

Neutrino physics

K.Zuber, Bad Liebenzell 5-7.10.2011

Contents

★ Lecture 1:

Neutrinos in the Standard Model Evidence for neutrino masses (oscillations)

★ Lecture 2:

Evidence for neutrino masses (c'td) Absolute neutrino mass measurements (beta, double beta decay)

★ Lecture 3:

What's next? Future activities Things to do

Neutrino Physics

iktp

Universal neutrino spectrum

Standard Model

Singlet states because there are no right handed weak charged currents

All particles are massless

Neutrino masses in SM

1952: Beta decay limit of m<250 eV → Assumption for SM: Massless

Langer, Moffat, Phys. Rev. 88, 689 (1952)

Why is the neutrino mass so small???

Fermion masses in SM

In general: Masses via spontaneous symmetry breaking – Higgs Mechanism

Doublet of complex scalar fields

$$\phi = \begin{pmatrix} \phi^{\dagger} \\ \phi^{0} \end{pmatrix}$$

Vacuum expectation value (VEV)

$$v = (\sqrt{2}G_F)^{-1/2} \approx 246 \text{ GeV}$$

Particle masses via coupling to Higgs VEV (for fermions = Yukawa- couplings)

$$\mathcal{L}_{\text{Yuk}} = -c_e \bar{e}_R \phi^{\dagger} \begin{pmatrix} \nu_{eL} \\ e_L \end{pmatrix} + h.c.$$
$$= -c_e \frac{v}{\sqrt{2}} \bar{e}_e$$
$$\mathsf{m}_e$$

Neutrino masses in SM

Easiest way: Include right-handed neutrino singlets in SM

$$\begin{pmatrix} u \\ d' \end{pmatrix}_{L} \begin{pmatrix} c \\ s' \end{pmatrix}_{L} \begin{pmatrix} t \\ b' \end{pmatrix}_{L} \begin{pmatrix} e \\ \nu_{e} \end{pmatrix}_{L} \begin{pmatrix} \mu \\ \nu_{\mu} \end{pmatrix}_{L} \begin{pmatrix} \tau \\ \nu_{\tau} \end{pmatrix}_{L} u_{R} & d_{R} & s_{R} & c_{R} & b_{R} & t_{R} & e_{R} & \mu_{R} & \tau_{R}. \\ V_{eR}; V_{\mu R}; V_{\tau R} & \text{More symmetric solution}$$

You have to explain why c_{ν} is so much smaller than the other couplings Neutrinos would be Dirac particles (4-state objects like the other fermions) Is there a chance to generate neutrino masses without adding neutrino states?

Senjanovic; Dorsner, Fileviez-Perez;....

slide by T. Hambye

. 5

What if neutrinos have a non-vanishing rest mass ?

➔ Physics beyond the Standard Model

•Of course a lot of new things can be explored (absolute mass, magnetic moments, decays ...)

• Weak eigenstates could be different from mass eigenstates like in quark sector – neutrino mixing (PMNS matrix analog to CKM-matrix)

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\theta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

The twofold way....

- Precision determination of mixing matrix elements (PMNS), CP violation in lepton sector
- ★ Absolute neutrino mass measurement

See also lecture 2

Neutrino mixing

Known in the quark - sector for more than 40 years

Neutrino mixing

E. Akhmedov, A. Smirnov, arXiv:1008.2077 E. Akhmedov, J. Kopp, arXiv:1001.4815 E. Akhmedov, A. Smirnov, arXiv:0905.1903

Production

Propagation

Detection

ktp

Neutrino Mixing

2 unknown Parameters: $\sin^2 2\theta$, Δm^2

No absolute neutrino mass measurement!

Oscillation search

Disappearance: Reduction of original flavour Appearance: New flavour not present at source

Atmosperic neutrinos

The target

Super-Kamiokande

iktp

50 kt water Cerenkov detector

Event classes

Zenith angle distribution

Super-K atmospheric

Neutrino beams

NBB: monochromatic neutrinos, small flux WB: energy spectrum of neutrinos, high flux

F. Eisele, Rep. Prog. Phys. 49, 233 (1986)

Example beam (MINOS)

iktp

Major problem: Precise knowledge of neutrino energy spectrum at experiment

mean neutrino energy: 1.4 GeV

 ${\cal V}_{\mu}$ disappearance experiment Baseline: 235 km

K2K near neutrino detectors

ktp

Neutrino-Nucleon QEL

- Form factors introduced since proton, neutron not elementary.
- Depend on vector and axial weak charges of the proton and neutron.
- Two hypotheses determine form factors: Conservation of Vector Current (CVC) and Partial Conservation of Axial Current (PCAC)

$$F_V(q^2) = \frac{F_V(0)}{\left(1 - q^2 / 0.71\right)^2}$$

$$F_{A}(q^{2}) = \frac{F_{A}(0)}{(1-q^{2}/1.065)^{2}}$$

$$F_{V}(0) = 1$$

$$F_{A}(0) = g_{A} = -1.2573 \pm 0.028$$

$$For low energy \lor (E_{V} < m_{N}):$$

$$\sigma(v_{e}n) = \sigma(\overline{v_{e}}p) = \frac{(G_{F}\cos\theta_{C})^{2}E_{V}^{-2}}{\pi} \left[F_{V}(0)^{2} + 3F_{A}(0)^{2}\right]$$

$$\approx 9.75 \times 10^{-42} \left(\frac{E_{V}}{10 \, MeV}\right)^{2} cm^{2}$$

QE scattering crucial for next generation of neutrino oscillation experiments!!

K2K results

MINOS

5.4 kt magnetized iron spectrometer

Disappearance experiment

Baseline: 732 km

LE option chosen Neutrino and antineutrino runs

MINOS + SuperK results

iktp

CNGS

Same baseline as Fermilab – Soudan

Beam optimised for detection Appearance experiment

OPERA

Short decays

Lead-Emulsion Target

BRICK: 57 emulsion foils +56 interleaved Pb plates

Emulsion films (Fuji) production rate ~8,000m²/month (206,336 brick ⇔ ~150,000m²)

Lead plates (Pb + 2.5% Sb) requirements: low radioactivity level,emulsion compatibility, constant and uniform thickness

52 x 64 bricks

OPERA - Expectation

τ decay channels	Signal		
	∆m² = 2.5 x 10-³ eV²	∆m² = 3.0 x 10-³ eV²	Background
τ → μ	2,9	4,2	0,17
$\tau ightarrow \mathbf{e}$	3,5	5,0	0,17
τ → h	3,1	4,4	0,24
τ → 3h	0,9	1,3	0,17
ALL	10,4	14,9	0,75

There should be 1 event in the data by now...

OPERA- 1st event

First candidate event observed

Summary so far

- Neutrinos have a non-vanishing rest mass
- ★ Observed in atmospheric neutrinos, confirmed by accelerators
- ★ Best fit is maximal mixing and

```
|\Delta m^2| = (2.32 \pm 0.10) \times 10^{-3} \text{ eV}^2
(90% C.L.)
\sin^2 2\theta = 1
```

