

The Focal-Plane Detector System of KATRIN

GRK Workshop Bad Liebenzell 2013

Massachusetts Institute of Technology

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Johannes Schwarz (EKP)

<u>Outline</u>

- FPD Setup
- Detector Characterization
- Main-Spectrometer Background
- Summary

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Detector Wafer

- Monolithic 148-pixel Si PIN diode by Canberra Belgium
- 🛢 Thickness: 503 μm
- Diameter: 125 mm
 - Sensitive diameter: 90.0 mm
 - Guard ring: 2.0 mm
 - Bias ring: 15.5 mm
- Crystal orientation: <111>
- Unsegmented n⁺⁺-type side with ≈ 100-nm dead layer
- Segmented p⁺-type side
 - A_{Pixel} = 44 mm², C_{Pixel} = 8.2 pF

detector wafer (segmented back side)

- Pixels separated by 50 μ m with R > 1 G Ω
- Non-oxidizing TiN coating for electrical connections

Detector Wafer

Detector Wafer

feedthrough flange (front side)
with 184 spring-loaded pins
(148 pixels, 12 guard-ring contacts,
24 bias-ring contacts) + shielding

spring-loaded pin

detector wafer mounted on feedthrough flange ▼

Calibration Sources

Calibration Sources

Energy Resolution

Detector response on mono-energetic photo-electrons at nominal magnetic field

Time Resolution

Detector response on 18.6-keV photo-electrons at nominal magnetic field

Optimization: Energy Resolution

Detector response on mono-energetic photo-electrons at nominal magnetic field

Optimization: Time Resolution

Detector response on mono-energetic photo-electrons at nominal magnetic field

veto events cut

Figure Of Demerit

Statistical uncertainty for m_v^2 for a given region of interest (ROI):

 $k = (16/27)^{1/6}$

 b_{ms} = background main spectrometer (assumed to be 10 mHz) r = normalized KATRIN count rate in Hz/eV³

t = KATRIN run time in s

f = fraction of measured electron spectrum(E_L, E_U) = ROI, lower bound, upper boundb_{det} = intrinsic detector backgroundtradeoff betweenenergy resolutionandbackground

Figure Of Demerit

Figure Of Demerit

Main-Spectrometer Background Sources

FIELD EMISSION

 $E > 10^9 V/m$

wire module

RADON INDUCED

COSMICS INDUCED

Wire electrodes at -18.6 kV. Tank hull at -18.6 kV - Δ U. PAE at +10 kV.

Wire electrodes at -18.6 kV. Tank hull at -18.6 kV - Δ U. PAE at +10 kV.

Wire electrodes at -18.6 kV. Tank hull at -18.6 kV - Δ U. PAE at +10 kV.

Wire electrodes at -18.6 kV. Tank hull at -18.6 kV - ΔU. PAE at +10 kV.

ΔU = -100 V (24 h)

→ additional background at 17.7 keV

Wire electrodes at -18.6 kV. Tank hull at -18.6 kV - ΔU. PAE at +10 kV.

Wire electrodes at -18.6 kV. Tank hull at -18.1 kV. PAE varied.

H⁻ ions lose a lot of their incident energy in the non-sensitive detector dead-layer → additional background by H⁻ ions

first 100 nm: 11.2 keV

first 100 nm: 9.9 keV

- Possible application: dead-layer determination
- Angular distribution under investigation with Kassiopeia 2.5

Summary

- FPD system integrated successfully to KATRIN experiment.
- FPD setup:
 - Detector wafer with 98.6 % working pixels.
 - Independent working calibration sources.
- FPD characterization and optimization:
 - Trade off between energy and time resolution.
 - Intrinsic detector background around 1 mHz/keV.
 - Optimization of ROI by figure of demerit: b_{det} < 5 mHz.</p>
- Main-spectrometer background:
 - 3 major sources: Cosmics induced, Radon induced, field emission.
 - First background model with open questions!?
 - Additional background by H⁻ ions.

05/2011

07/2011: Arrival at KIT 08/2011: Installation at KATRIN 11/2011: First data and commissioning at KATRIN