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Tensors I

Tensor Transformations

b̃µ =
∑
ν

∂xν

∂x̃µ bν and ãµ =
∑
ν

∂x̃µ

∂xν aν (1)

T̃αβ = ∂x̃α

∂xµ
∂x̃β

∂xν Tµν , T̃α
β = ∂x̃α

∂xµ
∂xν

∂x̃β Tµ
ν & T̃αβ = ∂xµ

∂x̃α
∂xν

∂x̃β Tµν

Covariant Derivative

φ;λ = φ,λ (2)
Aλ;µ = Aλ,µ − ΓρµλAρ (3)

Tλµ
;ν = Tλµ

,ν + ΓλανTαµ + ΓµανTλα (4)

Parallel Transport

δaµ = Γλµνaλdxν for covariant vectors (5)
δaµ = −Γµλνaλdxν for contravariant vectors (6)
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Tensors II
The distance ds of two points P(xµ) and P ′(xµ + dxµ) is given by

ds2 =
(

dx 1)2 +
(

dx 2)2 +
(

dx 3)2 (7)
in two different coordinate frames ,

ds2 = g̃µνdx̃µdx̃ν = gαβdxαdxβ . (8)

I Metric element for Minkowski spacetime
ds2 = −c2dt2 + dx 2 + dy 2 + dz2 (9)
ds2 = −c2dt2 + dr 2 + r 2dθ2 + r 2 sin2 θdφ2 (10)

I For a sphere with radius R :
ds2 = R2 (dθ2 + sin2 θdφ2) (11)

I The metric element of a torus with radii a and b
ds2 = a2dφ2 + (b + a sinφ)2 dθ2 (12)

I The Schwarzschild metric :

ds2 =
(

1− 2
c2

GM
r

)
c2dt2 −

(
1− 2

c2
GM

r

)−1
dr 2 − r 2 (dθ2 + sin2 θdφ2)
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Tensors III

Curvature Tensor or Riemann Tensor

Rλ
βνσ = −Γλβν,σ + Γλβσ,ν − ΓµβνΓλµσ + ΓµβσΓλµν (13)

Christoffel Symbols

Γαµρ = 1
2 gαν (gµν,ρ + gνρ,µ − gρµ,ν) (14)

Geodesic Equations

duρ

ds + Γρµνuµuν = 0 or d2xρ

ds2 + Γρµν
dxµ

ds
dxν

ds = 0
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The Ricci and Einstein Tensors
The contraction of the Riemann tensor leads to Ricci Tensor

Rαβ = Rλ
αλβ = gλµRλαµβ

= Γµαβ,µ − Γµαµ,β + ΓµαβΓννµ − ΓµανΓνβµ (15)

which is symmetric Rαβ = Rβα. Further contraction leads to the Ricci or
Curvature Scalar

R = Rα
α = gαβRαβ = gαβgµνRµανβ . (16)

The following combination of Riemann and Ricci tensors is called Einstein
Tensor

Gµν = Rµν −
1
2 gµνR (17)

with the very important property:

Gµ
ν;µ =

(
Rµ

ν −
1
2δ

µ
νR
)

;µ
= 0 . (18)

This results from the Bianchi Identity (how?)

Rλ
µ[νρ;σ] = 0 (19)
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Flat & Empty Spacetimes

I When Rαβµν = 0 the spacetime is flat
I When Rµν = 0 the spacetime is empty

Prove that :
aλ;µ;ν − aλ;ν;µ = −Rλ

κµνaκ
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Einstein’s equations

Thus the typical form of Einstein’s equations is:

Rµν − 1
2 gµνR + Λgµν = κTµν . (20)

where Λ = 8πG
c2 ρv is the so called cosmological constant.

They can also be written as:

Rµν = −κ
(

Tµν −
1
2 gµνT

)
(21)
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GW: Linear Theory I
Weak gravitational fields can be represented by a slightly deformed Minkowski
spacetime :

gµν ' ηµν + hµν + O(hµν)2 , |hµν | � 1 (22)
here hµν is a small metric perturbation.
The indices will be raised and lowered by ηµν i.e.

hαβ = ηαµηβνhµν (23)
h = ηµνhµν (24)

gµν = ηµν − hµν (25)

and we will define the traceless (φµν ) tensor:

φµν = hµν −
1
2ηµνh . (26)

The Christoffel symbols & the Ricci tensor will become :

Γλµν ≈ 1
2η

λρ (hρν,µ + hµρ,ν − hµν,ρ) (27)

Rµν ≈ Γαµν,α − Γαµα,ν ≈
1
2 (hαν,µα + hαµ,να − hµν,αα − hαα,µν)(28)

R = ηµνRµν ≈ hαβαβ − hαα,β,β (29)
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Finally, Einstein tensor gets the form:

G (1)
µν = 1

2 (hαν,µα + hαµ,να − hµν,αα − hαα,µν)− ηµν
(

hαβ,αβ − hαα,β,β
)

(30)

Einstein’s equations reduce to (how?):

−φµν ,α
,α − ηµνφαβ

,αβ + φµα
,α
,ν + φνα

,α
,µ = κTµν (31)

Then by using the so called Hilbert (or Harmonic or De Donder) gauge similar
to Lorenz gauge (Aα,α = Aα,α = 0) in EM 1

φµα,α = φµα
,α = 0 (32)

we come to the following equation:

φµν
,α
,α ≡ �φµν ≡ −

(
1
c2

∂2

∂t2 −∇
2
)
φµν = −κTµν (33)

which is a simple wave equations describing ripples of spacetime propagating
with the speed of light (why?). These ripples are called gravitational waves.

1The De Donder gauge is defined in a curved background by the condition
∂µ(gµν

√
−g) = 0
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GW: about Gauge conditions (*)
By careful choice of coordinates the linearized Einstein equations can be
simplified. We can fix ηµν = diag(−1, 1, 1, 1) and make small changes in the
coordinates that leave ηµν unchanged but induce small changes in hµν .
For example lets consider a change of the form:

x ′µ = xµ + ξµ (34)

where ξµ are 4 small arbitrary functions of the same order as hµν . Then

∂x ′µ

∂xν = δµν + ∂νξ
µ and ∂xµ

∂x ′ν = δµν − ∂νξµ

Thus, the metric transforms as:

g ′µν = ∂xρ

∂x ′µ
∂xσ

∂x ′ν gρσ =
(
δρµ − ∂µξρ

)
(δσν − ∂νξσ) (ηρσ + hρσ)

≈ ηµν + hµν − ∂µξν − ∂νξµ = ηµν + h′µν (35)

Then in the new coordinate system we get

h′µν = hµν − ξµ,ν − ξν,µ (36)

This transformation is called gauge transformation.
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GW: about Gauge conditions II (*)

This is analogous to the gauge transformation in Electromagnetism.
If Aµ is a solution of the EM field equations then another solution that
describes precisely the same physical situation is given by

A(new)
µ = Aµ − ψ,µ (37)

where ψ is any scalar field.
Then the gauge condition A(new)µ

,µ = A(new)
µ
,µ = 0 means that

ψ,µ,µ = ψ,µ
,µ =�ψ = Aµ,µ.

