional "nuisance parameter" in the fit
 → let the data constrain the uncertainty (improves with size of dataset)

- Final maximum likelihood fit
 - Fit for parameter of interest (e.g. FCNC branching fraction) and several nuisance parameters simultaneously
 - Advanced techniques to extract parameter of interest: "profiling" and "marginalization"

Top Cross Section Measurement with ATLAS

- Top pair production cross section at current LHC energies:
 - Theory: full next-to-leading order (NLO) calculation and large parts of NNLO calculation available → uncertainties below 10%
 - LHC experiments: best 2010 analyses with approx. 13% uncertainty (10% after combination), lots of ideas how to reduce uncertainties with 2011 dataset
 - At the LHC: top is becoming the new "standard candle" of particle physics – abundant and precisely known
- Basic analysis idea

19

- Decay channel: muon/electron + jets
- Extract cross section from event kinematics
- Multivariate discriminant: projective likelihood estimator build from few well-modeled kinematic variables
- Profile likelihood template fit

Gluon-Gluon Fusion (LHC: 80%) g g 000000 g 00000000 g J D Quark-Antiquark Annihilation (LHC: 20%) 000000

Top Cross Section: Input Variables

Karlsruhe Institute of Technolo

10/07/2011 Ulrich Husemann – Top Quark Physics and Silicon Detectors

Top Cross Section: Result

Final fit to discriminant in six regions (muon/electron+ 3,4,≥5 jets)

Result: $\sigma_{t\bar{t}} = 179.0^{+9.8}_{-9.7}$ (stat.+syst.) \pm 6.6 (lumi) pb

- Most precise top cross section at the LHC \rightarrow 6.6% relative uncertainty
- Good agreement with theory (QCD at approx. NNLO): $\sigma_{t\bar{t}} = 165^{+11}_{-16}$ pb

Top Mass from Cross Section

Which top mass is measured at Tevatron and LHC?

- Short answer: it's the mass parameter in the MC simulation
- MC mass parameter expected close to the pole mass (certainly < 1 GeV)</p>
- Alternative way to extract mass: relation to production cross section
 - Method pioneered in DØ, now also results from ATLAS & CMS
 - Theory: strong mass dependence (mainly due to top propagator)
 - Experiment: weak mass dependence (acceptance effects)

Result (2010 data): $m_t^{\text{pole}} = 166.4_{-7.3}^{+7.8} \text{ GeV}$

Our Plans for the Near Term Future

Leading order Feynman diagrams for ttH production [MadGraph 5]

- Guiding question: what else is going on in top events?
- Topic I: Top & additional (b-)jets
 - "As busy as it gets in the SM..."
 - Test of perturbative QCD
 - Several new physics models predict additional jets as well
- Topic II: tt
 H production
 - Large background from tt+jets (especially ttbb)
 - \rightarrow not a "Higgs discovery channel"
 - Measurement of Yukawa couplings at the LHC
 - Very challenging channel
 - \rightarrow start preparatory work now

Our Plans for the Near Term Future

Leading order Feynman diagrams for ttH production [MadGraph 5]

- Guiding question: what else is going on in top events?
- Topic I: Top & additional (b-)jets
 - "As busy as it gets in the SM..."
 - Test of perturbative QCD
 - Several new physics models predict additional jets as well

Topic II: tTH production

- Large background from tt+jets (especially ttbb)
 - \rightarrow not a "Higgs discovery channel"
- Measurement of Yukawa couplings at the LHC
- Very challenging channel
 - \rightarrow start preparatory work now

Dessert

LHC High Luminosity Upgrade: Physics Case

LHC High Luminosity Upgrade: Physics Case

25 10/07/2011 Ulrich Husemann – Top Quark Physics and Silicon Detectors

Institut für Experimentelle Kernphysik (IEKP)

LHC High Luminosity Upgrade: Physics Case

Institut für Experimentelle Kernphysik (IEKP)

