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Why Susy?

only possible extension of spacetime symmetries

in R-parity conserving SUSY: (often) LSP is χ̃0→ candidate for Dark Matter

Unification of 3 forces at the GUT scale is possible

local SUSY enforces gravity

solution to the hierarchy ’problem’
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The Minimal Superymmetric Standard Model

simplest form of a supersymmetric theory (N = 1, i.e. one SUSY generator)

(roughly) doubles particle content of the SM:

in the following: only squarks (q̃) and gluinos (g̃) relevant
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Squark Pair Production
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for large mq̃,mg̃ : q̃q̃ (often) dominant sparticle production channel

large K-factors (K = σNLO/σLO)

(SUSY)-QCD-corrections at NLO only available from PROSPINO[Beenakker et.al. 1997]:
mass-degenerate squarks
all individual channels summed up
only total K-factors, no distributions

(re)calculate the SQCD-corrections fully differentially [Popenda 2012]

realistic simulation for LHC physics requires combination with parton shower,

hadronization, ...
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Elements of an NLO calculation

dσNLO =
[
B(Φ2) + V(Φ2) +

IR finite︷ ︸︸ ︷∫ [
R(Φ2, Φrad)︸ ︷︷ ︸

IR divergent

−C(Φ2, Φrad)︸ ︷︷ ︸
IR divergent

]
dΦrad

]
dΦ2

Virtual contribution:

V =

IR finite︷ ︸︸ ︷
Vb(Φ2) +

∫
C(Φ2, Φrad)dΦrad ,

Vb = 2Re(MB · M∗
V )
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Real radiation:
dΦ3 = dΦ2dΦrad
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Subtraction terms:

C → R in soft/collinear limit, e.g. Catani-Seymour, FKS
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Squark Pair Production at NLO - some results

Is the K-factor similar for different subchannels?
Assume mq̃ = 1800 GeV, mg̃ = 1600 GeV for

√
s = 8 GeV

σProspinoLO = 2.57 · 10−1fb, σProspinoNLO = 2.99 · 10−1fb

for all possible 36 channels (ũ, d̃, c̃, s̃ production) summed up, using

µR = µF = mq̃

channel σLO [fb] σNLO [fb] K

ũLũL 1.29 · 10−1 1.43 · 10−1 1.11
ũLd̃L 8.00 · 10−2 9.92 · 10−2 1.23
ũLũR 3.40 · 10−2 4.00 · 10−2 1.18
ũLd̃R 1.39 · 10−2 1.74 · 10−2 1.26

Sum 2.57 · 10−1 3.00 · 10−1 1.16

→ important to treat channels separately if q̃ have different decay widths
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Are differential K-factors flat?
consider cMSSM benchmark point, first two generations are degenerate in mass:

mũL mũR md̃L
md̃R

mg̃
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→ differential K-factors are not necessarily flat
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Parton showers and why we need them

soft/collinear emission enhanced:

pq

pg 1
(pq+pg)2 =

1
2EgEq(1−cos θgq)

, mq = 0

soft divergence: Eg → 0
collinear divergence: θgq → 0

parton-shower: recursive calculation of these contributions to all orders

Advantages/Disadvantages

correct shape for soft/collinear region (fixed order divergent)

realistic ’events’ after including hadronization effects, UE, ... (fixed order has only low
multiplicity)

BUT: only LO, description not sensible beyond soft/collinear region

⇒ try to combine advantages of fixed order calculations and parton shower:

1 higher multiplicity in fixed order calculation→ Merging
2 higher order in perturbation theory→ Matching
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The double counting problem

combination of fixed-order NLO calculation with parton shower non-trivial:

avoid double-counting

events with Real configuration

(i.e. n + 1 final state particles)

also obtained via splitting of Born

configuration in parton shower

two NLO-matching-schemes:

MC@NLO [Frixione,Webber 2002]

POWHEG [Nason 2004]
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IR-safe observableOi ≡ O(Φi ) after first branching in shower, starting from Born process:

〈O〉PS
LO=

∫
dΦnB(Φn)

[ no emission︷ ︸︸ ︷
On∆(QIR)+

one emission with Q>QIR︷ ︸︸ ︷∫
Q>QIR

dΦradOn+1∆(Q)
αs(Q)

2π

P(z)

Q

]

with the Sudakov (probability of NOT emitting between Q and Qmax )

∆(Q) = exp
[
−
∫

dΦ′
rad
αs(Q′)

2π

P(z′)

Q′ Θ(Q′ − Q)
]

= 1−
∫

dΦ′
rad
αs(Q′)

2π

P(z′)

Q′ Θ(Q′ − Q) +O(α2
s)

Q: ordering variable (e.g. pT )
QIR: IR cutoff
z: energy fraction
dΦrad: dQ dz dϕ

2π

P(z): AP splitting kernel

⇒ 〈O〉PS
LO =

∫
dΦn

{
OnB(Φn)

terms formally NLO +

∫
Q>QIR

dΦrad

[
On+1

αs(Q)

2π

P(z)

Q
−On

αs(Q)

2π

P(z)

Q

]}
+O(α2

s)
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The POWHEG method
ObservableO at NLO reads

〈O〉NLO=

∫
dΦn

[
On[B(Φn)+V(Φn)]+

∫
[On+1R(Φn+1)−C(Φn+1)On]dΦrad

]
Matching NLO and parton shower→ subtract these terms consistently:

