

Search for Chargino Neutralino production at CMS

01. October 2013

Yasmin Anstruther¹, Wim de Boer¹. Felix Frensch¹, Christian Lüdtke¹, Pilipp Mogg¹, Martin Niegel¹, Fedor Ratnikov¹, Artur Speiser¹, Daniel Tröndle², **Stefan Wayand¹**, Florian Weiser¹ (1) KIT, Fakultät für Physik, Institut für Experimentelle Kernphysik (2) Universität Hamburg

Outline

Public CMS PAS

Available on the CERN CDS information server

CMS PAS SUS-13-006

CMS Physics Analysis Summary

Contact: cms-pag-conveners-susy@cern.ch

2013/07/19

Search for electroweak production of charginos, neutralinos, and sleptons using leptonic final states in pp collisions at $\sqrt{s} = 8$ TeV

The CMS Collaboration

Abstract

Final states with exactly three leptons, four leptons, two same-sign leptons, two opposite-sign-same-flavor leptons plus two jets, and two opposite-sign leptons inconsistent with Z boson decay, are studied using a data sample consisting of an integrated luminosity of 19.5 fb⁻¹ of proton-proton collision data collected in 2012 with the CMS detector at $\sqrt{s} = 8$ TeV. The observed event rates are in agreement with expectations from the standard model. The results are used to set limits on the direct production of charginos, neutralinos, and sleptons.

Introduction

Signature

Objects

3 lepton analysis

Projection to 3000 fb⁻¹

Interpretation

Includes 5 Analysis form 8 different groups Final states with exactly

01.10.2013

Introduction

- No SUSY found so far
- Most searches concentrate on colored particles
 - Strong limits on Squarks and Gluinos
- Chargino/Neutralino production has small cross section

Direct Chargino Neutralino production needs luminosity

Signature

Decay via W/Z Boson

- Decay is motivated by many SUSY scenarios
- Exact branching ratio (Br) depends on many different parameters
 - Use simplified model approach, set Br to 100%
- Leptonic decay of Bosons lead to final states with 3 leptons
- Lightest Supersymmetric Particle (LSP) is stable and stays undetected → events with large missing transverse Energy (MET)

Objects

Carlsruhe Institute of Technology

Trigger:

- Dilepton Trigger ($\epsilon \sim 90\%$)
 - First lepton $p_{T} > 20 \text{ GeV}$
 - Second lepton $p_{\tau} > 10 \text{ GeV}$

Lepton ID's

- Standard CMS Electrons ($\epsilon \sim 90\%$) and Muons ($\epsilon > 90\%$)
 - p_T > 10 GeV
 - |eta| < 2.4
 - (rel) Particle Flow isolation < 0.15
- Hadronic Taus τ (ε ~ 50%) [arXiv:1109.6034]
 - P_T > 20 GeV
 - |eta| < 2.3

Jets and MET:

- Particle Flow Jets:
 - P₁ > 30 GeV
 - Use CSV b-tag [arXiv:1211.4462]
- Particle Flow MET

3I Search Overview

- Backgrounds
 - WZ: dominant, contains 3 prompt leptons + MET
 - Non-prompt (fakes+ leptons escaping Jets)
 - ttbar: MET
 - DY (Z-Boson)+Jets: no MET
 - Rare (very low cross section) taken from MC:
 - VVV/ttV/H/VH/ZZ
- Select 3 leptons (electrons and muons)
 - Find lepton pair which matches best to a Z
 - Invariant mass (mll) closest to 91 GeV
 - Remaining lepton used for M_{T} calculation
 - $M_{T} = (2*p_{T}*MET*[1-cos(\Delta\phi[p_{T},MET])])^{1/2}$
 - Veto on events with b-tagged jets
 - Veto on events with hadroinic τ

3 Lepton Search Region

WZ Backgrounds

WZ:

- SM WZ cross section measurement shows an ~20% excess compared to the theory prediction
- We using MC → take theory cross section, apply uncert of ~20% (dominating uncertainty)

WZ:

- Use MC and validate it in control region
- Measure the Detector response for MET (in Z events) and correct the MC

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP

01.10.2013

Non-prompt Backgrounds

Non prompt:

- We have 3 independent prediction methods, for example: select events with 2 leptons+ isolated track
- Measure the fake rate as function of isolation and impact parameter in pure QCD
- Apply the fake rate to the 2I+isolated track selection:
- Plot shows the measured fake rates applied on ttbar MC
- Prediction works well and gives same results as two other different methods