From (36) it is clear that if hµν is a solution to the linearised field equations
then the same physical situation is also described by

φ(new)
µν = φµν−ξµ,ν − ξν,µ = φµν−Ξµν (38)

NOTE
• This is a gauge transformation and not a coordinate one
• We are still working on the same set of coordinates xµ and have defined a
new tensor φ(new)

µν whose components in this basis are given by (38).
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GW: about Gauge conditions III (*)

We can easily see that from (36) or (38) we can get

φ(new)µρ
,ρ = φµρ,ρ −�ξµ (39)

Therefore, if we choose the function ξµ so that to satisfy

�ξµ = φµρ,ρ (40)

we get the Hilbert gauge
φ(new)µρ

,ρ = 0 (41)
NOTE: This gauge condition is preserved by any further gauge transformation
of the form (38) provided that the functions ξµ satisfy �ξµ = 0 or equivalently
�Ξµν = 0.
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I The choice of the Hilbert gauge φµν,ν = 0, gives 4 conditions that
reduces the 10 independent components of the symmetric tensor hµν to 6!

I Eqn (38) tells us that, from the 6 independent components of φµν which
satisfy �φµν = 0, we can subtract the functions Ξµν , which depend on 4
independent arbitrary functions ξµ satisfying the same equation
�Ξµν = 0.

I This means that we can choose the functions ξµ so that as to impose 4
conditions on φµν .

I We can choose ξ0 such that the trace φ = 0. Note that if φ = 0
then φµν = hµν .

I The 3 functions ξi can be chosen so that φ0i = 0.
I Then the Hilbert condition for µ = 0 will be written φ00

,0 + φ0i
,i = 0.

But since we fixed φ0i = 0 we get φ00
,0 = 0, i.e. φ00 is a constant in

time.
I A time-independent part term φ00 corresponds to the static part of

the grav. interactions i.e. to the Newtonian potential of the source.
I The GW itself is the time-dependent part and therefore as far as

the GW concerns h00
,0 = 0 means h00 = 0.

In conclusion, we set

h0µ = 0 , hi
i = 0 , hij

,i = 0 (42)
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GW: Properties
Equation (33) is the basis for computing the generation of GWs within the
linearised theory.
To study the propagation of GWs as well as the interaction with test masses
(and therefore the GW detector) we are interested for the equations outside the
source, i.e. where Tµν = 0.
GWs are periodic changes of spacetime curvature and for weak gravitational
fields far away from sources they described by a simple wave equations which
admits a solution of the form:

φµν = Aµν cos (kαxα) , (43)

where Aµν is a symmetric tensor called polarization tensor including
information of the amplitude and the polarization properties of the GWs.
kα ≡ (k0 = ω/c, ~k) is the wave-vector.
This solution satisfies Hilbert’s gauge condition, that is:

0 = φµν
,ν = −Aµνkν sin (kαxα)

which lead to the orthogonality condition

Aµνkν = 0 . (44)
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From the wave equation (33) we get

0 = φµν
,α
,α = −Aµνkαkα cos (kαxα) ⇒ kαkα = 0. (45)

This relation suggests that the wave vector kα is null i.e. gravitational waves
are propagating with the speed of light. But, (45) implies that ω2 = c2|~k|2 i.e.
both group and phase velocity of GWs are equal to the speed of light.
vgroup = ∂ω

∂k and vphase = λ
T = ω

k
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GW: The Transverse - Traceless (TT) Gauge

Based on the gauge freedom which allows to choose ξµ we derived the
following relations

h0µ = 0 , hi
i = 0 , hij

,i = 0 (46)
which define the so-called Transverse - Traceless (TT) Gauge.
Then for a GW propagating in the z direction i.e. it has a wave vector of the
form kµ = (ω/c, 0, 0,−ω/c) where k0 = ω/c is the frequency of the wave that:

hµν ≡

 0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 cos[ω(t − z/c)] (47)

While h+ and h×, are the amplitudes of the gravitational waves in the two
polarizations.
The GWs described in this spacific gauge are Transverse and Traceless, and we
will use the notation hTT

µν .
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GW: Effects...
We will study the effect of GWs on particles.
A static or slowly moving particle has velocity vector uµ ≈ (1, 0, 0, 0) and one
can assume that τ ≈ t. Then in linearized gravity the geodesic equation will be
written as:

duµ

dt = −1
2 (hµα,β + hβµ,α − hαβ,µ) uαuβ (48)

leading to
duµ

dt = −
(

hµ0,0 −
1
2 h00,µ

)
. (49)

If we now use the T-T gauge (h00 = hµ0 = 0) we conclude that GWs do not
affect isolated particles!
If instead we consider a pair of test particles on the cartesian axis Ox being at
distances x0 and −x0 from the origin and we assume a GW traveling in the
z-direction then their distance will be given by the relation:

d`2 = gµνdxµdxν = . . .

= −g11(dx)2 = (1− h11)(2x0)2 = (1− h+ cosωt) (2x0)2 (50)

or approximatelly
∆` ≈

(
1− 1

2 h+ cosωt
)

(2x0) . (51)
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GW: Effects...
In a similar way we can show for two particles on the Oy axis that:

∆` ≈
(

1 + 1
2 h+ cosωt

)
(2y0) . (52)

In other wards the coordinate distance of two particles is varying periodically
with the time

Figure: The effect of a travelling GW on a ring of particles
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GW: Effects...

Figure: The effect of a travelling GW on a ring of particles
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Geodesic deviation (*)
In a curved spacetime two geodesics that can be “parallel” initially will either
converge or diverge depending on the local curvature. Consider two
neighbouring geodesics G given by xα(σ) and G̃ given by x̃α(σ) where σ is an
affine parameter. If ξα(σ) is a small vector connecting points of the two
geodesics for the same values of σ i.e.

x̃α(σ) = xα(σ) + ξα(σ)
If we construct local geodesic coordinates about the point P, the Christoffel
symbols will vanish but its derivatives will be non-zero there.

Figure: (Left) Two neighbouring geodesics. (Right) Converging geodesics on the surface of a sphere.
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In this coordinate system we will get(
d2xα

dσ2

)
P

= 0 ,

(
d2x̃α

dσ2 + Γαµν
dx̃µ

dσ
dx̃ν

dσ

)
Q

= 0 (53)

But since ξα is small:

[Γαµν ]Q = [Γαµν ]P + [Γαµν,λ]P ξ
λ = [Γαµν,λ]P ξ

λ

by subtracting the two equations in (53) we get (to 1st order, at P):

d2ξα

dσ2 + Γαµν,λ
dxµ

dσ
dxν

dσ ξ
λ = 0

However, in our geodesic coordinates the 2nd order absolute (intrinsic)
derivative of ξα at P is:

D2ξα

Dσ2 = d
dσ

(dξα

dσ + Γαµνξµxν
)

= d2ξα

dσ2 + Γαµν,λ
dxµ

dσ
dxλ

dσ ξ
ν

where we have used the fact that Γαµν(P) = 0.
By combining the last two equations we get:

D2ξα

Dσ2 + [Γαµλ,ν − Γαµν,λ]ξν dxµ

dσ
dxλ

dσ = 0

which will give
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D2ξα

Dσ2 + Rα
µνλξ

ν dxµ

dσ
dxν

dσ = 0 (54)

because the term in the square brackets is the Riemann tensor in local geodesic
coordinates.
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Tidal forces in a curved spacetime
Tidal forces deform the shape of bodies as they freely move in a gravitational
field.
Thus two nearby particles with trajectories x i (t) and x̃ i (t) (in Cartesian
coordinates) will be separated by a vector ξi = x i − x̃ i

d2ξ

dt2 = −
(

∂2Φ
∂x i∂x j

)
ξj (55)

(why?) where Φ is the Newtonian gravitational potential.

