

WZjj production @ NLO QCD

in collaboration with F. Campanario, D. N. Le, D. Zeppenfeld Matthias Kerner | September 30, 2013

KIT - INSTITUT FÜR THEORETISCHE PHYSIK

www.kit.edu

Outline

- 2 NLO caluclations in parton level Monte-Carlos
- Implementation in VBFNLO
 - Real emissions
 - Virtual corrections
 - Performance

4 Results

WZjj production mechanisms

EW (VBF) *WZjj* (α^6) [VBFNLO, 2007]

 $u \xrightarrow{W} e^{+}$ v_{e} μ^{+} $q \xrightarrow{Q} q$

- triple and quartic EW vector boson couplings
- two jets with high separation/invariant mass
- precision measurements of EW sector

- irreducible background to VBF process
- large cross section
- high scale uncertainty (α_s^2)
- nontrivial color structure

Motivation

QCD $pp \rightarrow WZjj$ is a background to various processes:

- EW WZjj production via Vector Boson Scattering
 - Probe mechanism of EW symmetry breaking → precision measurement
 - Central Jet Veto \rightarrow reduce QCD background
- SUSY searches

precision measurements of *VVjj* production at the LHC require predictions with next to leading order accuracy (NLO) in α_s

First NLO implementation of this process $(W^+W^+jj, W^+W^-jj$ known)

[Melia, Melnikov, Rontsch, Zanderighi 2010/2011] [Greiner, Heinrich, Mastrolia, Ossola, Reiter, Tramontano 2012]

NLO contributions

Virtual corrections

Real emissions

■ UV-divergent → renormalization IR-divergent

IR-divergent

KLN theorem:

All IR singularities cancel in the sum of virtual and real contributions for sufficiently inclusive observables.

[T. Kinoshita 1962; T.D. Lee, M Naunberg 1964]

IR divergencies

Virtual corrections

soft divergencies

collinear divergencies
 o

Real emissions

- soft divergencies: $p_i \rightarrow 0$ oder $p_j \rightarrow 0$
- collinear divergencies: p_i || p_j

Regularization: Continuation of the phase space to $d = 4 - 2\varepsilon$ space-time dimensions \rightarrow divergencies = $\frac{1}{\varepsilon^2}$ - and $\frac{1}{\varepsilon}$ - poles

Subtraction methods

Monte-Carlo integration (in d = 4 dimensions) \rightarrow insert additional term $d\sigma^A$:

$$\sigma^{NLO} = \int_{m+1} \left[d\sigma^R |_{\epsilon=0} - d\sigma^A |_{\epsilon=0} \right] + \int_m \left[d\sigma^V + d\sigma^C + \int_1 d\sigma^A \right]_{\epsilon=0}$$

 $d\sigma^A \xrightarrow[regions]{soft/coll.} d\sigma^R$ $\int_1 d\sigma^A = (\mathbf{I} + \mathbf{P} + \mathbf{K}) \otimes d\sigma_B$

Both phase-space integrals are finite!

with

Real emissions

Catani-Seymour dipole subtraction: [S. Catani, M.H. Seymour 1996]

$$d\sigma^{A} = \sum_{\substack{\text{pairs } (ij)=\ (q\bar{q}), (qg), (qg)}} \sum_{k \neq i, j} d\sigma^{B} \otimes \mathbf{V}_{\mathbf{ij,k}}$$

Real emission calculation of WZjj production:

- 146 subprocesses
- with leptonc decays: 2 \rightarrow 7 processes
- up to 27 dipoles per subprocess
- optimizations:
 - combine subprocesses
 - cache Born amplitudes, used in different dipoles

• . .

6 || 7 Own implementation:

MadGraph 4: bad precision when

Own implementation: numerically stable

Real emissions

Virtual amplitude

- up to hexagon diagrams
- split into universal building blocks, e.g.

