

Matching Squark Pair Production at NLO with parton showers

GK Workshop Bad Liebenzell 2013

based on arXiv:hep-ph/1305.4061

《日》 《聞》 《意》 《意》 《唱》 《日》

Christian Hangst | October 1st, 2013

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Outline

- Squark Pair Production
- Matching NLO calculations with parton showers 3
- Applying the POWHEG method to $\tilde{q}\tilde{q}$

Why Susy?

- only possible extension of spacetime symmetries
- in R-parity conserving SUSY: (often) LSP is $ilde{\chi}_{0} o$ candidate for Dark Matter
- Unification of 3 forces at the GUT scale is possible
- local SUSY enforces gravity
- solution to the hierarchy 'problem'

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 の Q (>

The Minimal Superymmetric Standard Model

- simplest form of a supersymmetric theory (N = 1, i.e. one SUSY generator)
- (roughly) doubles particle content of the SM:

SUPERSYMMETRY

in the following: only squarks (\tilde{q}) and gluinos (\tilde{g}) relevant

 Supersymmetry
 Squark Pair Production
 Matching NLO calculations with parton showers
 Applying the POWHEG method to $\tilde{q}\tilde{q}$ Summary

 Christian Hangst – Matching Squark Pair Production at NLO with parton showers
 October 1st, 2013
 4/19

同 ト イヨ ト イヨ ト ヨ ヨ つくへ

Squark Pair Production

• for large $m_{\tilde{q}}, m_{\tilde{g}}: \tilde{q}\tilde{q}$ (often) dominant sparticle production channel

• large K-factors ($K = \sigma_{\it NLO}/\sigma_{\it LO}$)

(SUSY)-QCD-corrections at NLO only available from PROSPINO[Beenakker et.al. 1997].

- mass-degenerate squarks
- all individual channels summed up
- only total K-factors, no distributions
- (re)calculate the SQCD-corrections fully differentially [Popenda 2012]
- realistic simulation for LHC physics requires combination with parton shower, hadronization, ...

Elements of an NLO calculation

Christian Hangst - Matching Squark Pair Production at NLO with parton showers

Super

Squark Pair Production at NLO - some results

Is the K-factor similar for different subchannels?

Assume $m_{ ilde{q}}=$ 1800 GeV, $m_{ ilde{g}}=$ 1600 GeV for $\sqrt{s}=$ 8 GeV

$$\sigma_{\rm LO}^{\rm Prospino} = 2.57 \cdot 10^{-1} {\rm fb}, \quad \sigma_{\rm NLO}^{\rm Prospino} = 2.99 \cdot 10^{-1} {\rm fb}$$

for all possible 36 channels ($\tilde{u}, \tilde{d}, \tilde{c}, \tilde{s}$ production) summed up, using

$$\mu_R = \mu_F = m_{\tilde{q}}$$

channel	$\sigma_{\rm LO}$ [fb]	$\sigma_{\rm NLO}$ [fb]	K
$\tilde{u}_L \tilde{u}_L$	$1.29 \cdot 10^{-1}$	$1.43 \cdot 10^{-1}$	1.11
$\tilde{u}_L \tilde{d}_L$	$8.00 \cdot 10^{-2}$	$9.92 \cdot 10^{-2}$	1.23
$\tilde{u}_L \tilde{u}_R$	$3.40 \cdot 10^{-2}$	$4.00 \cdot 10^{-2}$	1.18
$\tilde{u}_L \tilde{d}_R$	$1.39 \cdot 10^{-2}$	$1.74 \cdot 10^{-2}$	1.26
Sum	$2.57 \cdot 10^{-1}$	$3.00 \cdot 10^{-1}$	1.16

ightarrow important to treat channels separately if \widetilde{q} have different decay widths ,

▶ 重l≡ ∽へへ ãã Summarv

Supersymmetry

Squark Pair Production

Matching NLO calculations with parton showers

Are differential K-factors flat?

consider cMSSM benchmark point, first two generations are degenerate in mass:

m _{ũL}	m _{ũr}	$m_{\tilde{d}_L}$	m _{~d_R}	$m_{\widetilde{g}}$
1799.53	1769.21	1801.08	1756.40	1602.91

 \rightarrow differential K-factors are not necessarily flat

Supersymmetry Squark Pair Production Matching NLO calculations with parton showers Applying the POWHEG method to $\tilde{q}\tilde{q}$ Summary Christian Hangst – Matching Squark Pair Production at NLO with parton showers October 1st, 2013 8/19

