

(The Standard Model of)

Cosmology

Bad Liebenzell, October 2012

Matthias Bartelmann Uni Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik

General Relativity

Symmetry Assumptions: Homogeneity and isotropy on average

Matter content:

Energy-momentum tensor, Containing radiation, matter, anything else

Friedmann class of cosmological models

Robertson-Walker metric

(2-micron All-Sky Survey, 2-MASS)

Friedmann class of cosmological models

> Friedmann's equation(s): Relative expansion rate

Cosmological parameters

Hubble constant	H
Density parameters	-
matter	Ω _m
radiation	Ω _r
cosmological constant	Ω
several others	

Age and Distances

redshift z

- Conclusions from Friedman's equation(s):
- Dynamics of expansion
- Geometry of the Universe

Universe

Building Blocks

Galaxy clusters

Galaxies

Galaxies recede

Carl Wirtz, Vesto Slipher, 1920s

Edwin Hubble

Hubble & Humason 1930

Data from the

Hubble Key Project

 $H_0 = 70.4 \pm 1.3 \text{ km/s/Mpc}$ $H_0^{-1} = 14 \text{ Gyr}$ $c/H_0 = 4.3 \text{ Gpc}$ $\rho_{cr} = 9.2 \times 10^{-30} \text{ g/cm}^3$

Hubble Constant

No: lower limits to matter density and cosmological redshift imply Big Bang!

Age of the Galaxy: 6 - 12 Gyr

Age of the Earth: 4.6 ± 0.1 Gyr

Age of the oldest Stars: 11 – 13 Gyr

Georges Lemaitre

p

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Primordial Nucleosynthesis

Dark matter in galaxies: Constant rotation velocity to all observable radii

^{RUPRECHT-KARLS-} UNIVERSITÄT HEIDELBERG

Masses of Galaxy Clusters

Dark matter and gas in galaxy clusters

Masses from Gravitational Lensing

Gravitational lensing allows mapping of dark matter

Galaxy clusters at high redshift argue for low matter density

z = 1.11

RXJ0910 + 5422

(ā

Discovery of the Cosmic Microwave Background

CMB had been predicted Discovered by Penzias & Wilson 1965

Robert Dicke

Best measured black-body

Spectrum, COBE 1992

John Mather

Structures in the CMB?

Temperature fluctuations at mK level expected

Temperature Fluctuations

George Smoot

Discovered by COBE at μK level

The CMB in the Backward Light Cone

0.75

0.70

Cold dark matter:

- dark required by CMB
- cold required by structure formation

Cold and Hot Dark Matter

real source position

Wide-Field Imaging Surveys

Cosmological Weak Lensing Results

Type-Ia Supernovae

Type-Ia Supernovae

Accelerated Cosmic Expansion

Type-Ia Supernovae, Cosmological Constraints

1.0

Inflation and its Consequences

Dark Energy or Cosmological Constant?

redshift z

Arietta-LSW

• Current knowledge of cosmological parameters

 $\Omega_{_{\rm PO}} = 0.0456 \pm 0.0016$ Baryon density parameter $\Omega_{c0} = 0.227 \pm 0.014$ CDM density parameter $H_0 = (70.4 \pm 1.3) \text{ km/s/Mpc}$ Hubble constant Cosmological constant $\Omega_{AO} = 0.728 \pm 0.015$ Fluctuation amplitude $\sigma_{\circ} = 0.809 \pm 0.024$ $n_{r} = 0.963 \pm 0.012$ Fluctuation spectral index Age of the Universe (13.75 ± 0.11) Gyr

Age of the Universe constrains matter density

Large-Scale Structures

Statistics of cosmological structures: correlation function, power spectrum