Result

- No significant excess can
- be observed
 Each of this MET bin are used for limit settings
 - Important are the onZ channels

Result

Z + 2 Jets

Rarlsruhe Institute of Techn

Select 2 leptons OSSF + at leas 2 Jets
 Major Background ttbar, DY+jets, WZ+ZZ:

- ttbar ->use flavor symmetry (e mu sample)
- DY+jets use gamma+jets for the MET shape
- WZ+ZZ validated MC

Data driven background predictions

Search region:

- Veto on events without Z-Candidate (75 GeV < invM(II) < 105 GeV) (suppress ttbar)
- Veto on events with b-jets (suppress ttbar)
- Invariant JetJet Mass has to be in W range (70 GeV < invM(jj) < 111 GeV)
- Result binned in MET [0-30-60-80-100-120-150-200-inf] where low MET bins are control regions

No excess here !

Ζ

 $\tilde{\chi}_2^0$

10-2

50

100

150

200

E^{miss}_T [GeV]

Stefan Wayand GK-Workshop 2013 Bad Liebenzell

250

SMS Interpretations into TChiWZ

Projection to HL-LHC (2023-2030)

- Have to struggle with multiple interaction per bunch crossing, so called Pile Up (PU)
- Projection of the 3I analysis to 3000 fb⁻¹
 - Use Delphes for detector simulation: "easy" to simulate $\langle PU \rangle = 140$
 - Simulate one possible Phase II upgraded CMS Detector

One real event with 78 reconstructed vertices!

Extended search regions in M_{τ} and MET

5σ Discovery reach with HL-LHC

- More realistic 50% Branching Ratio
- Here <PU> = 140 cost over 200 GeV in mass reach
 - Non-prompts play a important role → Analysis not optimized for this region

Probe Chargino masses up to 800 GeV
Going from 300 fb⁻¹ to 3000 fb⁻¹ gives about 300 GeV in Chargino mass
<PU> = 140 cost about 100 GeV in mass reach

Conclusion

- CMS is an excellent detector for searching in channels with leptons
- No significant deviation from Background prediction can be observed
- Probe Chargino masses up to 300 GeV
- Results published in
 - CMS-PAS-SUS-13-006
- Paper by the end of this year
- Projection to 3000 fb⁻¹ increase discovery reach up to 800 GeV
 - Result will be shown today on EFCA-Workshop 1-3 Oct. 2013
 - CMS PAS-FTR-13-014