 \equiv

▲ 同 ▶ ▲ 三

E OQO

Parton showers and why we need them

soft/collinear emission enhanced:

$$rac{1}{(
ho_q+
ho_g)^2}=rac{1}{2E_gE_q(1-\cos heta_{gq})}, m_q=0$$

soft divergence: $E_g
ightarrow 0$
collinear divergence: $heta_{gq}
ightarrow 0$

parton-shower: recursive calculation of these contributions to all orders

Advantages/Disadvantages

- correct shape for soft/collinear region (fixed order divergent)
- realistic 'events' after including hadronization effects, UE, ... (fixed order has only low multiplicity)
- BUT: only LO, description not sensible beyond soft/collinear region

 \Rightarrow try to combine advantages of fixed order calculations and parton shower:

higher multiplicity in fixed order calculation ightarrow Merging

) higher order in perturbation theory ightarrow Matching

→ 同 → → 三 → → 三 = → へ ○ →

9/19

The double counting problem

combination of fixed-order NLO calculation with parton shower non-trivial: avoid **double-counting**

events with Real configuration (i.e. n + 1 final state particles) also obtained via splitting of Born configuration in parton shower

◆母 ▶ ◆ ヨ ▶ ◆ ヨ ■ ● ● ●

two NLO-matching-schemes:

- MC@NLO [Frixione,Webber 2002]
- POWHEG [Nason 2004]

IR-safe observable $\mathcal{O}_i \equiv \mathcal{O}(\Phi_i)$ after first branching in shower, starting from Born process:

$$\langle \mathcal{O} \rangle_{LO}^{PS} = \int d\Phi_n \mathcal{B}(\Phi_n) \Big[\overbrace{\mathcal{O}_n \Delta(Q_{IR})}^{\text{no emission}} + \overbrace{\int_{Q>Q_{IR}} d\Phi_{rad} \mathcal{O}_{n+1} \Delta(Q) \frac{\alpha_s(Q)}{2\pi} \frac{P(z)}{Q} \Big]$$

with the **Sudakov** (probability of NOT emitting between Q and Q_{max})

$$\begin{split} \Delta(Q) &= \exp\left[-\int d\Phi'_{rad} \frac{\alpha_s(Q')}{2\pi} \frac{P(z')}{Q'} \Theta(Q'-Q)\right] \\ &= 1 - \int d\Phi'_{rad} \frac{\alpha_s(Q')}{2\pi} \frac{P(z')}{Q'} \Theta(Q'-Q) + \mathcal{O}(\alpha_s^2) \end{split}$$

Q: ordering variable (e.g.
$$p_T$$
)
Q_{IR}: IR cutoff
z: energy fraction
 $d\Phi_{rad}$: $dQ dz \frac{d\varphi}{2\pi}$
P(z): AP splitting kernel
E
(1-z)E

$$\Rightarrow \langle \mathcal{O} \rangle_{LO}^{PS} = \int d\Phi_n \Big\{ \mathcal{O}_n \mathcal{B}(\Phi_n) \\ \text{terms formally NLO} + \int_{Q > Q_{|R}} d\Phi_{rad} \left[\mathcal{O}_{n+1} \frac{\alpha_s(Q)}{2\pi} \frac{P(z)}{Q} - \mathcal{O}_n \frac{\alpha_s(Q)}{2\pi} \frac{P(z)}{Q} \right] \Big\} + \mathcal{O}(\alpha_s^2)$$

Supersymmetry

Squark Pair Production

c

Matching NLO calculations with parton showers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 の Q (> Applying the POWHEG method to $\tilde{q}\tilde{q}$ Summary

The POWHEG method

Observable ${\mathcal O}$ at NLO reads

$$\langle \mathcal{O} \rangle_{\textit{NLO}} = \int d\Phi_n \Big[\mathcal{O}_n [\mathcal{B}(\Phi_n) + \mathcal{V}(\Phi_n)] + \int [\mathcal{O}_{n+1} \mathcal{R}(\Phi_{n+1}) - \mathcal{C}(\Phi_{n+1}) \mathcal{O}_n] d\Phi_{rad} \Big]$$

