

Search for $H \rightarrow \tau \tau$ in the Di-Muon Channel

GRK KCETA Workshop 2013, Bad Liebenzell

Thomas Müller | October 2nd, 2013

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP)

Higgs Search at CMS – Recent Results

Higgs Bosons Decaying into Tau Pairs

Promising channel to study the fermionic Higgs couplings

- Large branching ratio
 - Several production mechanisms can be exploited
- Main backgrounds are well cotrolled
 - Z+jets, tt, W+jets, dibosons
- Apart from $H \rightarrow bb$ the only decay to fermions accessible at the moment at the LHC

$H ightarrow au au ightarrow \mu \mu$ subchannel

- Small topological branching fraction $\textit{BR}(au au o \mu\mu) pprox 3\%$
- Large $Z \rightarrow \mu\mu$ and $Z \rightarrow \tau\tau \rightarrow \mu\mu$ backgrounds
- Sophisticated background suppression methods needed
- ➔ Focus in this presentation
 - Electron channel is analysed coherently
 - German contribution (KIT, DESY)
 - Emphasis on SM analysis, but show slightly different MSSM analysis in comparison

$H \rightarrow \tau \tau$ channels

m, [GeV]

SM/MSSM Analysis Strategy – Overview

Aims

- Account for different production processes
- Account for different kinematic properties
- ➔ Enhance the signal fraction

Preselection

Dimuon trigger

Kinematic cuts

- Isolation criteria
- Simulation corrected for muon ID, isolation and trigger efficiencies (Tag & Probe)

Event categorisation

VBF

- 1 jet, high pt
 1 jet, low pt
- 0 jets, low pt

0 jets, high pt

B-tag
 No b-tag

ot u

After preselection still large

further suppression

Cut on single BDT output

 $Z \rightarrow \mu \mu$ background needs

MVA-based background suppression

- BDT1: discrimination againts $Z \rightarrow \mu \mu$
- BDT2: discrimination againts $Z \rightarrow \tau \tau$
- 2D PDF-based combination of these two MVA classifiers

Statistical inference

 Limit on SM signal cross section based on 1D PDF discriminator Limit in (tan β, m_A)-plane
 based on 2D mass discriminator

Final discriminator in the VBF category

perties

Event Categorisation in the SM/MSSM Analysis

Thomas Müller Search for $H \rightarrow \tau \tau$ in the Di-Muon Channel

Discriminating Variables (1)

- Variables identified to discriminate between Higgs signal and various backgrounds
 - Dilepton kinematic variables
 - Distance of closest dimuon approach (DCA) identifies au au final states
 - Variables to evaluate the origin of missing transverse energy
- → All variables well described by the simulation (including correlations)

Mass Variables

work in progress

Discriminating Variables (2)

work in progress

Additional kinematic variables in the 0/1 Jet categories

Additional variables for the VBF category

1 jet, high pt

— 11

MVA-based Enhancement of the S/B Ratio

- Here: focus on the SM analysis. Slightly different MSSM can be found on slide 15
- Two main backgrounds to account for: $Z
 ightarrow \mu \mu$ and Z
 ightarrow au au

CMS oreling

Two dedicated trainings of Boosted Disicion Trees (BDTs)

BDT1

107

105

107

- Rejection of the most dominant $Z \to \mu \mu$ background through identification of di- τ final states
- Highest discrimination power: visible mass m_{µµ}

107

106

10

10-1

10⁻²

BDT2

Discrimination between Z $\rightarrow \tau \tau$ background and H $\rightarrow \tau \tau$ signal

work in progress

Highest discrimination power: SVfit mass m_{ττ}

- Four separate trainings for the 0/1 Jets and VBF category
- Signal samples with different mass hypotheses are combined

VBF

Final MVA Discriminator

work in progress

Combination of the two BDTs

- The two BDTs define a 2D PDF $f_{cat}^{sig}(BDT_1, BDT_2)$ for signal events.
- Integration forms the final discriminator D_{cat}(BDT₁, BDT₂)

$$D_{\rm cat} = \int_{-\infty}^{\rm BDT_1} \int_{-\infty}^{\rm BDT_2} f_{\rm cat}^{\rm sig}({\rm BDT}_1', {\rm BDT}_2') \, d{\rm BDT}_1' \, d{\rm BDT}_2'$$

 The limit calculation is performed based on this one-dimensional discriminator

Modelling of the Backgrounds

work in progress

$Z/\gamma^* \to \mu\mu$

→ Shape: MC simulation → Normalisation: Template fits of muon DCA performed in bins of other variables

$Z \rightarrow \tau \tau$

→ Shape: Embedded data → Normalisation: Measured from $Z \rightarrow \mu\mu$ yield

QCD

 → Shape: Data with same-sign muon charge selection
 → Normalisation: From comparison with data after inverted isolation cuts

Electroweak

(W+jets, dibosons)