Figure: Tidal effects on a cloud of particles
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Tidal effects can be also estimated in GR for two particles moving along
timelike geodesics xµ(τ) and x̃µ(τ) (τ is the proper time of the 1st particle).
The separation vector between the worldlines of the 2 particles is
ξµ(τ) = x̃µ − xµ:

D2ξµ

Dτ 2 = Rµ
σρνuσuρξν ≡ Sµνξν (56)

where Sµν is the so called tidal stress tensor and uσ = duσ/dτ . This is a fully
covariant tensor equation and holds in any coordinate system.
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Figure: The basis vectors of the instantaneous rest frame (IRF) at P.
• êα is a set of orthonormal basis vectors at P that define the IRF of the first
particle (observer) with êα · êβ = ηαβ .
• ξ is a general connecting vector with ξα̂ ≡ êα · ξ = (êα)µ ξ

µ

• ζ is the orthogonal connecting vector.
For an observer sitting on the one of the particles it can be shown that in any
orthonormal freely falling frame becomes:

d2ξµ̂

dτ 2 = c2R µ̂
0̂0̂ν̂ξ

ν̂ . (57)

Newtonian limit (we will discuss the details later)

R µ̂
0̂0̂ν̂ →

∂2Φ
∂x i∂x j (58)
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GW: Tidal forces
Riemann tensor is a ”measure” of spacetime’s curvature and in linearized
gravity gets the form

Rκλµν = 1
2 (∂νκhλµ + ∂λµhκν − ∂κµhλν − ∂λνhκµ) , (59)

in the T-T gauge the Riemann tensor is considerably simplified

RTT
j0k0 = −1

2
∂2

∂t2 hTT
jk , for j, k = 1, 2, 3. (60)

Actually, the Newtonian limit of the Riemann tensor is:

RTT
j0k0 ≈

∂2U
∂x j∂x k , (61)

where U is the Newtonian potential. In other words the Riemann tensor has
also a pure physical meaning i.e. it is a measure of the tidal gravitational
acceleration. Then the distance between two nearby particles xµ(τ) will
xµ(τ) + ξµ(τ) will be described by

d2ξk

dt2 ≈ −Rk
0j0

TT
ξj . (62)
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The tidal force acting on a particle is (why?)

f k ≈ −mRk
0j0ξ

j ≈ m
2

d2hTT
jk

dt2 ξj (63)

where m is particle’s mass. This means that

f x ≈ m
2 h+ω

2 cos[ω(t − z)]ξx
0 , and f y ≈ −m

2 h+ω
2 cos[ω(t − z)]ξy

0 . (64)

∇~f = ∂f x

∂ξx
0

+ ∂f y

∂ξy
0

= 0 . (65)

Hence the divergence of the force ~f is zero, which tell us that the tidal force
can be represented graphically by field lines.

Figure: The tidal field lines of force for a gravitational wave with polarization (+) (left panel) and (×) (right panel). The orientation
of the field lines changes every half period producing the deformations as seen in Figure 1. Any point accelerates in the directions of the
arrows, and the denser are the lines, the strongest is the acceleration. Since the acceleration is proportional to the distance from the center
of mass, the force lines get denser as one moves away from the origin. For the polarization (×) the force lines undergo a 450 rotation.
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GW: Properties

• GWs, once they are generated, propagate almost unimpeded. Indeed, they
are even harder to stop than neutrinos! The only significant change they suffer
as they propagate is the decrease in amplitude while they travel away from
their source, and the redshift they feel (cosmological, gravitational or Doppler).

• EM waves are fundamentally different, however, even though they share
similar wave properties away from the source.

• GWs are emitted by coherent bulk motions of matter (for example, by the
implosion of the core of a star during a supernova explosion) or by coherent
oscillations of spacetime curvature, and thus they serve as a probe of such
phenomena.

By contrast,
• Cosmic EM waves are mainly the result of incoherent radiation by
individual atoms or charged particles.

? As a consequence, from the cosmic electromagnetic radiation we mainly
learn about the form of matter in various regions of the universe, especially
about its temperature and density, or about the existence of magnetic fields.
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GW: Properties

• Strong GWs are emitted from regions of spacetime where gravity is very
strong and the velocities of the bulk motions of matter are near the speed of
light.
Since most of the time these areas are either surrounded by thick layers of
matter that absorb EM radiation or they do not emit any at all (black holes),
the only way to study these regions of the universe is via GWs.
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GW: The energy of GWs

The fact that GWs carry energy and momentum is already clear from the
discussion on the interaction with test masses.
To get an explicit expression of the energy-momentum tensor of GWs we can
follow two different routes one more geometrical and the other more
field-theoretical

A. According to GR, any form of energy contributes to the curvature of
space-time, thus we can ask ”whether GWs are themselves a source of
space-time curvature”.

B. We can treat linearised gravity as any other classical filed theory and
apply Noether’s theorem, the standard field-theoretical tool that answers
this question.

Kostas Kokkotas Gravitational Waves



GW: The energy of GWs

In order to include the contribution of the energy-momentum associated with
the gravitational field itself one must modify the linearise Einstein’s equations
to read

G (1)
µν = −8πG

c4 (Tµν + Tµν) (66)

where Tµν is the energy-momentum tensor of any matter present and Tµν is
the energy-momentum tensor of the gravitational field itself.
On the other hand Einstein’s equations may expand beyond first order to obtain

Gµν ≡ G (1)
µν + G (2)

µν + · · · = −8πG
c4 Tµν (67)

This suggest that, to a good approximation, we should make the identification

Tµν ≡
c4

8πG G (2)
µν = ... = c4

8πG
〈

G (2)
µν

〉
(68)
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GW: Energy
GWs carry energy. The stress-energy carried by GWs cannot be localized within
a wavelength. Instead, one can say that a certain amount of stress-energy is
contained in a region of the space which extends over several wavelengths. The
stress-energy tensor can be written as:

T µν = 1
4

[
2φαβ,µφαβ,ν − φ,µφ,ν − ηµν

(
φαβ,σφαβ,σ −

1
2φ,σφ

,σ
)]

(69)

which in the TT gauge of the linearized theory becomes (HOW?)

T GW
µν = c4

32πG
〈(
∂µhTT

ij
) (
∂νhTT

ij
)〉
. (70)

where the angular brackets indicate averaging over several wavelengths. For the
special case of a plane wave propagating in the z direction, the stress-energy
tensor has only three non-zero components, which take the simple form

T GW
00 = T

GW
zz
c2 = −T

GW
0z
c = 1

32π
c2

G ω2 (h2
+ + h2

×
)
, (71)

where T GW
00 is the energy density, T GW

zz is the momentum flux and T GW
0z the

energy flow along the z direction per unit area and unit time .
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Gravitational Waves: Nature of

? Electromagnetic radiation emitted by slowly varying charge distributions
can be decomposed into a series of multipoles, where the amplitude of the
2`-pole (` = 0, 1, 2, ...) contains a small factor a`, with a equal to the ratio of
the diameter of the source to the typical wavelength, namely, a number
typically much smaller than 1.

From this point of view the strongest EM radiation would be expected for
monopolar radiation (` = 0), but this is completely absent, because the EM
monopole moment is proportional to the total charge, which does not change
with time (it is a conserved quantity).

Therefore, EM radiation consists only of ` ≥ 1 multipoles, the strongest being
the electric dipole radiation (` = 1), followed by the weaker magnetic dipole &
electric quadrupole radiation (` = 2).
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Gravitational Waves: Nature of

For Gravitational Waves, it can be shown that mass conservation (which is
equivalent to charge conservation in EM theory) will exclude monopole
radiation.

Also, the rate of change of the mass dipole moment is proportional to the
linear momentum of the system, which is a conserved quantity, and therefore
there cannot be any mass dipole radiation in Einstein’s relativity theory.

