Contents

Lecture 1:

History Neutrinos in the Standard Model Evidence for neutrino masses (oscillations)

Lecture 2:

Evidence for neutrino masses (c'td) Absolute neutrino mass measurements (beta, double beta decay)

Lecture 3:

Double beta decay (c'td) What's next? Future activities Things to do

Back of an envelope

This is the 50 meV option, just add 0's to moles and kgs if you want smaller neutrino masses

Spectral shapes

$0\nu\beta\beta$: Peak at Q-value of nuclear transition

Signatures and approaches

- Sum energy of both electrons
- Single electron spectra and opening angle
- Detection of daughter ion

detector B detector B

Source \neq detector

- Semiconductors
- -Cryogenic bolometers
- -Scintillators
- Liquid Noble gases

-TPCs (foils) -Scintillators (foils)

β2

All low background

The dominant problem - Background

How to measure half-lives beyond 10²⁰ years???

The first thing you need is a mountain, mine,...

- The usual suspects (U, Th nat. decay chains)
- Alphas, Betas, Gammas
- Cosmogenics
- thermal neutrons
- High energy neutrons from muon interactions
- 2νββ

Experimental approaches

 $0\nu\beta\beta$ decay rate scales with Q⁵ \rightarrow only those with Q>2000 keV

Isotope	Q-Value (keV)	Nat. abund. (%)	11 isotopes of interest
Ca 48	4271	0.187	Candles
Ge 76	2039	7.8	GERDA, Majorana
Se 82	2995	9.2	SuperNEMO, LUCIFER
Zr 96	3350	2.8	
Mo 100	3034	9.6	MOON
Pd 110	2013	11.8	
Cd 116	2809	7.5	COBRA
Sn 124	2288	5.64	
Te 130	2529	34.5	
Xe 136	2479	8.9	EXO, KamLAND-Zen, NEXT, XMASS
Nd 150	3367	5.6	SNO+, DCBA, SuperNEMO(?)

Evidence ?

2004

2001

2006

H.V. Klapdor-Kleingrothaus et al., Eur.Phys.J. A12 (2001) 147-154 H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B 586, 198 (2004)

Mod.Phys.Lett.A21:1547-1566 (2006)

Very controversial discussion in the community

The fantastic 4

Because they're starting this year

for double beta decay

WWW.RISEOFTHESILVERSURFER.COM

IN THEATERS JUNE 15 2007

MARVEL

SATURY FOX AND IT'S RELATED ENTITIES ALL FIGHTS RESERVED. PROPERTY OF FOX PRIVATE USE ONLY SALE DUPLICATION OR OTHER TRANSFER OF THIS RESERVED.

GERDA-Principal Setup

Installation

GERDA

Glove-box for Ge-detector handling and mounting into commissioning lock under N₂ atmosphere installed in clean room

LEDOD

GERDA – First enriched data

Phase 1: 8 enriched detectors (former Hd-Moscow and IGEX detectors)

Stay tuned!

GERDA Detectors – Phase 2

Phase II: 35.4 kg enriched Ge purified to 6N (+ 1.1 kg tail), awaiting crystal growing

Optimal for pulse shape discrimination

GERDA Detectors – Phase 2

M/V Philadelphia Express Bremerhaven, Germany October 2, 2011

The magnificent 7

Because they should be online 2014

COBRA

Use large amount of CdZnTe Semiconductor Detectors

Large array of CdZnTe detectors

K. Zuber, Phys. Lett. B 519,1 (2001)

Background

Beyond 2.614 MeV background a priori much lower

It's all about background

Background from: natural radioactivity, cosmogenic produced radioisotopes, cosmic rays, neutrons

Two options

Energy measurement only

Energy measurement and tracking

COBRA - Pixel

A nice muon.

Top view + deposited energy, charge sharing effect

COBRA – Timepix

256x256 pixels, 55μm

ATLAS Detector Photos

Yes we can! B. Obama

$$\langle m_{\nu} \rangle = \sum_{j} U_{ej}^{2} m_{j}$$

$$\simeq c_{12}^{2} c_{13}^{2} m_{1} + s_{12}^{2} c_{13}^{2} e^{i\alpha} m_{2}$$

$$\text{hierarchy:} \sim (c_{\odot}^{2} - s_{\odot}^{2}) \sqrt{\Delta m_{Atm}^{2}}$$

$$\simeq 0.4 \cdot \sqrt{2.2 \cdot 10^{-3}} \text{ eV} \simeq 19 \text{ meV}$$

Just to touch the IH ¹⁰⁰Mo and ¹⁵⁰Nd seems most promising

Dependence on solar mixing angle

A. Dueck, W. Rodejohann, K. Zuber, arXiv:1103.4152, PRD 83, 113010 (2011)

M. Hirsch, hep-ph/0609146

Nuclear matrix elements

The dark side of double beta decay

Charge exchange reactions 2vββ: Only intermediate 1⁺ states contribute

Supportive measurements from accelerators

Currently: (d,²He) and (³He,t)

Supernova 1987A

SN0+

Using 1000 tons of (Nd-loaded) scintillator

Solar neutrinos, reactor neutrinos, geoneutrinos, supernova neutrinos, double beta decay

Cosmic sources of high-energy particles

AGN jets Supernova shock waves Decaying strings Annihilating SUSY particles

....

