LHC Physics Part I: Machine, Experiments and the Standard Model

Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium Davis University USA

October 5 205

GK Hochenergiephysik und Teilchenastrophysik

Outline Short Introduction The LHC & Experiments Standard Model Division

- Standard Model Physics at 7 TeV
- Searches for the Higgs

Physics case for new High Energy Machines

History of the Universe

The Origin of Particle Masses

A most basic question is why particles (and matter) have masses (and so different masses)

The mass mystery could be solved with the 'Higgs mechanism' which predicts the existence of a new elementary particle, the 'Higgs' particle (theory 1964, P. Higgs, R. Brout and F. Englert)

5.0

bottom

top

charm

Quarks

175

Mass

(GeV/c²)

200

150

100

0.005

up

< Eisenatom

0.15

strange

The LHC will have sufficient energy to produce it for sure, if it exists

Francois Englert

Peter Higgs

Supersymmetry

(Julius Wess and Bruno Zumino, 1974)

Establishes a symmetry between fermions (matter) and bosons (forces):

- Each particle p with spin s has a SUSY partner $\stackrel{\sim}{p}$ with spin s -1/2
- Examples
- $q (s=1/2) \rightarrow \tilde{q} (s=0)$ squark
- g (s=1) $\rightarrow \tilde{g}$ (s=1/2) gluino

Our known world

Maybe a new world?

Motivation:

- Unification (fermions-bosons, matter-forces)
- Solves some deep problems of the Standard Model

New Physics at High Energies?

We do not know what is out there for us... A large variety of possible signals. We have to be ready for that

The LHC Machine and

High Energy ⇒ factor 3.5-7 increase w.r.t. present accelerators
 High Luminosity (# events/cross section/time) ⇒ factor 100 increase

The full LHC accelerator complex

The most challenging components are the 1232 high-tech superconducting dipole magnets

Magnetic field: 8.4 T Operation temperature: 1.9 K Dipole current: 11700 A Stored energy: 7 MJ Dipole weight: 34 tons 7600 km of Nb-Ti superconducting cable

LHC Construction Project Leader Lyndon Evans

2011 Run (till mid September)

	2010	2011	Nominal
Energy [TeV]	3.5	3.5	7
β* [m] (IP1,IP2,IP5,IP8)	3.5, 3.5, 3.5, 3.5	1.0, 10,1.0,3.0	0.55, 10, 0.55, 10
Emittance [µm] (start of fill)	2.0 – 3.5	1.5 – 2.2	3.75
Transverse beam size at IP1&5 [μm]	60	23	16.7
Bunch population	1.2×10 ¹¹ p	1.4x10 ⁺¹¹ p	1.15×10 ¹¹ p
Number of bunches	368	1380	2808
Number of collisions (IP1 & IP5)	348	1318	-
Stored energy [MJ]	28	110	360
Peak luminosity [cm ⁻² s ⁻¹]	2×10 ³²	3.3x10 ⁺³³	1×10 ³⁴
Max delivered luminosity (1 fill) [pb ⁻ ¹]	6.23	116	-
Longest Stable Beams fill [hrs]	12:09	25:59	-

Fill 2105 (Sept. 14, 2011)

- Duration: 16.5 hours
- ▶ Delivered: 117.4 pb⁻¹
- ▶ Recorded: 113.4 pb⁻¹
- ▶ Data Taking Efficiency: 96.6%
- 2.6 times the CMS recorded luminosity for 2010
- ▶ ~ Same as Tevatron Run I!
- Approximately 18,000 top pairs produced during this fill!

Last Weekend...