→ Shape: MC simulation
→ Normalisation: NLO theory prediction

tī

→ Shape: MC simulation
→ Normalisation: Extracted from sideband region (large MET)

Closer Look at the $Z ightarrow \mu \mu$ Background

work in progress

Calibration of the DCA variable in the simulation

- Select events around the Z peak, dominated by $Z
 ightarrow \mu \mu$
- Fit DCA shape in $Z \rightarrow \mu\mu$ simulation and in data (other backgrounds substracted) with analytic function in different bins depending on the muon kinematics
- Isomorphic mapping of quantiles in data and simulation defines the calibration

2 DCA template fits from $Z \to \mu\mu$ and $Z \to \tau\tau$ background to data

- Perform template fits of the calibrated DCA quantity in bins of the visible mass m_{µµ} and the reduced MVA discriminator
- Reduced MVA discriminator does not include the DCA and the mass variables as inputs to avoid a bias
- Both normalisation and shape is corrected to match the data

Advantage: Control most dominant background in a semi-data-driven way

Expected Significance in the SM Analysis

- Five categories are statistically combined
- Normalisation and shape uncertainties considered
- Expected limit improved with respect to the Moriond analysis

Final discriminators:

ants / 0

work in progress

125 130 135

Higgs mass m_R [GeV]

Summary and Outlook

SM analysis updated w.r.t. Moriond 2013

- Presented two-stage BDT analysis to account for the two main backgrounds
- Showed modelling of the backgrounds
- All $\tau\tau$ decay modes are now studied
- Improvement in sensitivity w.r.t. Moriond 2013 in all subchannels
- → Hope to find evidence for $H \rightarrow \tau \tau$ by applying the analysis on data
- Plan to publish results soon

MSSM analysis updated w.r.t. HCP 2012

- Analysis of the full 2012 dataset is now beeing finished
- Plan to synchronise analysis strategy with the SM analysis for the legacy paper

Backup

Slightly Different Approach for MSSM

- Covers larger Higgs mass range: up to 1000 GeV (instead of 110-145 GeV)
- 2-stage BDT approach not yet translated to the MSSM analysis (but planned)
- Single-stage BDT is trained to separate MSSM Higgs signal from all backgrounds
 - Same inputs variables as in the SM analysis except for the masses
 - Signal like events are selected after cut on BDT output
 - → Mainly the $Z \rightarrow \mu\mu$ background is suppressed

Subsequent 2D mass likelihod analysis

work in progress

- Two masses carry the most discriminating power: Visible mass and SVfit mass (fully reconstructed ττ system)
- 2D Likelihood of these two variables is used for the limit calculation

Exp. Significance in the MSSM Analysis

Results

- Two categories are statistically combined
- Normalisation uncertainties considered
- Update plans to the same strategy as for the SM analysis

Final (1D) SVfit mass distributions (2D PDFs difficult to visualise)

Norm. Uncertainties in the Di-Lepton Ch.

Correlated uncertainties

- Luminosity: 2.6 %
- Lepton efficiency: 4 % (μ), 4 % (e, 7 TeV), 6 % (e, 8TeV)
- b-tag efficiency: 1 3 %, depending on category
- *b*-tag fake rate: 1 3 %, depending on category
- ZTT normalisation: 3 %
- TTJ normalisation: 8 % (7 TeV), 10 % (8 TeV)
- Diboson normalisation: 30 %
- Theory uncertainties → Separate talk by Joram Berger

Uncorrelated uncertainties

 ZTT extrapolation for various event categories: 6 - 9 %, depending on channel and category (from study of embedding bias and contamination of embedded data with other backgrounds)
 QCD normalisation: 8 - 100 %, depending on channel, period and category

(from comparison of OS/SS and Dirlso/Invlso selections)

Shape Uncertainties in the Di-Lepton Ch.

Shapes alternating uncertainty sources

- MET scale
- Jet energy scale
- Electron energy scale (only in EE)
- DY background estimation
- Theory uncertainties → Separate talk by Joram Berger

Procedure for each uncertainty source

- Shift initially affected quantity by \pm 2 σ
- → Pulls should to be smaller than $\pm 2\sigma$, so no extrapolation is needed
- Modify affected BDT input variables and propagate them through both BDTs and the subsequent combination of the BDTs
- Fill shift up/down histograms into the limit inputs
- Implementation: each shift requires a new run of our analysis code, which brings the advantage, that the propagation through the entire analysis is done consistently

Shape Uncertainties (MET, JES, ES)

MET Scale Uncertainty (not changed since Moriond 2013)

- DY: 0.5 % (from MET template fits)
- Diboson, WJets: 0.5% (same as for DY)
- TTJ: 2 % (from MET template fits)
- Signal: 2 % (from recoil variations within its uncertainties)

Jet Energy Scale Uncertainty

 3 – 7 %, depending on η (according to prescription of the JetMET POG)

Electron Energy Scale Uncertainty (only in EE)

 1 % (barrel) to 2.5 % (endcap) (according to prescription of the Egamma POG)