The next strongest form of EM radiation is the magnetic dipole. For the case
of gravity, the change of the “magnetic dipole” is proportional to the angular
momentum of the system, which is also a conserved quantity and thus there is
no dipolar grav. radiation of any sort. It follows that grav. radiation is of
quadrupolar (or higher nature) and is directly linked to the quadrupole moment
of the mass distribution.
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Newtonian Gravity
Poisson equation

∇2U(~x) = 4πGρ(~x) → U(~x) = −G
∫

d3 ~x ′ ρ(~x)
|~x − ~x ′|

For a spherically symmetric mass distribution of radius R

U(r) = −1
r

∫ R

0
r ′2ρ(r ′)dr ′ for r > R

U(r) = −1
r

∫ r

0
r ′2ρ(r ′)dr ′ −

∫ R

r
r ′ρ(r ′)dr ′ for r < R
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For a non-spherical distribution the term 1/|~x − ~x ′| can be expanded as

1
|~x − ~x ′|

= 1
r +

∑
k

x k x ′k

r 3 + 1
2
∑

k

∑
l

(
3x ′k x ′l −~r ′2δl

k
) x k x l

r 5 + . . .

U(~x) = −GM
r − G

r 3

∑
k

x k Dk − G
2
∑

kl

Qkl x k x l

r 5 + . . .

Gravitational Multipoles

M =
∫
ρ(~x ′)d3x ′ Mass

Dk =
∫

x ′kρ(~x ′)d3x ′ Mass Dipole moment2

Qkl =
∫ (

3x ′k x ′l − ~r ′2δl
k

)
ρ(~x ′)d3x ′ Mass Quadrupole tensor3

2If the center of mas is chosen to coincide with the origin of the coordinates then
Dk = 0 (no mass dipole).

3If Qkl 6= 0 the potential will contain a term proportional to ∼ 1/r3 and the
gravitational force will deviate from the inverse square law by a term ∼ 1/r4.

Kostas Kokkotas Gravitational Waves



GW: Generation
Einstein (1918) derived the quadrupole formula for gravitational radiation by
solving the linearized form of his equations

�φµν(t, ~x) = −κTµν(t, ~x) . (72)

The solution is:

φµν(t, ~x) = − κ

4π

∫
V

Tµν (t − |~x − ~x ′|, ~x ′)
|~x − ~x ′| d3x ′ , (73)

This solution suggests that φij is proportional to the second time derivative of
the quadrupole moment of the source (WHY?):

φij = 2
r

G
c4 Q̈TT

ij (t − r/c) where QTT
ij (x) =

∫
ρ
(

x i x j − 1
3δ

ij r 2
)

d3x (74)

where, QTT
ij is the quadrupole moment in the TT gauge, evaluated at the

retarded time t − r/c 4.
The energy radiated by the system per unit solid angle and unit time in the
direction ns is

− d2E
dtdΩ = r 2T 0sns (75)

4This result is quite accurate for all sources, as long as the reduced wavelength
λ̃ = λ/2π is much longer than the source size R.
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GW: Emission of Energy, Angular and Linear Momentum
Using the formulae (70) and (71) for the energy carried by GWs, one can derive
the luminosity in GWs as a function of the third-order time derivative of the
quadrupole moment tensor.
This is the well-known quadrupole formula for the Energy emission

LGW = −dE
dt = 1

5
G
c5

〈...
Q ij ·

...
Q ij
〉

(76)

Angular momentum emission

dJGW
i
dt = 2

5
∑
jk`

εijk
〈

Q̈j` ·
...
Q`k
〉

(77)

Linear momentum emission

dPGW
i

dt = 2
63
∑

jk

〈...
Q jk ·

...
Q jki
〉

+ 16
45
∑
jk`

εijk
〈...

Q j` ·
...
P `k
〉

(78)

where
Qijk : mass octupole moment
Pij : current quadrupole moment
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GW: Energy Flux
The energy flux has all the properties one would anticipate by analogy with
electromagnetic waves: (a) it is conserved (the amplitude dies out as 1/r , the
flux as 1/r 2), (b) it can be absorbed by detectors, and (c) it can generate
curvature like any other energy source in Einstein’s formulation of relativity.

Estimate the energy flux in GWs from the collapse of the core of a supernova
to create a 10 M� black hole at a distance of ∼15 Mpc from the earth (at the
distance of the Virgo cluster of galaxies). An optimistic estimate of the
amplitude of the GWs on Earth is of the order of h ≈ 10−22 (at a frequency of
about 1kHz). This corresponds to a flux of about 3 ergs/cm2 sec. This is an
enormous amount of energy flux and is about ten orders of magnitude larger
than the observed energy flux in electromagnetic waves!

The basic difference is the duration of the two signals; GW signal will last a few
milliseconds, whereas an EM signal lasts many days. This example provides us
with a useful numerical formula for the energy flux:

F = 3
( f

1kHz

)2 ( h
10−22

)2 ergs
cm2sec , (79)

from which one can easily estimate the flux on Earth, given the amplitude (on
Earth) and the frequency of the waves.
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GW: Order of magnitude estimates
The quadrupole moment of a system is approximately equal to the mass M of
the part of the system that moves, times the square of the size R of the system.
This means that the 3rd-order time derivative of the quadrupole moment is

∂3Qij

∂t3 ∼
MR2

T 3 ∼
MV2

T ∼ Ens

T , (80)

where V is the mean velocity of the moving parts, Ens is the kinetic energy of
the component of the source’s internal motion which is non-spherical, and T is
the time scale for a mass to move from one side of the system to the other.
The time scale (or period) is actually proportional to the inverse of the square
root of the mean density of the system (why?)

T ∼
√

R3/GM. (81)
This relation provides a rough estimate of the characteristic frequency of the
system f = 2π/T . The luminosity of GWs of a given source is approximately

LGW ∼
G4

c5

(M
R

)5
∼ G

c5

(M
R

)2
V6 ∼ c5

G

(RSch

R

)2 (V
c

)6
(82)

where RSch = 2GM/c2 is the Schwarzschild radius of the source. It is obvious
that the maximum value of the luminosity in GWs can be achieved if the
source’s dimensions are of the order of its Schwarzschild radius and the typical
velocities of the components of the system are of the order of the speed of light.
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GW: Order of magnitude estimates II
The above formula sets also an upper limit on the power emitted by a source,
which for R ∼ RSch and V ∼ c is:

LGW ∼ c5/G = 3.6× 1059ergs/sec. (83)
This is an immense amount of power, often called the luminosity of the
universe.
Using the above order-of-magnitude estimates, we can get a rough estimate of
the amplitude of GWs at a distance r from the source:

h ∼ G
c4

Ens

r ∼ G
c4
εEkin

r (84)

where εEkin (with 0 ≤ ε ≤ 1), is the fraction of kinetic energy of the source
that is able to produce GWs. The factor ε is a measure of the asymmetry of the
source and implies that only a time varying quadrupole moment will emit GWs.
Another formula for the amplitude of GW relation can be derived from the flux
formula (79). If, for example, we consider an event (perhaps a supernovae
explosion) at the Virgo cluster during which the energy equivalent of 10−4M�
is released in GWs at a frequency of 1 kHz, and with signal duration of the
order of 1 msec, the amplitude of the gravitational waves on Earth will be

h ≈ 10−22
(

EGW

10−4M�

)1/2 ( f
1kHz

)−1 ( τ

1msec

)−1/2
(

r
15Mpc

)−1

. (85)
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GW: Order of magnitude estimates III

For a detector with arm length of 4 km we are looking for changes in the arm
length of the order of

∆` = h · ` = 10−22 · 4 km = 4× 10−17cm!!!