03-Oct-2011 09:05:53	Fill #: 2178	Energy: 3500 GeV	I(B1): 1.44e+14	I(B2): 1.44e+14
Experiment Status	ATLAS PHYSICS	ALICE STANDBY	CMS PHYSICS	LHCb THNX LHC!!
Instantaneous Lumi (ub.s)^-1	1317.5	1.883	1351.5	343.8
BRAN Luminosity (ub.s)^-1	1335.4	1.817	1336.9	332.3
Fill Luminosity (nb)^–1	104907.4	78.1	107071.9	17789.6
BKGD 1	0.090	0.687	3.961	0.911
BKGD 2	14.076	19.760	1.320	16.853
BKGD 3	13.571	4.192	2.732	1.246
LHCb VELO Position 🛛 🛛 🗛	o: -0.0 mm	STABLE BEAMS	TOTEM	A: OFF
Performance over the last 24 Hrs				Updated: 09:05:51
1.5E14 1.5E14 5E13 11:00 14:00	17:00	20:00 23:00	02:00 05:00	-3000 -2000 -1000
— 1(B1) — 1(B2) — Energy	17.00	20.00 23.00	02.00 05.00	08.00

2 Fills with more than 100 pb⁻¹ each within 36 hours!!!

Luminosity in 2011 so far

Total luminosity

Daily luminosity in 2010

•The LHC restarted on March 13 2011 after a winter stop

•The LHC has produced already ~100 times more luminosity compared to 2010

•LHC running now with 1380 bunches and ~3.3•10³³cm⁻²s⁻¹ luminosity

-> 4 fb⁻¹ now; 5 fb⁻¹ or more by the end of the October

The Four Main LHC Experiments

+TOTEM, LHCf, MOEDAL

The CMS Collaboration: >3000 scientists and engineers, >800 students from 189 Institutions in 39 countries .

Great Moments

Some of the key moments the last years

A Recorded Heavy Ion Collision

CMS Experiment at the LHC, CERN Mon 2010-Nov-08 11:22:07 CET Run 150431 Event 541464 C.O.M. Energy 7Z TeV

Proton-proton collisions

Generic LHC Collision

Parton Distribution Functions: the probability of finding a parton with momentum fraction x in the proton

Cross sections at the LHC

"Well known" processes, don't need to keep all of them ...

New Physics!! This we want to keep

Number of True Vertices

The number of reconstructed vertices after the August Technical Stop increased by factor 1.5 (β*=1.5m →1m)

- Fills start with ~15 pile-up interactions
- Vertex reconstruction still quite linear with luminosity
- Total inelastic cross section also has been measured from pile-up

TOTEM: Total Cross Section

Totem: uses the same interaction point as CMS
September LHCC: release of the first total pp cross section at 7 TeV using elastic scattering and the CMS luminosity measurement

Total = elastic+diffraction+non-diffractive events

$$\sigma_{T} = \left(98.3 \pm 0.2^{(\text{stat})} \pm 2.7^{(\text{syst})} \left[\begin{smallmatrix} +0.8\\ -0.2 \end{smallmatrix}\right]^{(\text{syst from }\rho)}\right) \text{ mb}$$

$$\sigma_{el} = 8.3 \text{ mb}^{(\text{extrapol.})} + 16.5 \text{ mb}^{(\text{measured})} = \left(24.8 \pm 0.2^{(\text{stat})} \pm 2.8^{(\text{syst})}\right) \text{ mb}$$

$$\sigma_{inel} = \sigma_{tot} - \sigma_{el} = \left(73.5 \pm 0.6^{(\text{stat})} \left[\begin{smallmatrix} +1.8\\ -1.3 \end{smallmatrix}\right]^{(\text{syst})}\right) \text{ mb}$$

$$\sigma_{el} = (\text{CMS}) = (68.0 \pm 2.0^{(\text{syst})} \pm 2.4^{(\text{lumi})} \pm 4.0^{(\text{extrapl})}) \text{ mb}$$

 σ_{inel} (ATLAS) = (69.4 ± 2.4^(exp) ± 6.9 ^(extrap)) mb

Important for pile-up in ATLAS and CMS

September 2011

Physics Results

- Studies of general characteristics of minimum bias soft events (now our pile-up)
 "Hard" Scattering
- Study of the underlying event in x with a hard scattering
- Jet physics & QCD
- B-physics
- W,Z boson production at 7 TeV
- Top at 7 TeV
- Searches for new physics
- Heavy Ion collisions at 2.76 TeV

LHC: 7 TeV Early Analysis

We learn a lot of particle production at the highest energies!!