〈O〉sub
NLO=

∫
dΦn

{
On[B+V]+

∫
dΦrad

[(
αs(Q)

2π
B P(z)

Q
−C
)
On+

(
R−αs(Q)

2π
B P(z)

Q

)
On+1

]}
Special case:

R
B =

αs(Q)

2π

P(z)

Q

→ POWHEG (POsitive Weight Hardest Emission Generator):

generate the hardest emission (w.r.t. pT ) before applying parton shower, using the exact real
emission matrix element

preserves NLO accuracy (for inclusive observables and for large pT )

use pT -veto in shower, i.e. all subsequent radiation is softer (if shower is pT -ordered; for angular
ordered shower: truncated shower)
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The POWHEG master formula [Frixione, Nason, Oleari 2007]

In full analogy to the first emission for ’LO+parton shower’:

dσPWG = B(Φn)dΦn

[
∆PWG(Φn, pTmin) + dΦrad (pT)∆PWG(Φn, pT)

R(Φn+1)

B(Φn)
Θ(pT − pTmin)

]
with the POWHEG-Sudakov

∆PWG(Φn, pT) = exp
[
−
∫

dΦ′
rad
R(Φn+1)

B(Φn)
Θ(pT ′(Φn, Φ

′
rad )− pT)

]
and

B(Φn) = B + V +

∫
dΦrad [R(Φn+1)− C(Φn+1)]
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Properties of the POWHEG master formula

NLO accurate for inclusive observables (by construction)

NLO accuracy preserved in the hard region:

∆PWG(Φn, pTmin)→ 0, ∆PWG(Φn, pT )→ 1

⇒ dσPWG ≈
B(Φn)

B(Φn)
R(Φn+1)dΦndΦrad = R(Φn+1) (1 +O(αs)) dΦn dΦrad

leading-log accuracy of a shower MonteCarlo in soft/collinear limit (pT → 0) is
not destroyed:

R(Φn+1)

B(Φn)
dΦrad ≈

αs

2π

1

Q
P(z) dQ dz

dϕ

2π
, B ≈ B (1 +O(αs))

Positive weights, as (usually) B > 0
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The POWHEG-BOX[Alioli,Nason,Oleari,Re 2010]

POWHEG-BOX provides process-independent ingredients for a
POWHEG-implementation of arbitrary processes:

automatized subtraction-scheme (FKS-scheme [Frixione, Kunszt, Signer 1996])
generation of radiation phasespace
hardest radiation according to POWHEG-Sudakov
NLO distributions as ’by-product’
LHE-output: unweighted events which can be interfaced to shower program

user needs to implement the process specific parts

So far: no processes with strongly interacting BSM particles implemented→
small changes in the main routines of the code concerning the FKS subtraction
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POWHEG at work - inclusive observables
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PWG: results after first (hardest) emission

pq̃
T , ηq̃ : sum of both q̃ distributions

⇒ perfect agreement, i.e. NLO accuracy preserved

Supersymmetry Squark Pair Production Matching NLO calculations with parton showers Applying the POWHEG method to q̃q̃ Summary

Christian Hangst – Matching Squark Pair Production at NLO with parton showers October 1st , 2013 16/19



Exclusive observables
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NLO result diverges for small pT ,

PWG result ’Sudakov damped’

for yj : demand pj
T > 200 GeV

⇒ for large pT the (N)LO result is repro-

duced
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Parton shower effects - PYTHIA6 vs. HERWIG++
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hadronization, underlying event turned off

partons clustered with anti-kT (R = 0.4)

only very basic cuts:
pj

T > 20GeV, |ηj | < 2.8

inclusive quantities hardly affected

pj1
T softer than NLO, HERWIG++ slightly

higher rates at low pj1
T

HERWIG++ predicts more central jets
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Summary

Squark pair production is important sparticle production channel at the LHC

NLO corrections are usually different for individual channels, K-factors are often

large and not flat

Matching NLO fixed order calculation with parton showers important for precise

predictions for LHC physics (→ POWHEG method)

Implementation of squark pair production in public program package

POWHEG-BOX

Parton shower effects for inclusive observables small, but important for radiated

parton
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Backup
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Differential K-factors after decay to χ̃0q
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low pq̃q̃
T : Sudakov damping (NLO result

diverges here)

high pq̃q̃
T : LHE/NLO ≈ 1.8⇒ 80%

discrepancy!

two reasons for this discrepancy:

1 assumption B/B ≈ 1 is not valid here: sizeable K -factor (K = 1.2)
2 different scales for B (µ = mq̃) and forR/B (pT of the radiated parton)

check these two points: perform event generation with B → B and µR = µF = 400GeV
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⇒ reproduce ’NLO’ result for pq̃q̃
T ≈ 400GeV
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idea [Alioli,Nason,Oleari,Re 2009]: ’split’ the real contributions in the master-formula, use
only IR-singular parts for radiation generation

R = Rs +Rr = FR+ (1−F)R; F =
h2

p2
T + h2

’new’ master-formula:

dσPWG = Bs(Φn) dΦn

[
∆s(Φn, pmin

T ) + ∆s(Φn, kT )
Rs(Φn, Φrad )

B(Φn)
θ(kT − pmin

T )dΦrad

]
+Rr dΦndΦrad
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Shower without ISR
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