[Paul Collier, LHCC, September 21, 2011]

[Paul Collier, LHCC, September 21, 2011]

- LHC: preparations for highluminosity running
- ATLAS: replacement of full pixel detector (?)
- CMS: replacement of full pixel detector

2018 2019 2020 2021 M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D LS2 ne: Collimation & prepare for vities & RF cryo system X-mas maintenance X-mas maintenance new pixel detect. - detect. mate luminosity. Inner vertex system New Pixel. New HCAL letectors. Completion of uons upgrade LHCb - full trigger upgrade, new vertex detector etc.

2022

LS3

Installation of the HL-LHC hardware. Installation of LHeC Preparation for HE-LHC

Injectors

[Paul Collier, LHCC, September 21, 2011]

n for

LHC: high-luminosity phase

ATLAS & CMS: replacement

of all tracking detectors

 $(5 \times 10^{34} \text{ cm}^2 \text{ s}^{-1})$

pixel detector

[Paul Collier, LHCC, Septembe

New Pixel. New HCAL

uons upgrade

vertex detector etc.

LHCb - full trigger upgrade, new

letectors. Completion of

Injectors

LS3: New Trackers

Preparation for the ATLAS Tracker Upgrade: PETAL2014 – A SCT Endcap Petal Prototype

Capital Investment Proposal submitted to the DESY PRC by the DESY ATLAS Group

Contacts: I.-M. Gregor (ingrid.gregor@desy.de) U. Husemann (ulrich.husemann@desy.de)

- Long shutdown 3: ATLAS (and CMS) replaces entire tracking system
 - Current ATLAS tracking: silicon pixels silicon strips (SCT) – transition radiation tracker (TRT)
 - Replacement: all-silicon tracker with higher granularity
- DESY involvement: endcaps of the new silicon strip detector
 - Geometry: wheels made out of 32 "petals" (diameter: 2 meters)
 - Development of light-weight petals: silicon strip module + readout cables glued on a light-weight carbon fiber structure with cooling tubes embedded
 - Currently: construction and tests of prototype detector modules

LS3: New Trackers

- Long shutdown 3: ATLAS (and CMS) replaces entire tracking system
 - Current ATLAS tracking: silicon pixels silicon strips (SCT) – transition radiation tracker (TRT)
 - Replacement: all-silicon tracker with higher granularity
- DESY involvement: endcaps of the new silicon strip detector
 - Geometry: wheels made out of 32 "petals" (diameter: 2 meters)
 - Development of light-weight petals: silicon strip module + readout cables glued on a light-weight carbon fiber structure with cooling tubes embedded
 - Currently: construction and tests of prototype detector modules

LS2: CMS Pixel Detector Replacement

Current CMS Barrel Pixel Detector

28

Motivation

- Current detector suffering from aging and radiation damage → replace, add redundancy
- Need to cope with much larger number of particles per bunch crossing than today → more readout channels
- Upgrade plans
 - New geometry: 3 layers → 4 layers, innermost layer closer to collision point, outermost layer further away
 - One advantage: better resolution for impact parameters of charged particle track → improved B-tagging
 - Basic building blocks: pixel modules \rightarrow only small changes (next slide)
 - To be installed around 2016–2018
 - \rightarrow (almost) plug & play

CMS Barrel Pixel Module

Institut für Experimentelle Kernphysik (IEKP)

CMS Barrel Pixel Module

L'Addition S.V.P.

- Top quark physics: key element of LHC physics
 - Challenging decay patterns: prototype for any high-p_T analysis at the LHC
 - Heaviest known elementary particle: key to new physics?
 - Associated top-Higgs production: access to Yukawa couplings
- Silicon detectors: key element of LHC detectors
 - Precision tracking and vertexing, identification of B hadrons
 - Silicon detector upgrades: ensure reliable tracking/vertexing performance in an increasingly harsh hadronic environment