Measurement of the charged particle density in proton proton collisions at 7 TeV

Strong rise of the central particle density with energy

Correlations Between Produced Particles

Select high multiplicity events
Study the correlation between two charged particles in the angles φ (transverse):
Δφ and θ (longitudinal): Δθ

A new phenomenon in the 'stronge force' seen for the first time But not considered New Physics

 η = -In tan θ /2

Jet Production at 7 TeV

The data are spanning: -20 GeV < p_T < 1500 GeV and $\mbox{ Inl}$ < 4.4 -Up to 12 orders of magnitudes in cross-sections

Jets

Jets with 1.9 and 1.7 TeV transverse momenta (p_T)

Jets: Data with NLO Theory

Good agreement between data and NLO pQCD with various PDFs globally...

 ... except in some specific regions, for example in the forward directions
 →Should be able soon to constrain PDFs

Importance of energy scale uncertainty!

ATLAS-CONF-2011-047

Di-lepton Invariant Mass

The di-muon spectrum recalls a long period of particle physics:

Heavy Bosons Production

The first W & Z bosons showed up in May 2010 in the experiments Now: about 6M W and 600K Z events/fb⁻¹ for analysis (e+µ final states)

W and Z Boson Production

Sub. to JHEP arXiv:1107.4789[hep-ex]

from the W \rightarrow μ + ν decays

mass distributions)

Early W cross section measurements

36

Full 2010 Data Set Measurements

W-Z Cross Sections

ATLAS-CONF-2011-041

Electroweak: access to proton PDFs

 $\begin{aligned} R_{c}^{\pm} &= \sigma(W^{+}c)/\sigma(W^{-}c) = 0.92 \pm 0.19(\text{stat.}) \pm 0.04(\text{syst.}) \\ R_{c} &= \sigma(Wc)/\sigma(W^{+}\text{jets}) = 0.143 \pm 0.015(\text{stat.}) \pm 0.024(\text{syst.}) \\ \text{NLO predictions:} \\ R_{c}^{\pm} &= 0.91 \pm 0.04 \quad R_{c} = 0.13 \pm 0.02 \end{aligned}$

Secondary vertex decay length discriminator

W + jet(s) production

Both an interesting QCD measurement as well as a dominant background to searches

41

Using Tau leptons

Differential W, Z Cross Sections

Very sensitive to QCD calculations and new effects

RESBOS = Resummed QCD program for Vector Boson Production

Studies of the TOP Quark

- Complete set of ingredients to investigate production of ttbar, which is the next step in verifying the SM at the LHC:
 - e, μ , E_T^{miss} , jets, b-tag
- Assume all tops decay to Wb: event topology then depends on the W decays:
 - one lepton (e or μ), E_T^{miss}, jjbb (37.9%)
 - di-lepton (ee, μμ or eμ), E_T^{miss}, bb (6.46%)
 - All hadronic channel
- Data-driven methods to control QCD and W+jets backgrounds

Candidate Event for Top Production

Top Di-Muon Candidate Event

Top Analyses: Examples

2 leptons + jets + ETmiss

results with global kinematical fit

Top-Pair Cross Section

σ(NLO)=158±24 pb

- Lepton+jets+b-tag
 - Most precise to-date for CMS !
- Dilepton channel (ee,eµ,µµ)
 - Require at least 1 b-tag
- Dilepton channel (µ-т)
 - Reconstruct hadronic tau decay
- <u>All-hadronic channel</u>
 - kinematic fit for m_{top}
 - QCD shape from anti-b-tag data

Already challenging for theoretical uncertainties!

