

Top Pair Production with N-jets at CMS

GK Workshop - Bad Liebenzell - Fall 2013

Alexis Descroix | 2/10/2013

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP)

www.kit.edu

Introduction

- At the LHC a large fraction of top quark pair events (tt
 is produced with additional jets
- Investigating these processes is very interesting
 - Test perturbative QCD at top quark energy scale
 - Constrain modeling uncertainties in MC
 - Anomalous *tt* + jets production can be sign of new physics
 - Background to *t* production with Higgs or with other bosons and BSM
- I am contributing to cross-section measurements of t events as a function of jets at CMS

Investigated Processes: tt Events

- tt
 produced at LHC mostly with gluons in initial state
- Top quarks decay almost always into a W boson and a bottom quark
- Decay of a W boson into leptons and the other one in quarks → lepton+jets channel

 W^+

b

Analyzed Samples

• Datasets from 2011 LHC run: $\sqrt{s} =$ 7 TeV, $\mathcal{L} =$ 5.0 fb⁻¹

- Simulation of standard *t* sample with LO generator:

 - Interfaced via MLM matching with PYTHIA for parton showering
 - Factorisation and renormalisation scale: $Q^2 = m_t^2 + \sum p_T^2$
- Comparison available with NLO tt generators:
 - POWHEG+PYTHIA
 - MC@NLO+HERWIG
- Background processes simulated with MC:
 - MADGRAPH+PYTHIA (W+jets and Drell-Yan)
 - POWHEG+PYTHIA (single top)
 - PYTHIA (boson pair: WW, WZ, ZZ)
- Modeling/correction of dominant backgrounds with data-driven methods: W+jets and QCD multijet

Data-Driven Background Estimation

W+Jets

- Main lepton charge asymmetry at LHC via W boson production
 - \rightarrow A = W⁺ W⁻ = $\ell^+ \ell^-$
- Correction of MC with ratio: A^{data}/A^{MC}_{W+iets}
- Correction on W + b(b) and W + c(c) rates

QCD Multijet

- QCD model from data using anti-isolated leptons:
 - Lepton in jet (decay of B or D hadron)
 - Jet identified as a lepton
- Scaling of the model through a fit to data outside of the measurement phase space

5/15

Events Selection

- One selected lepton (e or µ) with p_T > 30 GeV
- Veto against any additional leptons
- \geq 3(4) selected jets with p_T > 35(30) GeV
- $\bullet \ge$ 2 of these jets identified as b-jets

- Non-tt processes represent ~15% of data after the selection
 - W+jets
 - Single top
 - QCD multijet
 - Z+jets

MEASUREMENT OF THE DIFFERENTIAL CROSS-SECTION AS A FUNCTION OF THE NUMBER OF JETS

Alexis Descroix

Correction Back to Particle Level

- Subtract background from data $\rightarrow N_{data}^{i} N_{bkg}^{i}$
- Correct migration from particle level to detector level:

• Invert migration effects back to particle level with MADGRAPH $\rightarrow N_{t\bar{t}}^{i}$

Correction within the visible phase-space

Differential Cross-Section and Theory Comparisons

• Calculation of the differential cross-section for *i* jets:

 $\frac{1}{\sigma_{t\bar{t}}} \frac{d\sigma_{t\bar{t}}^{i}}{dN_{jets}} = \frac{1}{\sigma_{t\bar{t}}} \frac{N_{t\bar{t}}^{i}}{\mathcal{L}}, \text{ with measured cross-section: } \sigma_{t\bar{t}}$

- Normalization to $\sigma_{t\bar{t}}$ reduces systematic uncertainty
- Combine results and compare to predictions from:
 - POWHEG+PYTHIA
 - MC@NLO+HERWIG
 - Variation up/down of Q² scale and of matrix-element/parton-showering matching threshold in MADGRAPH+PYTHIA
- Main systematic uncertainties:
 - Jet energy uncertainties (2-20%)
 - Modeling uncertainties (Q² scale and matching threshold uncertainty, 2-18%)

Differential Cross-Section in Lepton+Jets Channel

- Good agreement of data with predictions from MADGRAPH+PYTHIA and POWHEG+PYTHIA
- MC@NLO+HERWIG: jet multiplicity lower than data
- МАDGRAPH+РYTHIA: best description for larger Q²/match. threshold

MEASUREMENT OF THE DIFFERENTIAL CROSS-SECTION AS A FUNCTION OF THE NUMBER OF ADDITIONAL JETS

Alexis Descroix

Definition of Additional Jets

tt MC events are classified using MC information

- particle level jets
- tt decay products from matrix-element
- Use the angle ΔR between particle level jets and $t\bar{t}$ decay products:
 - two b quarks
 - two light quarks
 - prompt lepton
- Jets with $\Delta R > 0.5$ count as additional radiated partons
 - \Rightarrow classification of events in
 - $t\bar{t}$ + 0, 1 and \geq 2 additional jets
- Extracting rates of these tt classes from data via a template fit

12/15

Template Fit Results

• Fit in χ : Quality of a $t\bar{t}$ full event reconstruction

Alexis Descroix

Top Pair Production with N-jets at CMS

Cross-Section as a Function of Additional Jets

- Extract results with MADGRAPH prediction for the tt classes
- Like jet multiplicity measurement:
 - best agreement from MADGRAPH+PYTHIA and POWHEG+PYTHIA with data
 - MC@NLO shows discrepancies

Conclusion and Outlook

- Two measurements of jets in $t\bar{t}$ events: jet multiplicity and additional jet multiplicity \rightarrow consistent results
- MADGRAPH+PYTHIA predictions agree mostly well with data
- Modelling uncertainties (Q² and matching) often larger than measurement precision → too conservative?
- MC@NLO+HERWIG produces fewer jets than observed.
 Comparison with POWHEG+HERWIG required (sample now available)
- Working towards comparisons with NLO+Parton Showering multileg generators like aMC@NLO and SHERPA
- Publication in collaboration review. Update to 8 TeV data will follow

Public results can be found here:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP \rightarrow TOP-12-018

Thanks for your attention

Alexis Descroix

Top Pair Production with N-jets at CMS