These numbers shows why experimenters are trying so hard to build
ultra-sensitive detectors and explains why all detection efforts till recently were
not successful.
Finally, it is useful to know the damping time, that is, the time it takes for a
source to transform a fraction 1/e of its energy into gravitational radiation.
One can obtain a rough estimate from the following formula

τ = Ekin

LGW
∼ 1

c R
( R

RSch

)3
. (86)

For example, for a non-radially oscillating neutron star with a mass of roughly
1.4M� and a radius of 12Km, the damping time will be of the order of
∼50msec. Also, by using formula (81), we get an estimate for the frequency of
oscillation which is directly related to the frequency of the emitted gravitational
waves, roughly 2kHz for the above case.
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Example: Quadrupole Moment Tensor
We will calculate the mass quadrupole moment tensor of a homogeneous
triaxial ellipsoid x2

a2 + y2

b2 + z2

c2 = 1. By setting x ′ = x/a, y ′ = y/a and z ′ = z/a
the volume integration over the ellipsoid reduces to that over the unit sphere

Q11 =
∫ ∫ ∫

ρ
(

3x 2 − r 2) dxdydz =
∫ ∫ ∫

ρ
(

2x 2 − y 2 − z2) dxdydz

=
∫ ∫ ∫

ρabc
(

2a2x ′2 − b2y ′2 − c2z ′2
)

dx ′dy ′dz ′

= ρabc
(

2a2 − b2 − c2) ∫ ∫ ∫ z ′2dx ′dy ′dz ′

= ρabc
(

2a2 − b2 − c2) ∫ 2π

0

∫ π

0

∫ 1

0
r 4dr cos2 θ sin θdθdφ

= m
5
(

2a2 − b2 − c2) (87)
where m = 4

3πabcρ is the mass of the ellipsoid. The other two non-vanishing
components of the mass quadrupole tensor are 5:

Q22 = m
5
(
−a2 + 2b2 − c2) and Q33 = m

5
(
−a2 − b2 + 2c2)

5By definition, the mass quad. moment tensor is traceless, Qjj = Q11 + Q22 + Q33.
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Example: Vibrating Quadrupole I

The distance of the masses from the center
varies periodically as z = ±(b + a sinωt).
The quadrupole moment tensor for the
pair of equal masses m is:

Q(0)ij ≡

( − 2
3 mb2 0 0
0 − 2

3 mb2 0
0 0 4

3 mb2

)
(88)

Then the retarded value of the quadrupole tensor is:

Q ij (t − r) ≈
[

1 + 2a
b sinω(t − r)

]
Q(0)ij (89)

The radiated gravitational field is:

φij = 2
r

G
c4 Q̈ ij (t − r) = 2

r
G
c4

2a
b ω2 sinω(t − r)Q(0)ij (90)
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Example: Vibrating Quadrupole II
The energy radiated by the system per unit solid angle and unit time in the
direction ns is

− d2E
dtdΩ = r 2T 0sns

= − 1
18

(
κ

8π

)2
Q =

(
κ

8π

)2 [
2mabω3 cosω(t − r)

]2 sin4 θ (91)

Q =
(...

Q11
)2

+
(...

Q22
)2

+
(...

Q33
)2
− 2
(...

Q11n1
)2
− 2
(...

Q22n2
)2
− 2
(...

Q33n3
)2

+ 1
2

(...
Q11n1n1 +

...
Q22n2n2 +

...
Q33n3n3

)

Figure: The radiation pattern of emission of gravitational radiation by a quadrupole oscillating along the z-axis.
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Example: Vibrating Quadrupole III

The total emitted power is:

LGW = −dE
dt = 1

5
G
c5

〈...
Q ij ·

...
Q ij
〉

= 32
15

G
c5

〈
mabω3 cosω(t − r)

〉2

≈ 16G
15c5 (mab)2 ω6 (92)

and the damping time of the oscillator, due to the emission of GWs is :

1
τrad

= − 1
E

dE
dt = 16

15
G
c5 mb2ω4 where E = 1

2 mω2a2 (93)

The above formulae give an order of magnitude estimate for the GW emission
of by any vibrating elastic body, provided that the vibrations are not spherical.
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Example: Two-body collision I
We assume that a particle of mass m starts from infinity with zero velocity
( 1

2 mż2 = GmM
|z| , z̈ = GM/z2, ...z = (2GM)3/2/|z|7/2) falls towards a massive

body of mass M .

Radiated power

−dE
dt = 8

15
G
c5 m2 (3ż z̈ + z ...z )2 (94)

The energy during the plunge from z =∞ to z = R

−∆E = 4
105

G
c5

m2(2GM)5/2

R7/2 (95)

If R = RSchw (M = 10M� & m = 1M�)

−∆E = 0.019mc2 m
M (96)

−∆E = 0.0104mc2 m
M → 2× 1051erg (97)

Most radiation during the 2R → R phase

∆t ∼ R/ν ∼ R/c ∼ 30km/c ∼ 10−4sec → f ∼ 104Hz (98)
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Example: Two-body collision III

Figure: Spectrum of GW emitted by a
particle of mass m falling radially into a
BH of mass M. The quantity dE/dω
gives the amount of energy radiated
per unit frequency interval. The curves
marked L = 2, 3, 4 correspond to
quadrupole, ... radiation. Note that
most of the radiation is emitted with
frequency ω ∼ 0.3− 0.5c3/GM.

Figure: The signal of a ringing
black-hole. The signal can be produced
by a small body falling into a
black-hole.
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GW: Binaries, an example I

If we assume that the two bodies m1 and m2 making up the binary lie in the
x − y plane at distances a1 and a2 from the center of mass, their orbits are
circular and rotating at angular frequency Ω.

Then the only non-vanishing components of the quadrupole tensor are (why?) :

Qxx = −Qyy =
(

a2
1M1 + a2

2M2
)

cos2 Ωt = 1
2µa2 cos 2Ωt, (99)

Qxy = Qyx = 1
2µa2 sin 2Ωt, (100)

where a = a1 + a2, a1M1 = a2M2 = aµ. Here µ = M1M2/M is the reduced
mass of the system and M = M1 + M2 its total mass.
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GW: Binaries, an example II

The GW luminosity of the system is (we use Kepler’s third law, Ω2 = GM/a3)
(how?)

LGW = −dE
dt = 1

5
G
c5 (2Ω)2

(1
2 a2µ

)2 〈
sin2 2Ωt + sin2 2Ωt + 2 cos 2Ωt

〉
= 32

5
G
c5 µ

2a4Ω6 = 32
5

G4

c5
M3µ2

a5 . (101)

The total energy of the binary system can be written as (why?) :

E =
(1

2 M1a2
1 + 1

2 M2a2
2

)
Ω2 − GM1M2

a = −1
2

GµM
a (102)
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GW: Binaries, an example III
As the gravitating system loses energy by emitting radiation, the distance
between the two bodies shrinks at a rate

dE
dt = 1

2
GµM

a2
da
dt ⇒ da

dt = −64
5

G3

c5
µM2

a3 , (103)

and the orbital frequency increases accordingly (ḟ /f = (3/2)ȧ/a).
If, the present separation of the two stars is a0, then the binary system will
coalesce after a time

τ = 5
256

c5

G3
a4

0
µM4 (104)

Finally, the amplitude of the GWs is (why?)

h = 5× 10−22
(

M
2.8M�

)2/3(
µ

0.7M�

)( f
100Hz

)2/3 (15Mpc
r

)
. (105)

NOTE: if m1 = m2 = 30M� then the amplitude will be higher by about 160
times from a binary with m1 = m2 = 1.4M�!
In all these formulae we have assumed that the orbits are circular.
In general, the orbits of the two bodies are approximately ellipses, but it has
been shown that long before the coalescence of the two bodies, the orbits
become circular, at least for long-lived binaries, due to gravitational radiation.
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GW: Binaries, an example IV

Figure: The function g(θ) in polar coordinates

The angular distribution of the radiated power, is
given by ( dP

dΩ

)
= r 2c3

16πG
〈

ḣ2
+ + ḣx

〉
(106)

or ( dP
dΩ

)
= 2Gµ2a2ω6

πc5 g(θ) (107)

g(θ) =
(

1 + cos2 θ

2

)2

+ cos2 θ (108)
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GW: Binaries, an example V
I The amplitude of the emitted GWs depends on the angle between the line

of sight and the axis of angular momentum; formula (105) refers to an
observer along the axis of the orbital angular momentum.