- Identify mechanisms using
- Particle composition
- Wide-band energy spectra
- Spatial and temporal characteristics

HE Neutrino Astrophysics

Neutrino-Mass

Neutrino masses from cosmology

$$n_{\nu} = \frac{6\varsigma(3)}{11\pi^2} T_{CMB}^3 \approx 112 cm^{-3}$$

$$\Omega_{v}h^{2} = \frac{m_{v,tot}}{94eV}$$

New WMAP measurement + SDSS data

Mass bound model dependent, currently done within ΛCDM

WMAP 5yr data

Description	Symbol	WMAP-only	WMAP+BAO+SN
Neutrino density ^j	$\Omega_{\nu}h^2$	$< 0.014 \; (95\% \ {\rm CL})$	$< 0.0071 \; (95\% \; {\rm CL})$
Neutrino mass ^j	$\sum m_{\nu}$	$< 1.3~{\rm eV}~(95\%~{\rm CL})$	$<0.67~{\rm eV}$ (95% CL)
Number of light neutrino families $^{\rm k}$	N_{eff}	> 2.3 (95% CL)	4.4 ± 1.5

Neutrino mass from cosmology

O. Lahav, Neutrino 2004

Data	Authors	$m_v = \Sigma m_i$
2dFGRS	Elgaroy et al. 02	< 1.8 eV
WMAP+2dF+	Spergel et al. 03	< 0.7 eV
WMAP+2dF	Hannestad 03	< 1.0 eV
SDSS+WMAP	Tegmark et al. 04	< 1.7 eV
WMAP+2dF+ SDSS	Crotty et al. 04	< 1.0 eV
Clusters +WMAP	Allen et al. 04	0.56 ^{+0.30} -0.26 eV

All upper limits 95% CL, but different assumed priors !

A unique cosmological bound on m_v DOES NOT exist!

S. Pastor, EPS HEP2005, Lisbon

The future

- ★ Absolute neutrino mass measurement ✓
- ★ Which mass scheme?
- ★ Understanding mixing pattern
- ★ The value of θ_{13}
- ★ Three flavour analysis
- ★ Is there CP-violation in the lepton sector (is it observable)?
- ★ Neutrino astronomy
- ★ Are there sterile neutrinos?
- ★ Unexpected things?

Exploring the PMNS matrix

Magic baseline:

$$\sqrt{2}G_F n_e L = \frac{\pi}{2} \rightarrow \sin(\frac{AL}{2}) = 0$$
 L \approx 7500 km

3-flavour oscillations

iktp

http://neutrinopendel.tu-dresden.de

New beams

Aim: Precision

Problem: Flavour content of the beam

Superbeams (off axis)
Beta beams
Neutrino factory

Off axis beams

θ₁₃???

1.5

1.0

0.5

2.0

1.5

0.5

0.0

(E) 1.0

(S_CP (T)

Latest solar results (SNO 3phase) arXiv:1109.0763

There are good hints that θ_{13} is non zero

Reactor Neutrinos

$$P(\overline{v}_e \to \overline{v}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{13}^2 L}{4E} - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{12}^2 L}{4E},$$

where $\Delta m_{ij}^2 = m_i^2 - m_j^2.$

Experiments look for non-1/r² behavior of antineutrino rate.

Reactor – θ_{13} hunting

If evidences are right, Double Chooz should see something by end of the year!

If true, very good chance to see CP-violation in the lepton sector (if there is one)

iktp

Neutrino factories

iktp

Neutrino factories

12 Oscillation Processes from (simultaneous) beams of positive and negative muons in a neutrino Factory.

$\mu^+ \to e^+ \nu_e \overline{\nu}_\mu$	$\mu^- \to e^- \bar{\nu}_e \nu_\mu$	ł.	
$\overline{ u}_{\mu} ightarrow \overline{ u}_{\mu}$	$ u_{\mu} ightarrow u_{\mu}$	disappearance	
$\overline{ u}_{\mu} ightarrow \overline{ u}_{e}$	$ u_{\mu} ightarrow u_{e}$	appearance (challenging)	
$\overline{ u}_{\mu} ightarrow \overline{ u}_{ au}$	$ u_{\mu} ightarrow u_{ au}$	appearance (atm. oscillation pla	atinum
$ u_e \rightarrow \nu_e $	$\overline{ u}_e ightarrow \overline{ u}_e$	disappearance	
$ u_e ightarrow u_\mu$	$\overline{ u}_e ightarrow \overline{ u}_\mu$	appearance: "golden" channel	golden
$ u_e ightarrow u_ au$	$\overline{ u}_e ightarrow \overline{ u}_ au$	appearance: "silver" channel	silver

Sterile neutrinos???

ktp

OPERA

Explanations from simple hardware issues up to extra dimensions...

Always expect the unexpected