Thank You

Backup

SMS interpretations

Fake prediction

Red is mostly from ttbar Blue most contribution from Dy+Jets

3 leptons Results

CMS Pre	liminary $\sqrt{s} = 8$ TeV, $L_{int} = 1$	19.5 fb ⁻¹					
$M_{l^{+}l} < 75 \text{ GeV}$	75 GeV< M_{l^+l} <105 GeV M_{l^+l} >18	05 GeV					
M1>160 GeV	e cuerto 100 (c	$\begin{array}{c} Channels:\\ e^{\pm}e^{\mp}e\\ e^{\pm}e^{\mp}\mu\\ \mu^{\pm}\mu^{\mp}e\\ \mu^{\pm}\mu^{\mp}\mu\\ \mu^{\pm}\mu^{\mp}\mu\end{array}$					
120 GeV-CM ₁ -c160 Ge events 50 GeV events 5	20 05/ 06/ 07/ 00/ 00/ 00/ 00/ 00/ 00/ 00	• Data Higgs ZZ $Z\gamma^*$ WZ Non-prom Rare SM $E_{\tau}^{m^*}[GeV]$ — Total bkg	ıpt				
Mr<120 GeV		uncertaint	у				
E ^{nlis} [GeV]	E_T^{mins} [GeV]	E ^{miss} [GeV]		3ℓ: OSSF			
M_{-} (CoV)	Emiss (CoV)	$M_{\ell\ell} < 75 \text{ GeV}$		75 GeV < M	$\ell_{\ell\ell} < 105 { m ~GeV}$	$M_{\ell\ell} > 105 \text{ GeV}$	
M _T (Gev)	$L_{\rm T} = ({\rm Gev})$	total bkg	observed	total bkg	observed	total bkg	observed
>160	50 - 100	5.8 ± 1.1	12	7.5 ± 1.4	13	2.6 ± 1.2	1
	100 - 150	4.5 ± 1.1	3	4.0 ± 1.0	8	1.8 ± 0.9	3
	150 - 200	1.5 ± 0.4	2	1.5 ± 0.5	3	0.7 ± 0.4	0
	000 050						
	200 - 250	0.81 ± 0.21	0	1.1 ± 0.4	2	$0.40 {\pm} 0.24$	0
	200 - 250	0.81 ± 0.21 9.6 ± 1.7	0 8	1.1 ± 0.4 23±5	2 29	0.40 ± 0.24 2.7 ± 0.5	0 4
100 160	200 - 250 50 - 100 100 - 150	$\begin{array}{c} 0.81 \pm 0.21 \\ \hline 9.6 \pm 1.7 \\ 3.3 \pm 0.8 \end{array}$	0 8 2	1.1 ± 0.4 23 ± 5 3.4 ± 0.7	2 29 4	$\begin{array}{r} 0.40 {\pm} 0.24 \\ \hline 2.7 {\pm} 0.5 \\ 0.71 {\pm} 0.22 \end{array}$	0 4 2
120 - 160	$\begin{array}{r} 200-250\\ \hline 50-100\\ 100-150\\ 150-200 \end{array}$	$\begin{array}{c} 0.81 {\pm} 0.21 \\ \hline 9.6 {\pm} 1.7 \\ 3.3 {\pm} 0.8 \\ 0.26 {\pm} 0.10 \end{array}$	0 8 2 0	$\begin{array}{r} 1.1 \pm 0.4 \\ 23 \pm 5 \\ 3.4 \pm 0.7 \\ 0.72 \pm 0.19 \end{array}$	2 29 4 1	$\begin{array}{r} 0.40{\pm}0.24\\ \hline 2.7{\pm}0.5\\ 0.71{\pm}0.22\\ 0.38{\pm}0.14\end{array}$	0 4 2 0
120 - 160	$\begin{array}{r} 200-250\\ \hline 50-100\\ 100-150\\ 150-200\\ 200-250\\ \end{array}$	$\begin{array}{r} 0.81 \pm 0.21 \\ \hline 9.6 \pm 1.7 \\ 3.3 \pm 0.8 \\ 0.26 \pm 0.10 \\ 0.29 \pm 0.11 \end{array}$	0 8 2 0 0	$\begin{array}{r} 1.1 \pm 0.4 \\ \hline 23 \pm 5 \\ 3.4 \pm 0.7 \\ 0.72 \pm 0.19 \\ 0.36 \pm 0.12 \end{array}$	2 29 4 1 1	$\begin{array}{r} 0.40{\pm}0.24\\ \hline 2.7{\pm}0.5\\ 0.71{\pm}0.22\\ 0.38{\pm}0.14\\ 0.24{\pm}0.20\end{array}$	0 4 2 0 0 0
120 - 160	$\begin{array}{r} 200-250\\ \hline 50-100\\ 100-150\\ 150-200\\ 200-250\\ \hline 50-100\\ \end{array}$	$\begin{array}{c} 0.81 \pm 0.21 \\ \hline 9.6 \pm 1.7 \\ 3.3 \pm 0.8 \\ 0.26 \pm 0.10 \\ 0.29 \pm 0.11 \\ \hline 132 \pm 19 \end{array}$	0 8 2 0 0 138	$\begin{array}{r} 1.1 \pm 0.4 \\ 23 \pm 5 \\ 3.4 \pm 0.7 \\ 0.72 \pm 0.19 \\ 0.36 \pm 0.12 \end{array}$	2 29 4 1 1 821	$\begin{array}{r} 0.40 {\pm} 0.24 \\ \hline 2.7 {\pm} 0.5 \\ 0.71 {\pm} 0.22 \\ 0.38 {\pm} 0.14 \\ 0.24 {\pm} 0.20 \\ \hline 45 {\pm} 7 \end{array}$	0 4 2 0 0 0 49
120 - 160	$\begin{array}{r} 200-250\\ \hline 50-100\\ 100-150\\ 150-200\\ 200-250\\ \hline 50-100\\ 100-150\\ \end{array}$	$\begin{array}{r} 0.81 \pm 0.21 \\ \hline 9.6 \pm 1.7 \\ 3.3 \pm 0.8 \\ 0.26 \pm 0.10 \\ 0.29 \pm 0.11 \\ \hline 132 \pm 19 \\ 20 \pm 4 \end{array}$	0 8 2 0 0 138 16	$\begin{array}{r} 1.1 \pm 0.4 \\ 23 \pm 5 \\ 3.4 \pm 0.7 \\ 0.72 \pm 0.19 \\ 0.36 \pm 0.12 \\ \hline 776 \pm 125 \\ 131 \pm 30 \end{array}$	2 29 4 1 1 1 821 123	$\begin{array}{r} 0.40 {\pm} 0.24 \\ \hline 2.7 {\pm} 0.5 \\ 0.71 {\pm} 0.22 \\ 0.38 {\pm} 0.14 \\ 0.24 {\pm} 0.20 \\ \hline 45 {\pm} 7 \\ 10.0 {\pm} 1.9 \end{array}$	0 4 2 0 0 0 49 10
120 - 160 0 - 120	$\begin{array}{r} 200-250\\ \hline 50-100\\ 100-150\\ 150-200\\ 200-250\\ \hline 50-100\\ 100-150\\ 150-200\\ \end{array}$	$\begin{array}{r} 0.81 \pm 0.21 \\ \hline 9.6 \pm 1.7 \\ 3.3 \pm 0.8 \\ 0.26 \pm 0.10 \\ 0.29 \pm 0.11 \\ \hline 132 \pm 19 \\ 20 \pm 4 \\ 4.0 \pm 0.8 \end{array}$	0 8 2 0 0 0 138 16 5	$\begin{array}{r} 1.1 \pm 0.4 \\ 23 \pm 5 \\ 3.4 \pm 0.7 \\ 0.72 \pm 0.19 \\ 0.36 \pm 0.12 \\ \hline 776 \pm 125 \\ 131 \pm 30 \\ 34 \pm 8 \end{array}$	2 29 4 1 1 1 821 123 34	$\begin{array}{r} 0.40 {\pm} 0.24 \\ \hline 2.7 {\pm} 0.5 \\ 0.71 {\pm} 0.22 \\ 0.38 {\pm} 0.14 \\ 0.24 {\pm} 0.20 \\ \hline 45 {\pm} 7 \\ 10.0 {\pm} 1.9 \\ 2.5 {\pm} 0.5 \end{array}$	0 4 2 0 0 0 49 10 4

