

Bundesministerium für Bildung und Forschung

Jets in Vector Boson Fusion Events

GK/KCETA Workshop · Bad Liebenzell · 30 September 2013

Joram Berger

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (EKP) · DEPARTMENT OF PHYSICS

Contents

- The search for $H \rightarrow \tau \tau (\rightarrow \mu \mu)$
 - Vector Boson Fusion category
- Jet measurement and jet energy calibration
 - Calibration scheme in CMS
 - Data-driven calibration using Z+jet events
 - Time dependence corrections
 - Calibration of VBF-like events
- Systematic uncertainties in the $H \rightarrow \tau \tau$ VBF category
 - Jet energy scale uncertainties
 - Theory uncertainties
- Conclusion

Higgs Production Channels

The $H \rightarrow \tau \tau \rightarrow \mu \mu$ Analysis

- bosonic channels (γγ, WW, ZZ) led to the Higgs discovery in 2012
- evidence for direct coupling to fermions in Higgs decays yet to be shown

$$\Rightarrow$$
 H \rightarrow $\tau\tau$ (\rightarrow µµ) analysis

- precise μμ measurement
- no hadronic decay products
- difficulties and challenges:
 - Iow branching ratio (3%)
 - 4 neutrinos in τ-decays
 - large irreducible backgrounds (Drell-Yan, etc.)
- analysis in categories of jet multiplicity
 - most significant: VBF (2 jet)

4

The VBF Topology (Category Definition)

- Pair of jets in forward region
- VBF selection is based on jet kinematics
- \Rightarrow requires precise jet measurement
 - 2 tagging jets (high rapidities)
 - central jets (central region)

category definition

$$\begin{split} |p_{\mathrm{T}}^{\mathrm{jet1,2}}| &> 30 \; \mathrm{GeV} \\ |\eta^{\mathrm{jet1,2}}| &< 5.0 \\ \text{no } 3^{\mathrm{rd}} \; \mathrm{jet} \; \mathrm{between} \; \mathrm{jet}_{\mathrm{1,2}} \end{split}$$

The VBF Topology (Discriminating Variables)

 Within the VBF category, a combination of BDTs is used to discriminate between signal and background

MVA input variables:

 \rightarrow Talk by Thomas Müller on Wednesday

$m_{\mu\mu}$		$m_{ au au}$
$\Delta \phi$ ($\mu^{\scriptscriptstyle +}, p_{T}^{miss}$)		$\cos arOmega^*$
log ₁₀ (DCASig(2µ))		$\cos \Theta \left(\mu^{\scriptscriptstyle +} \right)$
Validity of coll. App	orox.	
Missing energy		$E_{\mathrm{T}}^{\mathrm{miss}}$
Pseudo rapidity d of tagging jets	iffer	ence $\Delta \eta_{ m jj}$
Invariant mass of tagging jets		m _{jj}

Jet Measurement and Clustering Algorithms

- Jet are collimated streams of particles which
- Particle Flow: Individual particles are reconstructed prior to jet clustering
- UE, MPI, ISR, FSR, out-of-cone
- electronic noise and pile-up

- Corrections are determined for several jet algorithms
 - default: anti-*k*_T 0.5
 - infrared and collinear safe

Central and Forward Jets in the CMS Detector

central detector:

homogeneous barrel

issues in forward region:

- transitions between detector components (endcap/forward)
- end of tracker coverage
 - no vertex association
- dense material and gaps
- radiation damages near beam
 - response changes during data-taking

8

Pile-Up in 2012 Data and Pile-Up Subtraction

- dramatic increase of pile-up due to higher luminosity in 2012
- > 12 primary vertices per event
- methods for pile-up mitigation:
 - Charged Hadron Subtraction removes charged hadrons from pile-up vertices

- validated in Z+jet calibration sample
- included in $H \rightarrow \tau \tau \rightarrow \mu \mu/ee$ analysis

CMS jet energy corrections combine

- the advantages of MC based studies with
- the robustness and accuracy of data-driven methods

Jet Energy Calibration with $Z(\rightarrow \mu\mu)$ + Jet Events

- Reference: Z decaying into pair of muons
 - high accuracy of muon measurement
- Probe jet:
 - leading jet barrel/extended to all η regions
 - only soft additional jets
- Data-driven calibration of absolute jet energy scale
 - determined JEC for 2011 dataset
 - here: full 2012 dataset (19.5 fb⁻¹)
- Independent cross-checks for all calibration levels
- Used by all CMS analyses