I The complete formula for the amplitude contains angular factors of order
1. The relative strength of the two polarizations depends on that angle as
well.

I If 3 or more detectors observe the same signal it is possible to reconstruct
the full waveform and deduce many details of the orbit of the binary
system.

I As an example, we will provide some details of the well-studied pulsar
PSR 1913+16 (the Hulse-Taylor pulsar), which is expected to coalesce
after ∼ 3.5× 108 years. The binary system is roughly 5kpc away from
Earth, the masses of the two neutron stars are estimated to be ∼1.4M�
each, and the present period of the system is ∼7h and 45min. The
predicted rate of period change is Ṫ = −2.4× 10−12sec/sec, while the
corresponding observed value is in excellent agreement with the
predictions, i.e., Ṫ = (−2.30± 0.22)× 10−12sec/sec; finally the present
amplitude of gravitational waves is of the order of h ∼ 10−23 at a
frequency of ∼ 7× 10−5Hz.
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GW: Basic Formulae

For a gravitational wave binary with masses m1 and m2, in a circular orbit with
gravitational wave frequency f = 2Ω =2

√
GM/a3, then:

Mc = (m1m2)3/5

(m1 + m2)1/5 ≡ µ
3/5M2/5 chirp mass (109)

ho = 4G
c5
Mc

D

( G
c3 πfMc

)2/3
scaling amplitude (110)

ḟ = 96
5

c3

G
f
Mc

( G
c3 πfMc

)8/3
chirp (111)

The chirp indicates that as GWs are emitted, they carry energy away from the
binary. The gravitational binding energy decreases, and the orbital frequency
increases.
The GW phase φ(t) evolves in time as

φ(t) = 2πf
(

t + 1
2

ḟ
f t2
)

+ φ0 (112)

where Ḟ is the chirp given above, and φ0 is the initial phase of the binary.
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GW: Basic Formulae

A phenomenological form of the waveform then is given by

h(t) = ho cos(φt) = ho cos
(

2πft + πḟ t2 + φ0
)

(113)

Figure: Chirp waveform for merging black-holes with masses m1 = m2 = 35M� .

This is called a chirp or a chirp waveform, characterized by an increase in
amplitude and frequency as time increases.
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GW: Basic Formulae
Luminosity Distance from Chirping Binaries

Suppose we can measure the chirp ḟ and the gravitational wave
amplitude ho .
The chirp can be inverted to give the chirp mass:

Mc = c3

G

(
5
96π

−8/3f −11/3 ḟ
)3/5

(114)

If this chirp mass is used in the amplitude equation, one can solve for the
luminosity distance D:

D = 5
96π2

c
ho

ḟ
f 3 = 1

ho

(GMc)5/3

c4 (πf )2/3 (115)

This is a method of measuring the luminosity distance using only
gravitational wave observables!
This is extremely useful as an independent distance indicator in
astronomy.
PROBLEM: What is the distance for a binary system with
m1 = m2 = 35M� and S/N = 20 for Advance LIGO?
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GW: Binaries, an example: PSR 1913+16

Hulse & Taylor : Nobel 1993
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GW: Known Binary Systems as Sources of GWs (*)

System Masses Distances Frequency Luminosity Amplitude
M� pc 10−6 Hz 1030 erg/s 10−22

6 ι Boo (1.0, 0.5) 11.7 86 1.1 51
µ Sco (12, 12) 109 16 51 210
7 Am CVn (1.0, 0.041) 100 1900 300 5
WZ Sge (1.5, 0.12) 75 410 24 8
8 Cyg X-1 (19,15) 1800 4.1 2.6 9
PSR 1913+16 (1.4,1.4) 5000 70 0.6 0.12

6Eclisping Binaries
7Cataclysmic Binaries
8Binary X-ray sources
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GW Sources: ”Mountains”
Axisymmetric bodies rotating about their symmetry axis have no time varying
quadrupole moment and hence they do not radiate GWs.
Radiation will be produced:
• If it rotates about the principal axis and is non-axisymmetric
• If it is axisymmetric but the rotation axis is not the symmetry axis.

If I1, I2 and I3 are the principal moments of inertia then we will consider the
first case i.e. when I1 6= I2.
A possible astrophysical application would be a pulsar where the rigid
crust supports a “mountain”.
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GW Sources: ”Mountains”
Applying the quadrupole formula we can get (φ = Ωt)

Ixx = cos2 φI1 + sin2 φI2 = 1
2 cos 2φ(I1 − I2) + const (116)

Ixy = Iyx = 1
2 sin 2φ(I1 − I2) (117)

Iyy = 1
2 cos 2φ(I2 − I1) + const (118)

Izz = const, Ixz = Iyz = 0 (119)

Iij = −Qij + 1
3δijTrQ (120)

Thus

dE
dt = −1

5
G
c5

〈(
d3Ixx

dt3

)2

+ 2
(

d3Ixy

dt3

)2

+
(

d3Iyy

dt3

)2
〉

(121)

= −1
5

G
c5

1
4 (2Ω)6(I1 − I2)2 〈cos2 2φ+ 2 sin2 2φ+ cos2 2φ

〉
(122)

= −32
5

G
c5 (I1 − I2)2Ω6 (123)
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GW Sources: ”Mountains”
If we approximate the object with a homogeneous ellipsoid with semiaxes a, b,
and c, then

I1 = 1
5 M(b2 + c2), I2 = 1

5 M(a2 + c2), I3 = 1
5 M(a2 + b2) (124)

and assume a small asymmetry (i.e. a ≈ b) then we can get

dE
dt ≈ −

32
5

G
c5 I2

3 ε
2Ω6 (125)

where the ellipticity ε is defined by

ε ≡ 2
(a − b

a + b

)
(126)

and

h = 16π2G
c4

Ω2

r εI3 (127)

= 4× 10−25
(

ε

10−6

)( I3

1045g cm3

)( Ω
100Hz

)2 (100pc
r

)
(128)

Remember that I3 ≈ (2/5)Ma2 ≈ 1045g cm3 for M = 1.4M� and a ≈ 10km.
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GW Sources: Slowdown of pulsars

The energy emitted in GWs will be substracted by the rotation energy of the
star, ie. the rotational energy will decreases with a rate:

dErot

dt ≈ −32
5

G
c5 I2

3 ε
2Ω6 (129)

Since the rotation is around the principal axis x3 the rotational energy will be

Erot = 1
2 I3Ω2

rot → dErot

dt = I3ΩrotΩ̇rot (130)

and the rotational frequency of the star should decrease as

Ω̇rot = −32G
5c5 ε

2I3Ω5
rot (131)

