

Transport Models for Galactic Cosmic Rays in the Era of PAMELA, FERMI and AMS-02

S. Kunz, W. de Boer, I. Gebauer, F. Keller, M. Weinreuter Bad Liebenzell 2013

Institute of Experimental Nuclear Physics

Outline

- Introduction to Cosmic Ray (CR) transport models
- Results of a Markov Chain Monte Carlo (MCMC) study
- Pulsar interpretation of the anomalous rise in the positron fraction
- The local bubble: facts and prospects

Caprice

ACE

- Aim: Reproduction of the locally measured spectra of cosmic rays
- Modeling of the transport processed the particles underly
- Numerical solution of the transport equation (e.g. Galprop, Dragon)

60 kpc

- Aim: Reproduction of the locally measured spectra of cosmic rays
- Modeling of the transport processed the particles underly
- Numerical solution of the transport equation (e.g. Galprop, Dragon)

Source distribution

 \rightarrow Supernova remnants are believed to be the dominant sources for galactic cosmic rays

 \rightarrow injection spectrum is assumed to be a power law

$$Q \propto E^{-lpha}$$

Simon Kunz

- Aim: Reproduction of the locally measured spectra of cosmic rays
- Modeling of the transport processed the particles underly
- Numerical solution of the transport equation (e.g. Galprop, Dragon)

Diffusion

 \rightarrow CR particles scatter off the turbulences of the magnetic field

 $D(R) \propto D_0 \cdot R^{\delta}$

- Aim: Reproduction of the locally measured spectra of cosmic rays
- Modeling of the transport processed the particles underly
- Numerical solution of the transport equation (e.g. Galprop, Dragon)

60 kpc

Convection (galactic winds)

Simon Kunz

- Aim: Reproduction of the locally measured spectra of cosmic rays
- Modeling of the transport processed the particles underly
- Numerical solution of the transport equation (e.g. Galprop, Dragon)

60 kpc

Diffusive reacceleration

 \rightarrow CR particles scatter off randomly moving clouds, in which the magnetic fields are frozen

*V*_{alfven}

- Aim: Reproduction of the locally measured spectra of cosmic rays
- Modeling of the transport processed the particles underly
- Numerical solution of the transport equation (e.g. Galprop, Dragon)

e.g. Bremsstrahlung

Particle losses

- Fragmentation
- Radioactive decays

- Aim: Reproduction of the locally measured spectra of cosmic rays
- Modeling of the transport processed the particles underly
- Numerical solution of the transport equation (e.g. Galprop, Dragon)

- Transport models depend on many unknown parameters! Our model: 16
- e.g. Diffusion strength and rigidity dependence Halo height Injection spectrum

Compare model predictions with experimental data:
$$p, \bar{p}, \frac{\bar{p}}{p}, \frac{B}{C}, \frac{{}^{10}Be}{{}^{9}Be}$$

Protons: primary CRs, directly produced and accelerated by SNRs

Antiprotons: *secondary* CRs, produced by interactions of CRs with the interstellar medium (ISM)

Boron/Carbon: Secondary-to-Primary ratio

 $C + gas \rightarrow B + X$

measure for the gas, 'seen' by CRs

¹⁰Be/⁹Be: Ratio of radioactive nuclei

- \rightarrow not feasible for such a high dimensional problem Evaluation of a single model takes minutes to hours
- → We do NOT just want to find a best fit model, so no fine tuning. Instead, want to explore wide ranges of parameter space (exotic models?) Examine the full potential and the limitations of these kind of models
- \rightarrow Use **MCMC** in order to **sample** the parameter space efficiently

Results are based on ~ 10 Mio. Models

> 1 year with ~ 1.500 CPU cores

How well are the transport parameters constrained by these data sets?

How well are the transport parameters constrained by the data sets?

Preferred diffusion coefficient by the single observables

Preferred halo size by the single observables

Preferred halo size by the single observables

MCMC Results Summary

- Sampling of parameter space using MCMC
- Some transport parameters can and some cannot be constrained by the experimental data
- The preferred models can be used as background models and allow predictions for other observables
- \rightarrow Leptons

Leptons

Downgoing behaviour expected from standard CR transport

Impossible to mimic with a pure secondary production of positrons!

Most favored explanations are additional primary positrons by:

- Pulsars
- Dark matter annihilation (not covered in this talk)

Pulsars

 \rightarrow highly magnetized, rotating neutron stars Electrons are extracted from the surface by electric fields and later transformed into electron-positron pairs through electromagnetic cascading

Expected flux can be modeled¹, but large uncertainties due to

- transport
- pulsar properties: distance, age, energy output, injection, efficiency, ...

¹e.g. arXiv:1001.4540

Pulsars

 \rightarrow highly magnetized, rotating neutron stars Electrons are extracted from the surface by electric fields and later transformed into electron-positron pairs through electromagnetic cascading

Expected flux can be modeled¹, but large uncertainties due to

- transport
- pulsar properties: distance, age, energy output, injection, efficiency, ...

Fit to data:

- use the 10 most contributing (known) pulsars
- allow pulsar parameters to vary inside their observational limits
- use the very latest data of Pamela, Fermi and AMS-02
- fit the available e^+ , e^- data sets simultaneously: e^- , e^+ , $(e^+ + e^-)$, $e^+ / (e^+ + e^-)$

¹e.g. arXiv:1001.4540

Pulsars Fit Results

Background Additional pulsar contribution Same for e⁺ and e⁻

Simon Kunz

Pulsars Fit Results

Additional pulsar contribution

Is there a way to disprove the pulsar/point like source explanation?

Simon Kunz

Anisotropy of Pulsars

• Most of the SNR (the sources of 'usual' CRs) are located towards the galactic center at ~ 4 kpc

→ Expect dipole anisotropy of background itself

• Anisotropies of several pulsars can cancel each other completely

Anisotropy of $(e^+ + e^-)$

 \rightarrow Current and upcoming upper limits may challenge the pulsar explanation

Simon Kunz

Local transport

 $\rightarrow e^{\scriptscriptstyle +}$ and $e^{\scriptscriptstyle -}$ suffer from large energy losses due to synchrotron radiation and inverse compton scattering

- \rightarrow loose energy much faster than e.g. protons
- \rightarrow short propagation lengths of 0.5 1 kpc Protons: few kpc

 \rightarrow *local transport:* highly affected by the local environment

- lower gas density, factor 100–1000
- irregular shape, radii 50-150 pc
 → very local!
- Age: 5 –12 Myr
- Origin: SN explosions

This structure could significantly affect the transport of local CRs!

Lower gas density \rightarrow Effect on diffusion?

Reminder: CR particles scatter off the turbulences of the magnetic field

Connection between turbulences and gas density?

less turbulence being washed out: \rightarrow more scattering?

or

less magnetic focus points: \rightarrow less scattering?

Work in progress...

Work in progress...

Summary

• By using MCMC sampling, the parameter space of transport parameters was studied

 Positron fraction cannot be described with the assumption of a pure secondary production of positrons

 \rightarrow Additional positron sources are needed

 Nearby pulsars could explain the positron fraction and lead to an anisotropy, which may challenge the pulsar explanation with upcoming upper limits

• The local environment could significantly affect the transport of local CRs and the expected anisotropies. Work in progress...