Z+Jet Event Selection

Reconstruction of the Z

- muon transverse momentum
- muon pseudorapidity
- muon isolation
- mass of muon pair
- Z transverse momentum

Jet selection

- transverse momentum
- pseudorapidity of leading jet

Z plus one jet selection

- second leading jet
- Z-jet-balancing

$$\begin{array}{l} p_{\mathrm{T}}^{\mu} > 20 \ \mathrm{GeV} \\ |\eta^{\mu}| < 2.3 \\ \sum_{\mathrm{tracks}} p_{\mathrm{T}} < 3 \ \mathrm{GeV} \quad \mathrm{within} \ \Delta R < 0.3 \\ |m_{\mu\mu} - m_{\mathrm{Z}}| < 20 \ \mathrm{GeV} \\ |p_{\mathrm{T}}^{\mathrm{Z}}| > 30 \ \mathrm{GeV} \end{array}$$

 $\begin{aligned} |p_{\rm T}^{\rm jet}| &> 12~{\rm GeV} \\ |\eta^{\rm jet}| &< 1.3 \end{aligned}$

$$\frac{p_{\rm T}^{\rm jet2}}{p_{\rm T}^{\rm Z}} < 0.2 \quad \text{and extrapolation} \to 0$$
$$|\Delta \phi_{\rm Z, jet1} - \pi| < 0.34$$

Two Methods to Measure the Jet Response

13

Extrapolation to Perfect Topology

- In real world: 1 jet events very rare
- Extrapolation: Radiation bias in p_T balance is accounted for

Response Measurement in Bins of Z p_{T}

- both methods agree
- transverse momentum range:30 .. 500 GeV
- parton/particle jet differences visible in jet response
- data and Monte-Carlo simulation in agreement after applying corrections
- statistical precision on per-mil level
- results combined with photon+jet and Z(→ee)+jet to final correction level
- Flavour studies ongoing

Jet Energy Correction Uncertainties

- Has been used for the very first calibration in CMS with 2010 data
- Jet energy scale uncertainties could be halved in the last 2 years
- Total uncertainty of the jet energy scale is close to 1% for $|\eta| < 2.4$

Extending to Higher η : Leading Jet Composition

- Energy deposits in detector components in the barrel well described
- Less agreement in endcaps, especially *outside tracking*

30 September 2013

Reason: Radiation Damage in HCAL

- Intransparency due to radiation damage in HCAL
 - → falling trend in the neutral hadron energy fraction (NHF)
 - → bias in jet response in endcaps
- A dedicated run dependent residual calibration of the neutral hadron energy fraction (NHF) corrects for this effect
- Implemented in $H \rightarrow \tau \tau \rightarrow \mu \mu$ analysis

Validation of Jet Energy Scale in VBF Topology

- High statistics
- Perfectly suitable sample
- Jet energy calibration in endcap and forward region is doable with Z(→µµ)+jet events

VBF-like

- compatible with Z+jet results
- link between dijet and Z+jet derived corrections
- default calibration is valid for VBF-shaped events

Back to $H \rightarrow \tau \tau$: Final Discriminator in VBF Category

Advanced treatment of jets in

- $H \rightarrow \tau \tau \rightarrow \mu \mu / ee$ analyses:
- Official jet energy calibration
- Charged Hadron Subtraction
- Pile-up jet identification
- Run dependent corrections

Propagating jet related uncertainties through the analysis

- \Rightarrow 6% jet energy scale uncertainty
- Data-driven background estimation
- Uncertainties on theory predictions for signal samples?

Theory Uncertainties in the VBF Category

evaluation of theory uncertainties in the VBF category

- discriminator influenced by jet kinematics via $\Delta \eta$ and m_{ii}
- Reweighting of signal samples to follow the $\Delta \eta$ and m_{ij} variations on generator level
- 30% ggH in VBF category signal \rightarrow qqH and ggH samples

<u>List of variations</u>

- PDF (using LHAPDF 5.9)
 - CT10 qqH $\pm 3.6\%$ **MWST** ggH ± 9.7%
 - NNPDF
- matching scale
 - 30 GeV compared to 1 GeV
- renorm., factorization scale • $\mu_{\rm r} = \mu_{\rm f} = 0.5$
 - ± 0.9% Hpp

±18.2%

± 7.4%

- $\mu_{\rm r} = \mu_{\rm f} = 2.0$ ggH
- MC generators compared with Powheg qqH ± 1.4%
 - Madgraph
 - **MiNLO**