01.10.2013

Slep Snu Signature

Decay via Sleptons:

- Final state with 3I and MET from LSP
- Different lepton flavor composition possible
- Wide range of possible final states (like enhanced taus, ...)

2 leptons same sign (SS)

Major Background WZ, fakes, misidentified sign:

- WZ validate MC in control region (inverted Z-veto)
- Fakes determine fake rate in side-band
- Misidentified sign (electrons), determine in Z-> ee and apply on 2I OS sample

Other Interpretations

- There are many SMS under discussion.
- On this slide interpretation into TChiSlepSnu is shown
- Result depends on slepton mass

Other Interpretations

There are many SMS under discussion.
 On this slide interpretation into TChiSlepSnu is shown with Chargino → tau

Result depends on slepton mass

CMS Preliminary

 $\rightarrow \tilde{e}e, \tilde{\mu}\mu, \tilde{\tau}\tau$

 $Br(\tilde{\chi}^{0}_{a} \rightarrow \tilde{l}^{+}l^{-}) = 1$

200

300

400

500

600

700

800

 $m_{\widetilde{\chi}_1^0}$ (GeV)

600

500

400

300

200

100

L_ = 19.5 fb⁻¹, √s = 8 TeV

95% C.L. CLs NLO Exclusions → Observed 3/⊕SS ±1σ_{theory} Expected 3/⊕SS ±1σ_{experimen}

Observed 31 only

Observed SS only

0³

10²

10

95% C.L. upper limit on cross section (fb)

Other Interpretations

There are many SMS under discussion.
 On this slide interpretation into TChiSlepSnu is shown with Chargino/Neutralino → 3tau

