

Transmission measurements at the KATRIN main spectrometer

Stefan Groh GK-Workshop Bad Liebenzell, October 2013

Outline

How does KATRIN work

- Commissioning of spectrometer and detector
- Alignment of eGun and Detector
- Transmission function measurement
- Radial potential scan
- Transmission function at high rate

Outline

- How does KATRIN work
- Commissioning of spectrometer and detector
- Alignment of eGun and Detector
- Transmission function meas
- Radial potential scan

Model independent measurement of the neutrino mass with a sensitivity of 200 meV (90% C.L.)

Transmission function at high rate

Tritium beta decay

Precise spectroscopy of beta decay electrons necessary

Neutrino mass takes away energy that changes shape of electron spectrum

4

2.10.2013 Stefan Groh – Transmission measurements at the KATRIN main spectrometer

Experimental Setup

Why the big spectrometer?

Source: isotropic e⁻ emission

Cyclotron motion along field line

Fixed polar angle between p and B

Electric field only filters long. comp.

Problem: How to filter the electrons according to their kinetic energy?

Solution: Decrease the polar angle of the electrons at the analyzing point

μ is conserved in an adiabatic motion

reduce magnetic field at the analyzing point

The MAC-E-Filter principle

7

The energy resolution

The energy resolution

The energy resolution

The transmission function

Integral spectrum

N(qU)
$$\approx \int_0^{E_0} \frac{dN}{dE} (E_0, mv^2) * T(E, qU) dE$$

Integral spectrum is convolution of differential spectrum with transmission function

 12
 2.10.2013
 Stefan Groh – Transmission measurements at the KATRIN main spectrometer

Integral spectrum

Precise knowledge and detailed understanding of the transmission function is essential for a successful neutrino mass measurement

 13
 2.10.2013
 Stefan Groh – Transmission measurements at the KATRIN main spectrometer

Outline

- How does KATRIN work
- Commissioning of spectrometer and detector
- Alignment of eGun and Dete Measurement phase finished last week
- Transmission function measurement
- Radial potential scan
- Transmission function at high rate

Commissioning of Spectrometer and Detector

Main goals:

15

Test of Hardware and Slowcontrol components
 Measurement and Understanding of background
 Understanding of transmission properties
 Verification of simulations software and models

2.10.2013 Stefan Groh – Transmission measurements at the KATRIN main spectrometer

Focal plane detector system

Electron Gun

Electron Gun: ∜Quasi monoenergetic %Pulsed for ToF measurements %Movable to cover full detector flux

Outline

How does KATRIN work

- Commissioning of spectrometer and detector
- Alignment of eGun and Detector
- Transmission function measurement
- Radial potential scan
- Transmission function at high rate

Flux tube - eGun

Flux tube

Z-Y-Plane

Flux tube - detector

eGun-Detector alignment

Misalignment of eGun and detector needs to be taken into account in the analysis

Different magnetic coil setup

2.10.2013 Stefan Groh - Transmission measurements at the KATRIN main spectrometer Karlsruhe Institute of Technology (KIT) Institute for Experimental Nuclear Physics (IEKP)

23

Different magnetic coil setup

Comparison with simulation

Comparison with simulation

26

Outline

How does KATRIN work

- Commissioning of spectrometer and detector
- Alignment of eGun and Detector
- Transmission function measurement
- Radial potential scan
- Transmission function at high rate

Transmission function

Spectrometer works as MAC-E-Filter – commissioning successful

Outline

How does KATRIN work

- Commissioning of spectrometer and detector
- Alignment of eGun and Detector
- Transmission function measurement
- Radial potential scan
- Transmission function at high rate

Measure TF at different radii

Radial potential measurement

Outline

How does KATRIN work

- Commissioning of spectrometer and detector
- Alignment of eGun and Detector
- Transmission function measurement
- Radial potential scan

Transmission function at high rate

Detector efficiency at high rates

Influence on transmission function

41 2.10.2013

Stefan Groh - Transmission measurements at the KATRIN main spectrometer

TF Measurement at high rate

Conclusion

- KATRIN uses the MAC-E-Filter technique to measure an integrated electron spectrum
- Detailed knowledge of transmission function is important for neutrino mass analysis
- Successful commissioning of the spectrometer and detector section
- Electron gun can be used for transmission function measurements and potential mapping
- Predicted "high rate"-effects of the transmission function could be confirmed by measurements

Open questions?

BACKUP SLIDES

45 2.10.2013 Stefan Groh – Transmission measurements at the KATRIN main spectrometer

Kassiopeia

Skatring framework ♦Modern C++ design Sector Field solvers for electric and magnetic fields Particle generators Solution of the second SMultiple Interaction routines ♥Visualization Seasy configurable via xml files Interface to measurement parameters SFull modular Section 4.1 Sectio

46 2.10.2013 Stefan Groh – Transmission measurements at the KATRIN main spectrometer

KEMField

Main spectrometer

Detector

49 2.10.2013 Stefan Groh – Transmission measurements at the KATRIN main spectrometer

Detector

MORE BACKUP SLIDES

51 2.10.2013 Stefan Groh – Transmission measurements at the KATRIN main spectrometer

Lunch?