Top Pair Production at 7 TeV

ATLAS and CMS have also made first single top cross-section measurements in agreement with NLO QCD expectations

Single Top Production

Try to distinguish s and t channel production

 90^{+32}_{-22}

CMS (36 pb⁻¹, arXiv:1106.3052)

Atlas (0.7 fb⁻¹)

 $83.6 \pm 29.8(\text{stat} + \text{syst}) \pm 3.3(\text{lumi})$

 3.7σ

 7.6σ

49

Examples of Top quark properties

CMS mass measurement with I + jets (kinematic fit, 4 or more jets)

Result when combined with di-lepton analysis

 $m_{\rm t} = 173.4 \pm 1.9({\rm stat}) \pm 2.7({\rm syst})$ GeV.

ATLAS t-tbar spin correlation as measured in di-lepton events ($\Delta \phi$ between leptons in azimuthal plane in the t-tbar lab frame)

(Soon) competitive with TeVatron...

Top Charge and Mass Asymmetries

Tevatron

- Top charge asymmetry
 - Larger than expected @ Tevatron!
 - Lepton+Jets channel

 - $A_{C} = [N(\Delta > 0) N(\Delta < 0)]/N_{tot}$ = -1.6 ± 3.0(stat) +1.0 -1.9(syst) %
- t-tbar mass difference
 - Muon+jets channel
 - Kinematic fit to the mass of the hadronically decaying top
 - Ideogram method
 - Likelihood calculated for each event to be consistent with m_t
 - Ideogram method applied separately to μ^+ jets and μ^- + jets
 - $-\Delta m(t-tbar) = -1.20 \pm 1.21(stat) \pm 0.47(syst) GeV$

Exceed's Tevatron precision

Measured Cross sections at 7 TeV

52

Run 166466 Event 26227945 Time 2010-10-07 22:16:39 UTC

 μ^+

WZ→evµµ Candidate

MET

μ

Search for $B_{s(d)} \rightarrow \mu \mu$

- Decays are highly suppressed in the SM
 - BR(B_s →µµ): (3.2±0.2)x10⁻⁹, B_d →µµ: (1.0±0.1)x10⁻¹⁰
- Indirect sensitivity to new physics
 - MSSM: BR∝(tanβ)⁶
- Blind analysis
 - $B^+ \rightarrow J/\psi K^+$ used for normalization
 - $-B^0 \rightarrow J/\psi \phi$ used as control regions for efficiencies
 - Events observed in the unblinded windows are consistent with bkg. plus SM expectations.
- CMS BR Limits at 95% CL
 - $-B_{s} \rightarrow \mu^{+}\mu^{-} < 1.9 \times 10^{-8}$
 - $-B_{d} \rightarrow \mu^{+}\mu^{-} < 4.6 \times 10^{-9}$

CMS + LHCb Combination $B_s \rightarrow \mu\mu$

- CMS BR Limit $-B_s \rightarrow \mu^+ \mu^- < 1.9 \times 10^{-8}$
- LHCb BR limit $- B_s \rightarrow \mu^+ \mu^- < 1.5 \times 10^{-8}$
- Combination of LHCb+CMS: $-B_s \rightarrow \mu^+\mu^- < 1.08 \times 10^{-8}$
- The value of CLs is in good agreement with background + SM

LHCb-CONF-2011-047 CMS PAS BPH-11-019

The Origin of Mass

Some particles have mass, some do not

Where do the masses come from?

Explanation of Profs P. Higgs R. Brout en F. Englert \Rightarrow A new field and particle

> The key question: Where is the Higgs?