- + 3 boxes
- + 4 vertices
- + 3 self energies
- most building blocks already used in other processes
- new topologies:

- tensor reduction
 - Passarino-Veltman (up to boxes) [G. Passarino, M. Veltman 1979]
 - Denner-Dittmaier (pentagons, hexagons) [A. Denner, S. Dittmaier 2005]

Implementation in VBFNLO M. Kerner – *WZjj* @ NLO

• Use Ward identities to identify numerical instabilities, e.g.

11

$$p_V^{\mu} \text{PenBox}_{\mu} = p^{\mu} \cdot \left(\underbrace{\begin{array}{c} \begin{array}{c} & & & \\ & & \\ \\ & & \\ \end{array}}^{\mu} & & \\ & & \\ \hline \\ & & \\ \end{array}}^{\mu} + \underbrace{\begin{array}{c} & & \\ & \\ \end{array}}^{\mu} & & \\ \hline \\ & & \\ \end{array}}^{\mu} + \underbrace{\begin{array}{c} & & \\ & \\ \end{array}}^{\mu} \\ \\ & \\ \end{array}}^{\mu} \\ \end{array} \right) = 0$$

$$\rightarrow$$
 Gauge test: $\left|\frac{(1) + (2)}{(3)} + 1\right| = GaugePrec. \stackrel{?}{<} GaugeLimit$

Most amplitudes can be calculated with double precision

If gauge test fails:

- Recalculate scalar integrals and tensor reduction using quad precision
- If gauge test still fails \rightarrow discard phase space point

Performance

 Percentage of unstable phase space points (only 2q2g-subprocesses, GaugeLimit = 0.01)

	double precision	quad precision
hexagons	1.2%	$\sim 10^{-4}$
pentagons	0.6%	$\sim 10^{-6}$

- Runtime of amplitudes
 0.4-25 ms (depending on subprocess)
- Total runtime
 2-3 h to get 1% accuracy on one processor

Scale variation $pp \rightarrow e^+ \nu_e \mu^+ \mu^- jj$ @ 14 TeV • Cuts: $p_{T_j} > 20 \text{ GeV}, \quad |\eta_j| < 4.5,$ $p_{T_l} > 20 \text{ GeV}, \quad |\eta_l| < 2.5,$ $R_{jj} > 0.4, \quad R_{ll} > 0.4, \quad R_{jl} > 0.4,$ $m_{l^+l^-} > 15 \text{ GeV}, \quad p_T > 30 \text{ GeV}$

PDF:

MSTW2008 with $N_f = 4$

Scale:

$$\mu_F = \mu_R = \mu_0$$
$$= \frac{1}{2} \left(\sum_{\text{jet}} p_{T,\text{jet}} + E_{T,W} + E_{T,Z} \right)$$
with $E_{T,V} = \sqrt{p_{T,V}^2 + m_V^2}$

scale dependence reduced

$$\sigma_{LO}^{W^+Zjj} = 11.1^{+3.2}_{-2.3} \text{ fb}$$

 $\sigma_{NLO}^{W^+Zjj} = 9.5^{+0.0}_{-0.4} \text{ fb}$

Results M. Kerner – WZjj @ NLO

Differential cross section

 $p_{T,j}$

m_{ii}

- scale uncertainty reduced
- K-factor (NLO/LO): 0,6-1 depending on phase space region

Summary

- WZjj production: QCD und EW mechanism
- Imlementation of QCD process @ NLO QCD
 - numerically stable

fast

- checked with 2nd independent implementation
- Scale uncertainty: 50% (LO) \rightarrow 5% (NLO)
- K-factor depending on phase space region

Summary

- WZjj production: QCD und EW mechanism
- Imlementation of QCD process @ NLO QCD
 - numerically stable

fast

- checked with 2nd independent implementation
- Scale uncertainty: 50% (LO) \rightarrow 5% (NLO)
- K-factor depending on phase space region

Thank you for your attention!