Parton shower/underlying event

ggH

Shape Uncertainties in the VBF Category

only small additional shape uncertainty

Conclusion

- data-driven jet energy calibration in CMS
 - uncertainties on jet energy scale could be reduced down to 1%
 - methods and first calibration described in JINST 6 (2011) P11002 http://iopscience.iop.org/1748-0221/6/11/P11002
 - recent results are available in CMS-DP 2013/011 http://cdsweb.cern.ch/record/1545350
 - paper planned
- advanced pile-up mitigating techniques help to cope with increased pile-up
 - jet corrections for pile-up, Charged Hadron Subtraction, pile-up jet ID
- $H \rightarrow \tau \tau \rightarrow \mu \mu$ analysis
 - VBF is the most sensitive category
 - jet kinematics are the defining properties
 - estimation of jet related systematic uncertainties
 - paper is in preparation
 - full analysis will be presented by Thomas Müller on Wednesday

Backup

Jet Response at High Rapidities

Pile-Up Corrections

- A_j: jet area
- ρ: energy density from pile-up in the event [arXiv:0707.1378v2] Salam. et al.

Corrections Based on MC Simulation

- correction for p_{T} and η dependence
- reconstructed jet *p*_T is corrected to the generator jet (based on QCD MC)
- Particle Flow minimizes flavor dependence (< 3% in barrel)
- no flavor corrections by default

Closure Test of MC Corrections

Before corrections

- high contribution of PU especially at low p_T
- additional p_T ~ N_{PV}

After pile-up corrections

- pile-up dependence removed
- consistent for any number of PU interactions N_{PV}

After MC truth corrections

l closure at unity over the whole *p*_T and *η* range

final correction for simulation, additional corrections for data needed

Data-Driven Corrections for η Dependence

- correct for residual difference in η between data and MC
- derived from dijet balance

- calibration factor is derived such that reconstructed MET vanishes
 (MPF method, → backup)
- extrapolation to perfect topology with no additional jet activity

in $p_{\rm T}$ between data and MC 3 complementary topologies:

Data-Driven Corrections of the Absolute Scale

- γ + jet
- $Z(\rightarrow ee) + jet$
- $Z(\rightarrow \mu\mu) + jet$

correction for residual differences

CMS preliminary, $L = 1.6 \text{ fb}^{-1}$

- γ/Z measurement with high precision
- absolute scale with MPF method
- extrapolation to perfect topology

√s = 8 TeV

32

Reference Object Measurement: Z Boson

Events

Missing Energy Corrections

CMS preliminary, $\sqrt{s}=8$ TeV L = 0.7 fb⁻¹

150

100

200

250

300

 $q_{_T}/GeV$

1.2 ^тb/ ^{II}ncorrected MET: (1) jet corrections are applied MET Response MET is recalculated (2)0.9 3.0 MET response is close to unity 0.7 Data after corrections in data and 0.6 Simulation 0 MC 0.5 0.4 0.2 Data - Simulation Simulation 0.1

50

-0

34

30 September 2013

VBF Z Event Selection

Reconstruction of the Z

- muon transverse momentum
- muon pseudorapidity
- muon isolation
- mass of muon pair
- Z transverse momentum

Jet selection

- transverse momentum
- pseudorapidity of leading jet
- rapidity gap
- invariant mass
- no balancing
- no 3rd jet cut

$$|p_{\rm T}^{\rm jet1,2}| > 30 \text{ GeV} |\eta^{\rm jet1,2}| < 5.0 |\eta_{\rm jet1} - \eta_{\rm jet2}| > 4.0 \eta_{\rm jet1} \cdot \eta_{\rm jet2} < 0 |m_{\rm jet1,jet2}| > 500$$

VBF jets

Leading Jet Composition in the Barrel

Run-Dependent HCAL Correction

Dataset	Data	DY+jets	QCD	W+jets	t ī+jets
σ / pb ⁻¹ (NNLO) Filter efficiency Events in sample		3 503.71 1 30 459 503	$3.64 imes 10^8\ 3.7 imes 10^{-4}\ 21484602$	225.20 1 5 186 494	37 509.00 1 57 709 905
Z selection	1 235 419	1 226 784	< 341 < 0.03%	7 130 0.58%	243 0.02%
Final selection	69 138	73719	< 341 < 0.49%	46 0.07%	< 35 < 0.05%

Signal

- Absolute scaling agrees within uncertainties
- Reminder: Scaling factor to luminosity has no influence on the final result

Background

 Negligible contribution from other processes