Thus, if the slowdown of the pulsar is only due to GW emission we can estimate
the deformation and the rotational frequency of the star should decrease as

ε2 = − 5c5

32G
1
I3

Ω̇rot

Ω5
rot

(132)
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GW Sources: Slowdown of pulsars
The amplitude of the emitted GWs will be:

h = 4π2
( 5G

2c3

)1/2 1
r
√

I3

(
Ω̇rot

Ωrot

)1/2

(133)

Figure: The strength of the signal of the emitted GWs for the known pulsars
(assuming that the slowdown is only due to GE emission).
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GW Sources: Slowdown of pulsars

I Conventional NS crustal shear mountains : ε ≤ 10−7 − 10−6

I Supefluid vortices : Magnus-strain deforming crust : ε ≤ 5× 10−7

I Exotic EoS : strange-quark solid cores
I Solid quark matter ε ≤ 10−4

I Quark-baryon mixture of meson condensate matter (half of the core
will be solid) ε ≤ 10−5

I Magnetic mountains:
I Large toroidal field 1015 G perpendicular to rotation : ε ∼ 10−6

I Accretion along B-lines → “bottled” mountains : ε ≤ 10−6 − 10−5

CONCLUDING:
I Normal nuclear crusts can only produce ellipticity ε < few× 10−7

I High ellipticity measurement means exotic state of matter
I Low ellipticity is inconclusive : strain, buried B-field . . .
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GW Sources: Slowdown of pulsars
I Low-mass x-ray binaries (LMXB) are best bet

I Rapidly accreting (up to Eddington limit)
I Rapidly spinning (up to 700Hz) . . . but why not faster?
I Spin mystery could be nicely solved by GW

I Emission mechanisms:
I Elastic mountains
I Magnetic mountains
I r & f-mode oscillations

LIGO searches 2005-2007
I S2 analysis : 28 pulsars (all the ones above 50 Hz for which search

parameters are “exactly” known)
I S5 analysis : 78 pulsars (32 isolated, 41 in binary - 29 in GCs) and
ε ≤ 4× 10−7, h ≤ 2× 10−25
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GW Detectors : Resonant I

Suppose that a GW propagating along the z-axis with (+) polarization
impinges on an idealized detector, two masses joined by a spring along the
x -axis

The tidal force induced on the detector is given by equation (64), and the
masses will move according to the following equation of motion:

ξ̈ + ξ̇/τ + ω2
0ξ = −1

2ω
2Lh+e iωt , (134)

where ω0 is the natural vibration frequency of our detector, τ is the damping
time of the oscillator due to frictional forces, L is the separation between the
two masses and ξ is the relative change in the distance of the two masses. The
GW plays the role of the driving force, and the solution to the above equation is

ξ =
1
2ω

2Lh+e iωt

ω2
0 − ω2 + iω/τ (135)
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If the frequency ω of the impinging wave is near the natural frequency ω0 of
the oscillator the detector is excited into large-amplitude motions and it rings
like a bell. Actually, in the case of ω = ω0 , we get the maximum amplitude

ξmax = ω0τLh+/2. (136)

Since the size of our detector L and the amplitude of the gravitational waves
h+ are fixed, large-amplitude motions can be achieved only by increasing the
quality factor Q = ω0τ of the detector.
In practice, the frequency of the detector is fixed by its size and the only
improvement we can get is by choosing the type of material so that long
relaxation times are achieved.

The cross section is a measure of the interception ability of a detector. For
resonance, the average cross section of our test detector, assuming any possible
direction of the wave, is (why?)

σ = 32π
15

G
c3ω0QML2. (137)

This formula is general; it applies even if we replace our toy detector with a
massive metal cylinder.
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Weber’s first detector. That detector had the following characteristics: Mass
M=1410 kg, length L=1.5 m, diameter 66 cm, resonant frequency ω0=1660Hz,
and quality factor Q = ω0τ = 2× 105. For these values the calculated cross
section is roughly 3× 10−19cm2.

Figure: A graph of NAUTILUS in Frascati near Rome. Nautilus is probably the most sensitive resonant detector available.

The thermal noise is the only factor limiting our ability to detect gravitational
waves. Thus, in order to detect a signal, the energy deposited by the GW every
τ seconds should be larger than the energy kT due to thermal fluctuations.
This leads to a formula for the minimum detectable energy flux of gravitational
waves, which, following equation (71), leads into a minimum detectable strain
amplitude

hmin ≥
1

ω0LQ

√
15kT

M (138)
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For Weber’s detector, at room temperature this yields a minimum detectable
strain of the order of 10−20.
In reality, modern resonant bar detectors are consisting of a solid metallic
cylinder suspended in vacuo by a cable that is wrapped under its center of
gravity. The whole system is cooled down to temperatures of a few K or even
mK. To monitor the vibrations of the bar, piezoelectric transducers are
attached to the bar. The transducers convert the bar’s mechanical energy into
electrical energy. The signal is amplified by an ultra-low-frequency amplifier, by
using a device called a SQUID (Super-conducting QUantum Interference
Device) before it becomes available for data analysis.
The above description of the resonant bar detectors shows that, in order to
achieve high sensitivity, one has to:

1. Create more massive antennas.
2. Obtain higher quality factor Q. Modern antennas generally use aluminum

alloy 5056 (Q ∼ 4× 107).
3. Lower the temperature of the antenna as much as possible. The resonant

bar detectors are probably the coolest places in the Universe. Typical
cooling temperatures for the most advanced antennae are below the
temperature of liquid helium.

4. Achieve strong coupling between the antenna and the electronics and low
electrical noise.
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GW Detectors : Laser Interferometers Sensitivity

Figure: Present sensitivities of bar detectors.
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They have achieved sensitivities of a few times 10−21, but still there has been
no clear evidence of GW detection. They will have a good chance of detecting
a GW signal from a supernova explosion in our galaxy (1-3 events per century).
The most sensitive cryogenic bar detectors in operation are:

I ALLEGRO (Baton Rouge, USA) Mass 2296 Kg (Aluminium 5056), length
3 m, bar temperature 4.2 K, mode frequency 896 Hz.

I AURIGA (Legrano, Italy) Mass 2230 Kg (Aluminium 5056), length 2.9 m,
bar temperature 0.2 K, mode frequency 913 Hz.

I EXPLORER (CERN, Switzerland) Mass 2270 Kg (Aluminium 5056),
length 3 m, bar temperature 2.6K, mode frequency 906Hz.

I NAUTILUS (Frascati, Italy) Mass 2260 Kg (Aluminium 5056), length
3 m, bar temperature 0.1 K, mode frequency 908 Hz.

I NIOBE (Perth, Australia) Mass 1500 Kg (Niobium), length 1.5 m, bar
temperature 5K, mode frequency 695Hz.

There are plans for construction of massive spherical resonant detectors, the
advantages of which will be their high mass, their broader sensitivity (up to
100-200 Hz) and their omnidirectional sensitivity. A prototype spherical
detectors are already in operation in Leiden, Italy and Brazil ( 1 m diameter
and mode frequency ∼3.2 kHz).
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GW Detectors : Laser Interferometers I

A laser interferometer is an alternative GW detector that offers the possibility
of very high sensitivities over a broad frequency band.