Matching NLO and parton shower ightarrow subtract these terms consistently:

$$\langle \mathcal{O} \rangle_{\text{NLO}}^{\text{sub}} = \int d\Phi_n \Big\{ \mathcal{O}_n [\mathcal{B} + \mathcal{V}] + \int d\Phi_{\text{rad}} \Big[\Big(\frac{\alpha_s(Q)}{2\pi} \mathcal{B} \frac{\mathcal{P}(z)}{Q} - \mathcal{C} \Big) \mathcal{O}_n + \Big(\mathcal{R} - \frac{\alpha_s(Q)}{2\pi} \mathcal{B} \frac{\mathcal{P}(z)}{Q} \Big) \mathcal{O}_{n+1} \Big] \Big\}$$

Special case:

$$\frac{\mathcal{R}}{\mathcal{B}} = \frac{\alpha_s(Q)}{2\pi} \frac{P(z)}{Q}$$

- \rightarrow **POWHEG** (POsitive Weight Hardest Emission Generator):
 - generate the hardest emission (w.r.t. ρ_T) before applying parton shower, using the exact real emission matrix element
 - preserves NLO accuracy (for inclusive observables and for large p_T)
 - use p_T-veto in shower, i.e. all subsequent radiation is softer (if shower is p_T-ordered; for angular ordered shower: truncated shower)

The POWHEG master formula [Frixione, Nason, Oleari 2007]

In full analogy to the first emission for 'LO+parton shower':

$$d\sigma_{PWG} = \overline{\mathcal{B}}(\Phi_n) d\Phi_n \Big[\Delta_{PWG}(\Phi_n, pT_{min}) + d\Phi_{rad}(pT) \Delta_{PWG}(\Phi_n, pT) \frac{\mathcal{R}(\Phi_{n+1})}{\mathcal{B}(\Phi_n)} \Theta(pT - pT_{min}) \Big]$$

with the POWHEG-Sudakov

$$\Delta_{PWG}(\Phi_n, \rho T) = \exp\left[-\int d\Phi'_{rad} \frac{\mathcal{R}(\Phi_{n+1})}{\mathcal{B}(\Phi_n)} \Theta(\rho T'(\Phi_n, \Phi'_{rad}) - \rho T)\right]$$

and

$$\overline{\mathcal{B}}(\varPhi_n) = \mathcal{B} + \mathcal{V} + \int d\varPhi_{rad} \left[\mathcal{R}(\varPhi_{n+1}) - \mathcal{C}(\varPhi_{n+1})
ight]$$

Supersymmetry Squark Pair Production Matching NLO calculations with parton showers Applying the POWHEG method to $\tilde{q}\tilde{q}$ Summary

Christian Hangst - Matching Squark Pair Production at NLO with parton showers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 の Q (>

Properties of the POWHEG master formula

- NLO accurate for inclusive observables (by construction)
- NLO accuracy preserved in the hard region:

$$egin{aligned} &\Delta_{PWG}(arPsi_n,
ho au_{min})
ightarrow 0, \quad \Delta_{PWG}(arPsi_n,
ho_ au)
ightarrow 1 \ \Rightarrow & d\sigma_{PWG} pprox rac{\overline{\mathcal{B}}(arPsi_n)}{\mathcal{B}(arPsi_n)} \mathcal{R}(arPsi_{n+1}) d arPsi_n d arPsi_{rad} = \mathcal{R}(arPsi_{n+1}) \left(1 + \mathcal{O}(lpha_s)
ight) d arPsi_n d arPsi_{rad} \end{aligned}$$

• leading-log accuracy of a shower MonteCarlo in soft/collinear limit ($p_T \rightarrow 0$) is not destroyed:

$$\frac{\mathcal{R}(\Phi_{n+1})}{\mathcal{B}(\Phi_n)} d\Phi_{rad} \approx \frac{\alpha_s}{2\pi} \frac{1}{Q} P(z) \, dQ \, dz \frac{d\varphi}{2\pi}, \quad \overline{\mathcal{B}} \approx \mathcal{B} \left(1 + \mathcal{O}(\alpha_s)\right)$$

Positive weights, as (usually) $\overline{\mathcal{B}} > 0$

Supersymmetry Squark Pair Production Matching NLO calculations with parton showers Applying the POWHEG method to $\tilde{q}\tilde{q}$ Summary

The POWHEG-BOX[Alioli,Nason,Oleari,Re 2010]