Result depends on slepton mass

Phase II upgrade search region

Table 2: Standard model prediction for the different scenarios

		Phasel	PhaseI	PhaseII Conf3
election in GeV		<pu>=0</pu>	< PU > = 140	< PU > = 140
		yield \pm uncert.	yield \pm uncert.	yield \pm uncert.
$0 < M_T < 120$	$0 < E_T < 60$	$7.3 \times 10^5 \pm 7.1 \times 10^4$	$8.0 \times 10^5 \pm 1.2 \times 10^5$	$9.3 \times 10^5 \pm 1.2 \times 10^5$
$0 < M_T < 120$	$60 < E_T < 120$	$1.8 \times 10^5 \pm 1.8 \times 10^4$	$8.4{ imes}10^5 \pm 1.2{ imes}10^5$	$9.3 \times 10^5 \pm 1.1 \times 10^5$
$0 < M_T < 120$	$120 < \not\!\! E_{ m T} < \infty$	$5.6 \times 10^4 \pm 7.7 \times 10^3$	$3.3{ imes}10^5 \pm 7.4{ imes}10^4$	$3.3{ imes}10^5 \pm 7.3{ imes}10^4$
$120 < M_T < 200$	$0 < E_T < 120$	$7.9 \times 10^3 \pm 796$	$7.7{ imes}10^4 \pm 7.0{ imes}10^3$	$8.2{ imes}10^4 \pm 7.4{ imes}10^3$
$120 < M_T < 200$	$120 < E_T < 200$	$1.2 \times 10^{3} \pm 213$	$4.0{ imes}10^4 \pm 7.1{ imes}10^3$	$4.3{ imes}10^4 \pm 7.4{ imes}10^3$
$120 < M_T < 200$	$200 < E_T < \infty$	359 ± 84	$5.7 \times 10^3 \pm 2.3 \times 10^3$	$4.8{ imes}10^3 \pm 2.1{ imes}10^3$
$200 < M_T < 400$	$0 < E_T < 200$	$2.3 \times 10^3 \pm 239$	$1.5{ imes}10^4 \pm 1.9{ imes}10^3$	$1.5{ imes}10^4 \pm 2.0{ imes}10^3$
$200 < M_T < 400$	$200 < E_T < 400$	303 ± 52	$1.6 imes 10^3 \pm 489$	$1.4 \times 10^{3} \pm 471$
$200 < M_T < 400$	$400 < E_T < \infty$	24 ± 4.1	69 ± 35	39 ± 12
$400 < M_T < 700$	$0 < E_T < 300$	249 ± 24	395 ± 58	390 ± 42
$400 < M_T < 700$	$300 < E_T < 700$	67 ± 13	95 ± 19	100 ± 24
$400 < M_T < 700$	$700 < E_{ m T} < \infty$	1.1 ± 0.4	1.3 ± 0.5	1.4 ± 0.4
$700 < M_{\rm T} < \infty$	$0 < E_T < 400$	30 ± 3.0	27 ± 3	27 ± 2.8
$700 < M_T < \infty$	$400 < E_T < 900$	32 ± 5.3	31 ± 5	30 ± 4.9
$700 < M_{\rm T} < \infty$	$900 < E_T < \infty$	1.4 ± 0.4	1.5 ± 0.47	1.2 ± 0.37

Delphes Simulation

- Delphes is a very fast tool for running a detector simulation
- It is used by several other groups and compared to results obtained with fullsim
 - ightarrow good agreement has been observed
- Four different scenarios are studied for EFCA
 - CF1PU0: the Phasel detector with 0 PileUp events
 - CF1PU140: the Phasel detector with 140 PileUp events
 - CF3PU140: possible PhaseII detector with 140 PileUp events
 - Replacement of EE and retrofitting of HE
 - Use of EE shashlik resolution and transverse size
 - Increase of phi segmentation for HE by factor of four
 - Use of the Phase II tracker in barrel and endcap;
 - Extension of μ system to full coverage from 1.6 $< |\eta| <$ 2.4
 - CF4PU140: possible PhaseII detector with 140 PileUp events
 - like CF3PU140
 - tracker cover $|\eta| < 4$

LHC roadmap

Period [approx.]	Energy [TeV]	Lumi [/fb]	<pu></pu>		
2012	8	~25	~20		
2015 – 2017	13-14	~100	~25	\rightarrow	Phase0
2020 - 2022	14	~300	~50	\rightarrow	Phasel, conf0
2023 –	14	~3000	~140	\rightarrow	Phasell

Phasell, conf3:

- Use Phasell tracker in Barrel & Endcap
- Replace EE & retrofitting of HE
- Increase φ segmentation in HE
- Full muon coverage from 1.6<|η|<2.4
- Phasell, conf4 [in add. to Conf3]:
 - TRK+Calo+MC extended up to |η|=4
 - Complete replacement of endcap

Conf3 Conf4