• Mirrors are attached to M1 and M2 and the mirror attached on mass M0
splits the light (beam splitter) into two perpendicular directions.
• The light is reflected on the two corner mirrors and returns back to the
beam splitter.
• The splitter now half-transmits and half-reflects each one of the beams.
• One part of each beam goes back to the laser, while the other parts are
combined to reach the photodetector where the fringe pattern is monitored.
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GW Detectors : Laser Interferometers II

• Let us consider an impinging GW with amplitude h and (+) polarization,
propagating perpendicular to the plane of the detector 9.
• Such a wave will generate a change of ∆L ∼ hL/2 in the arm length along
the x -direction and an opposite change in the arm length along the y -direction.
• The total difference in length between the two arms will be

∆L
L ∼ h. (139)

• For a GW with amplitude h ∼ 10−21 and detector arm- length 4 km (such
as LIGO), this will induce a change in the arm-length of about ∆L ∼ 10−16.
• If the light bounces a few times between the mirrors before it is collected
in the photodiode, the effective arm length of the detector is increased
considerably, and the measured variations of the arm lengths will be increased
accordingly. This is a quite efficient procedure for making the arm length
longer.
• The optical cavity that is created between the mirrors of the detector is
known as a Fabry-Perot cavity and is used in modern interferometers.

9We will further assume that the frequency is much higher than the resonant
frequency of the pendulums and the wavelength is much longer than the arm length of
our detector
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• The passage of a GW changes the length of the arm relative to the other
by an amount ∆L. The phase between emerging light beams is changing by

∆φ = 2∆L
λ̃

(140)

where λ is the wavelength of the light. 10

• The amplitude of the light signal will be

A ≈ 1 + e iπ+ 2∆L
λ̃ (141)

• The intensity will be
I ≈ sin2

(∆L
λ̃

)
(142)

• The number of photons that reach the detectors is proportional to the
intensity. If the number of photons supplied is N0, the number of photons that
are detected in the emerging light beam is

Nout = N0 sin2(∆φ/2) = N0 sin2
(∆L
λ̃

)
(143)

This equation permits to calculate ∆L from the measurement of the number
Nout of the emerging photons.

10To achieve maximum sensitivity, it is better to adjust the interferometers in a way
that in the absence of GWs the light beams emerging from the two arms are out of
phase (destructive interference).
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GW Detectors : Photon shot noise
When a GW produces a change ∆L in the arm-length, the phase difference
between the two light beams changes by an amount ∆φ = 2b∆L/λ̃ ∼ 10−9rad
for detectable GWs. 11

The precision of the measurements, is restricted by fluctuations in the fringe
pattern due to fluctuations in the number of detected photons.
The number of detected photons, Nout , is (here N0 is the no of supplied
photons) proportional to the intensity of the laser beam

Nout = N0 sin2(∆φ/2) = N0 sin2(b∆L/λ̃) (144)

Inversion of this equation leads to an estimation of the relative change of the
arm lengths ∆L by measuring the number of the emerging photons Nout .
There are statistical fluctuations in the number of detected photons. The
magnitude of the fluctuations is

δNout = N 1/2
out = N 1/2

0 sin(∆φ/2) = N 1/2
0 sin(b∆L/λ̃)

and implies an uncertainty in the measurement of the arm length
δ(∆L) ∼ λ̃

2b
√
N0
.

11λ̃ ∼ 10−8cm: the reduced wavelength of the laser light & b: the number of
bounces of the light in each arm
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GW Detectors : Photon shot noise

Thus, the minimum GW amplitude that we can measure (in time τ) is :

hmin = δ(∆L)
L = ∆L

L ∼ λ̃

bLN 1/2
0

∼ 1
bL

(
~cλ̃
τ I0

)1/2

, (145)

hmin(in
√

Hz) ∼ 1
bL

(
~cλ̃

I0

)1/2

, (146)

I0: intensity of the laser light (∼200 W)
τ(≈ 1/ω): the duration of the measurement.

For GWs with frequency 100 Hz we get hmin ≈ 10−22

while its power spectral density Sn(f ) for frequencies 100-200Hz is of the order
of ≈ 10−23√Hz . 12

In laser interferometer the photon shot noise dominates for frequencies above
200 Hz.

12To express in conventional units 1/
√

Hz, one must divide by the square root of
the frequency spread,

√
∆ω ≈ ω = 10

√
Hz.
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GW Detectors : Radiation pressure noise

According to (145), the sensitivity of a detector can be increased by increasing
the intensity of the laser.
However, a very powerful laser produces a large radiation pressure on the
mirrors.

During b reflections by the mirror a photon deposits a momentum 2b × 2π~/λ.

When N photons strike the mirror, the fluctuation in their number is
√
N

Then an uncertainty
δp = 4πb~

√
N/λ (147)

in the measurement of the momentum deposited on the mirrors leads to a
proportional uncertainty in the position of the mirrors.

Thus, the minimum detectable strain is limited by

hmin ∼
τ

m
b
L

(
τ~I0

cλ̃

)1/2
, (148)

where m is the mass of the mirrors.
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GW Detectors : Shot vs Radiation pressure noise

As we have seen, the photon shot noise decreases as the laser power increases,
while the inverse is true for the noise due to radiation pressure fluctuations.

If we try to minimize these two types of noise with respect to the laser power,
we get a minimum detectable strain for the optimal power via the very simple
relation (how?)

hmin ≈
1
L

(
τ~
m

)1/2
for I0 = mcλ

b2τ 2 (149)

which for the LIGO detector (where the mass of the mirrors is ∼100 kg and the
arm length is 4 km), for observation time of 1 ms, gives hmin ≈ 10−23.
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GW Detectors : Quantum limit

An additional source of uncertainty in the measurements is set by Heisenberg’s
principle, which says that the knowledge of the position and the momentum of
a body is restricted from the relation ∆x ·∆p ≥ ~.

For an observation that lasts some time τ , the smallest measurable
displacement of a mirror of mass m is ∆L; assuming that the momentum
uncertainty is ∆p ≈ m ·∆L/τ , we get a minimum detectable strain due to
quantum uncertainties

hmin = ∆L
L ∼ 1

L

(
τ~
m

)1/2
. (150)

• Surprisingly, this is identical to the optimal limit that we calculated earlier
for the other two types of noise.
• The standard quantum limit does set a fundamental limit on the sensitivity
of beam detectors.
• An interesting feature of the quantum limit is that it depends only on
a single parameter, the mass of the mirrors.
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? Seismic noise. At frequencies below 60 Hz, the noise in the interferometers
is dominated by seismic noise. The vibrations of the ground couple to the
mirrors via the wire suspensions which support them. This effect is strongly
suppressed by properly designed suspension systems. Still, seismic noise is very
difficult to eliminate at frequencies below 5-10 Hz.
? Residual gas-phase noise. The statistical fluctuations of the residual gas
density induce a fluctuation of the refraction index and consequently of the
monitored phase shift. For this reason the laser beams are enclosed in pipes
over their entire length. Inside the pipes a high vacuum of the order of
10−9 Torr guarantees elimination of this type of noise.
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GW: Detectors - Sensitivities
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GW Detectors : Ligo Detectors
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GW Detectors : Virgo
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GW Detectors : eLISA Space Detector
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GW Detectors : Laser Interferometers Sensitivity

Figure: Sensitivities of laser intereferometers.(ground and space)
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GW: Future Detectors (KAGRA)

I KAGRA consists of a modified Michelson interferometer with two 3-km
long arms, is located in the ground under Kamioka mine.

I The mirrors are cooled down to cryogenic temperature of -250 Celsius
degree (20 Kelvin). Sapphire is chosen for the material of the mirror.

I The goal sensitivity of KAGRA corresponds to observing the moment of
coalescence of a binary NS beyond 200 Mpc, or detecting several GW
events a year.
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GW: Future Detectors (Einstein Telescope)

Kostas Kokkotas Gravitational Waves