Scalar field with at least one scalar particle

 $V(\phi)$

Overview of Searches

•

•

H→ 2 Photons Channel

Strategy

- 2 isolated γ 's with P_T>40, 30 GeV
- Data divided into 8 categories depending on resolution and $p_T(H)$
 - $\sigma_{eff}(mass)$ varies from 1.4 7.9 GeV
- Background shape fitted by 2nd order polynomial in each category
- Signal energy resolution extracted from Z→ee data

H→WW→2I2v Channel

- 2 isolated leptons, large MET, no b-tags (to suppress top)
- 3 categories
 - 0, 1, 2 jets (VBF)
- No mass peak
 - Kinematic discrimination using M_{\parallel} , $\Delta \phi_{\parallel}$, exploiting scalar decay

entries / 5 GeV/c² degrees CMS preliminary CMS preliminary $L = 1.55 \text{ fb}^{-1}$ m.=160 60 L = 1.55 fb⁻¹ 40 WZ/ZZ ww WZ/ZZ ഹ W+iets entries / 40 20 20 50 100 150 50 150 200 0 100 0 $\Delta \phi_{\mu}$ [degrees] m_I [GeV/c²]

Exclude 147–194 GeV @ 95% CL (130-200 expected)

 $\sigma(pp \rightarrow W^+W^-+X) = 55.3 \pm 3.3(stat.)\pm 6.9(syst.)\pm 3.3$ (lumi) pb

```
\sigma(NLO)=43\pm 2pb
```

$H \rightarrow ZZ \rightarrow 4$ lepton channel

H→ 2 Taus Channel (SM/MSSM)

- SM categories
 - <u>VBF</u>: 2 jets with $\Delta \eta > 3.5$, m_{ii}>350
 - Non-VBF: <2jets or 2 failing VBF tag
- MSSM categories
 - <u>B-tag</u>: ≥1 b jet p_T>20
 - Non-b-tag: <2 jets and no b-tags
- Topologies
 - $-\mu \tau_h, e \tau_h, e \mu (1.6 \text{ fb}^{-1}), \mu \mu (1.1 \text{ fb}^{-1})$
 - T_h ID by "hadron plus strips",
 6% efficiency uncertainty
- Fit visible mass distribution

PAS HIG-11-020

61

H→ 2 Taus, MSSM Exclusion

H→bb Channel

PAS HIG-11-012

• Search strategy:

- Associated production with W/Z
- <u>Boosted</u> W/Z topology, with H back-to-back with W/Z
- 2 b-jets (~10% mass resolution)
- 5 topologies:
 - WH \rightarrow µvbb, evbb
 - ZH \rightarrow µµbb, eebb
 - ZH \rightarrow vvbb

– Two complementary analyses:

- Cut and count in M_{bb}
- MVA with boosted decision tree
- Yields are in good agreement with data-driven background estimates

Summary of all Searches (CMS)

PAS HIG-11-022

..plus other channels eg other Z decays modes at higher masses

```
Σ (all this work)
```

- Solid lines: observed limits @ 95% CL
- Dashed lines: expected limits

Status of Lepton Photon Conference Mumbai, 22nd Aug 2011

Expected

Data 146 – 232, 256 – 282, 296 – 466 145 – 216, 226 – 288, 310 - 4065

131 – 447

130 – 447 45 – 216, 226 – 288, 310 - 40

World Higgs Map

95% CL Limit/SM

1

•

•

H. Murayama **ICFA** seminar

600

600

The Higgs no Higgs

- not preferred by precision EW
- no Higgs = a great discovery!
- test unitarity cancellation at high E
- $qq \rightarrow qqWW$, $WW \rightarrow WW$ scattering

- if strong → go higher energy to understand the underlying theory
- if weak → we had missed it! hadrophilic? invisible?
 - Iower LHC energy? ILC?

Summary of Part I

- LHC is running well in 2011. Peak luminosity close to 3.5 E33cm⁻²s⁻¹. The total delivered luminosity this year will be O(5) fb⁻¹
- Experiments are taking excellent data with high efficiency!
- Extended program of Standard Model Physics measurements at the LHC by all experiments.
 - Total pp cross sections at 7 TeV; soft event studies
 - QCD measurements (particle, jets, photon production) at the highest energies; b-physics
 - Studies of W, Z boson production
 - Top quark studies
- The search for the Higgs particle is in full swing
 - No evidence yet, large disfavored regions. Watch that space!

Ready for Searches for New Physics: PART II

backup