- POWHEG-BOX provides process-independent ingredients for a POWHEG-implementation of arbitrary processes:
 - automatized subtraction-scheme (FKS-scheme [Frixione, Kunszt, Signer 1996])
 - generation of radiation phasespace
 - hardest radiation according to POWHEG-Sudakov
 - NLO distributions as 'by-product'
 - LHE-output: unweighted events which can be interfaced to shower program
- user needs to implement the process specific parts
- So far: no processes with strongly interacting BSM particles implemented → small changes in the main routines of the code concerning the FKS subtraction

<ロ > < 同 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

POWHEG at work - inclusive observables

- PWG: results after first (hardest) emission
- $p_T^{\tilde{q}}, \eta^{\tilde{q}}$: sum of both \tilde{q} distributions
- \Rightarrow perfect agreement, i.e. NLO accuracy preserved

1

-

н

= -

Exclusive observables

Squark Pair Production

Supersymmetry

- NLO result diverges for small p_{T} , PWG result 'Sudakov damped'
- for y_i : demand $p_{\tau}^j > 200 \,\text{GeV}$

 \Rightarrow for large p_T the (N)LO result is reproduced

Applying the POWHEG method to qq

200 1

Summarv

17/19

Parton shower effects - PYTHIA6 vs. HERWIG++

- hadronization, underlying event turned off
- partons clustered with anti- k_T (R = 0.4)
- only very basic cuts: $p_{ au}^{j} > 20 ext{GeV}, \ |\eta_{j}| < 2.8$
- inclusive quantities hardly affected
- p_T^{j1} softer than NLO, HERWIG++ slightly higher rates at low p_T^{j1}
- HERWIG++ predicts more centralijets = つへ @

Summary

- Squark pair production is important sparticle production channel at the LHC
- NLO corrections are usually different for individual channels, K-factors are often large and not flat
- Matching NLO fixed order calculation with parton showers important for precise predictions for LHC physics (\rightarrow POWHEG method)
- Implementation of squark pair production in public program package POWHEG-BOX
- Parton shower effects for inclusive observables small, but important for radiated parton

Backup

Differential K-factors after decay to $\tilde{\chi}_0 q$

Christian Hangst - Matching Squark Pair Production at NLO with parton showers

October 1st, 2013 21/19

two reasons for this discrepancy:

- at NLO: p_T^{q̃q} ↔ p_T^j, the p_T of the radiated parton
- low p_T^{qq}: Sudakov damping (NLO result diverges here)
- high $p_T^{\tilde{q}\tilde{q}}$: LHE/NLO \approx 1.8 \Rightarrow 80% discrepancy!

(1) assumption $\overline{\mathcal{B}}/\mathcal{B} \approx 1$ is not valid here: sizeable *K*-factor (*K* = 1.2)

2 different scales for $\overline{\mathcal{B}}$ ($\mu = \overline{m}_{\tilde{q}}$) and for \mathcal{R}/\mathcal{B} (p_T of the radiated parton)

• check these two points: perform event generation with $\overline{B} \to B$ and $\mu_B = \mu_F = 400 \text{GeV}$

 idea [Alioli,Nason,Oleari,Re 2009]: 'split' the real contributions in the master-formula, use only IR-singular parts for radiation generation

$$\mathcal{R} = \mathcal{R}_s + \mathcal{R}_r = \mathcal{F}\mathcal{R} + (1 - \mathcal{F})\mathcal{R}; \quad \mathcal{F} = rac{h^2}{p_T^2 + h^2}$$

'new' master-formula:

 $d\sigma_{\scriptscriptstyle PWG} = \overline{\mathcal{B}_s}(\varPhi_n) \, d\Phi_n \left[\Delta_s(\varPhi_n, p_{\scriptscriptstyle T}^{\min}) + \Delta_s(\varPhi_n, k_{\scriptscriptstyle T}) \frac{\mathcal{R}_s(\varPhi_n, \varPhi_{\scriptscriptstyle rad})}{\mathcal{B}(\varPhi_n)} \theta(k_{\scriptscriptstyle T} - p_{\scriptscriptstyle T}^{\min}) d\Phi_{\scriptscriptstyle rad} \right] + \mathcal{R}_r d\Phi_n d\Phi_{\scriptscriptstyle rad}$

Shower without ISR

<ロト < 団 > < 三 > < 三 > 三 = 9 < 0</p>

Christian Hangst - Matching Squark Pair Production at NLO with parton showers