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Detector Wafer 

Monolithic 148-pixel Si PIN diode by Canberra Belgium 

Thickness: 503 μm 

Diameter: 125 mm 
Sensitive diameter: 90.0 mm 

Guard ring: 2.0 mm 

Bias ring: 15.5 mm 

Crystal orientation: <111> 

Unsegmented n++-type side 
with ≈ 100-nm dead layer 

Segmented p+-type side 
APixel = 44 mm², CPixel = 8.2 pF 

Pixels separated by 50 μm with R > 1 GΩ 

Non-oxidizing TiN coating for electrical connections 

 

▲ detector wafer (segmented back side) 
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Detector Wafer 
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Detector Wafer 

feedthrough flange (front side) 
with 184 spring-loaded pins 
(148 pixels, 12 guard-ring contacts, 
24 bias-ring contacts) + shielding 
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Calibration Sources 
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Calibration Sources 
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Energy Calibration 

Am γ 
59.54 

Am γ 
26.34 

Np 
X-rays 

Cu 
X-rays 

Detector response on 241Am source 

146 working pixels 

Hit rate: ≈ 300 cps 

Energy threshold: 
3 − 4 keV 

Energy resolution 
at 59.54 keV: 
ΔE = 1.40 ± 0.01 keV 
(FWHM) 
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Energy Resolution 
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Few outer pixels 
show no response 
 Misalignment 

Variable hit rate 

Homogeneity of 
illumination: ≈ 1:10 

Energy resolution 
at 18.6 keV: 
ΔE = 1.65 ± 0.05 keV 
(FWHM) 

Detector response on 18.6-keV photo-electrons 
at nominal magnetic field 

Low-energy tail 

Multi-pixel events 

Backscattered electrons 

Reflected electrons 

Dead-layer effects 
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Energy Resolution 

• Increased signal-to-noise ratio 
• Increased backscattering probability  

Detector response on mono-energetic photo-electrons 
at nominal magnetic field 

strong dependency on 
incident electron energy 

at low energies 
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Time Resolution 

1 CLK = 50 ns 

Δt = 232.3 ± 0.2 ns (FWHM) 
latency = 306.1 ± 0.1 ns  

Detector response on 18.6-keV photo-electrons 
at nominal magnetic field 

DAQ system: 
20 MHz sampling 

12 bit ADCs 
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Optimization: Energy Resolution 

strong dependency on 
shaping time 

Detector response on mono-energetic photo-electrons 
at nominal magnetic field 

small region of interest 
 low background 
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Optimization: Time Resolution 
Detector response on mono-energetic photo-electrons 
at nominal magnetic field 

strong dependency on 
shaping time and 

incident electron energy 

SDS 

time-of-flight 
and calibration 
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Optimization: Working Pixels 
R = 44 Ω 

R = 42 Ω wafer nonworking 
channels 

UW #96728 17 

KIT I #96728 19 

KIT II #96728 2 

KIT III #96724 2 

49 μm 

42 μm 

inter-pixel 
boundary 

wafer 
#96724 

wafer 
#96728 

microscopic 
view 
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Intrinsic Detector Background 

100 ms scale 10 us scale multi- 
pixel 

events 
cut 

PAE = 0 kV 
83.3 hours 

time difference between detector events (s) 

time difference between detector events (s) 
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Intrinsic Detector Background 

veto events cut 

10 us scale 

time difference between detector events and veto events (s) 

PAE = 0 kV 
83.3 hours 
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PAE = 0 kV 
83.3 hours Intrinsic Detector Background 
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secondary electrons 
ejected from closed 

rear gate valve 
(by cosmic particles 

or radiation) 
and accelerated by PAE 

11 keV 

22 keV 33 keV 

PAE = 11 kV 
64.0 hours Intrinsic Detector Background 
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Figure Of Demerit 

Statistical uncertainty for mν
2 for a given region of interest (ROI): 

 
 
 
 
 
k = (16/27)1/6 
bms = background main spectrometer (assumed to be 10 mHz) 
r = normalized KATRIN count rate in Hz/eV³ 
t = KATRIN run time in s 
 

f = fraction of measured electron spectrum 
(EL, EU) = ROI, lower bound, upper bound 
bdet = intrinsic detector background 

 

Figure of demerit F  

tradeoff between 

energy resolution 
and 

background 
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Figure Of Demerit 

Minimizing: 

Principle: 

normalized 
18.6-keV 
(+ PAE) 

electron 
spectrum 

background 
spectrum 

F large large minimum 

ideal detector: 
f = 1 and bdet = 0  F = 1 

ROI ROI ROI 

ROI too small too large optimum 
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Figure Of Demerit 
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Figure Of Demerit 
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Main-Spectrometer Background Sources 
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Main-Spectrometer Background 
Wire electrodes at -18.6 kV. Tank hull at -18.6 kV - ΔU. PAE at +10 kV. 

PRELIMINARY 
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Main-Spectrometer Background 
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Main-Spectrometer Background 

field 
emission 

Radon induced 
cosmics 
induced 

Wire electrodes at -18.6 kV. Tank hull at -18.6 kV - ΔU. PAE at +10 kV. 

LN2 cooled baffles at ΔU = -100 V 
 Cryogenic condensation of 219Rn 
 Detector rate with cooled baffles: 
      bMS = 0.485 ± 0.075 

PRELIMINARY 
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Main-Spectrometer Background 
Wire electrodes at -18.6 kV. Tank hull at -18.6 kV - ΔU. PAE at +10 kV. 

ΔU = -100 V (24 h) ΔU = -300 V (1.5 h) 

 additional background at 17.7 keV 

PRELIMINARY PRELIMINARY 
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Main-Spectrometer Background 
Wire electrodes at -18.6 kV. Tank hull at -18.6 kV - ΔU. PAE at +10 kV. 

electron background (25.6 – 30.6 keV) 
 

additional background (14.7 – 20.7 keV) 

PRELIMINARY 
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Main-Spectrometer Background 
Wire electrodes at -18.6 kV. Tank hull at -18.1 kV. PAE varied. 
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Main-Spectrometer Background 

28.6 keV (PAE at 10 kV) 21.6 keV (PAE at 3 kV) 

first 100 nm: 11.2 keV first 100 nm: 9.9 keV 

H– ions lose a lot of their incident energy in the non-sensitive 
detector dead-layer  additional background by H– ions 

 
 

 

 

 

 

 

Possible application: dead-layer determination 

Angular distribution under investigation with Kassiopeia 2.5 

 
 

SRIM/TRIM SRIM/TRIM 
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Summary 

FPD system integrated successfully to KATRIN experiment. 

FPD setup: 

Detector wafer with 98.6 % working pixels. 

Independent working calibration sources. 

FPD characterization and optimization: 

Trade off between energy and time resolution. 

Intrinsic detector background around 1 mHz/keV. 

Optimization of ROI by figure of demerit: bdet < 5 mHz. 

Main-spectrometer background: 

3 major sources: Cosmics induced, Radon induced, field emission. 

First background model with open questions!? 

Additional background by H– ions. 
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FPD Setup 

05/2011 11/2011 

07/2011: Arrival at KIT 
08/2011: Installation at KATRIN 
11/2011: First data and commissioning at KATRIN 


