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The CMS strip tracker ﬂ(".

® 200 m? active silicon
sensor area

® About 6000 sensors of
300 pum
20000 sensors of
500 pm

® Currently operated at =
300V bias voltage

® Expected fluence
exposure: up to 2x104
1MeV neutron
equivalent
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Reminder: silicon strip sensor working

principle at CMS
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® Traversing charged particles ionize the
material along their trajectory, creating
electron-hole-pairs.

® The charge is transported due to the electric
field to the borders of the sensor.

® The readout is done via capacitive coupling at -

the Al readout strips.
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Capacitive coupling
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® The bulk of the sensor
IS n-type doped silicon
® The strips are p type
implants forming the
pP-n-junction.
® A bias voltage in
reverse direction is
applied to the p-n-
junction in order to
increase the size of
the depletion width to
cover the whole
volume.
A SiO, layer
decouples the readout
from DC.
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Why are we interested in the evolution of \\‘(IT
sensor properties? S g i

® The silicon properties have a direct impact on the data
guality

® Decrease in signal, increase in noise

® The silicon properties strongly influence the power
consumption and thus heat dissipation within the detector .

® A reliable estimation for future evolution is important for the planing
of the cooling improvements during the long shutdowns.

@ At some point the silicon is not operational anymore.

® We need to know when this will happen, and if we can do anything
to delay this as much as possible.
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How do the properties change? ﬂ(“.
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® Particles traversing the silicon material do not only interact with via
lonization with the bulk, but also create defects in the crystal.
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Defect impact on macroscopic properties

Leakage current. Depletion voltage . Trapping, CCE
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Increase of Creation of charged defects Shallow levels
generation cument upper band: donor trap e
H |gh | Levels close to midgap ©  lower band: acceptors trap h
- leak are most effective = Nz Vep ' — lowerCCE
increases .
the noise € + |
Increases donor electrons _
heat ‘ ; » ® Trapping
generation ® Reduces
Power acceptor . holes signal
supply E, strength
limitations Shockley—Read Hall statistics
(standard theory)
~
® V needs to be kept small
@ Power supply limitations
® Sensor breakthrough
® Heat generation
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The leakage current
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How can we describe this quantitatively? -\\J(IT

® Leakage current
® Thermical induced current -> main dependency is the temperature

T E
IIeak — I0 ‘| — | EXP el = _i
T, _2kB T, T _

® Radiation dependence is usually expressed in a radiation related damage
rate:

Al =a(T 1), -V

10.10.2012 C. Barth

Institut fur Experimentelle Kernphysik



Radiation induced leakage current & annealing ﬂ(“.
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® Damage factor not material dependent and well known
® Annealing behaviour slightly more ambigous
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Measuring leakage current and temperature ﬂ(".

¥2Indf 4.488e+08 /3062
offset 69.59+15.12
slope  0.8844 + 0.01501
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Sensor APVs

corresponding DCU current measurements [pA]
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® The DCU aka detector control unit is a dedicated ASIC sitting on each
of the tracker modules, with the ability to measure the temperature at
different positions of the module as well as the leakage current and
voltages applied

® Each high voltage line of our power supply system is connected to 3-12
modules, if we want to achieve higher granularity we need to use the
DCU
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Temperature distribution within the CMS strip
tracker ﬂ(".
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® Quite high temperature spread within the tracker (some elements un-
cooled)

@ Current normalization is needed to allow comparison
® Simulate the leakage current (+ Vp) on module granularity
@ Radiation damage and annealing processes are simultaneously present
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Measured alpha factor for the barrel region on
the CMS strip tracker -\\J(IT
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Normalized leakage current

%10 CMS Preliminary 2011, 4.7 fb”

Al = (offset +) aVd

leak —

offset = -2.6e-08 £ 2.1e-08

Oy =7.1e-18 % 1.4e-19

[ l X109

‘ | | | | | ‘ | | ‘ | |
50 100 150 200 250 300
Simulated Fluence [ 1 MeV neutron equivalent/ fb'cm?]

® The leakage current have been normalized to 0°C, 1cm3 and 1fb-! of
Integrated luminosity

® The corresponding fluence is taken from Fluka simulations of the
particle interactions and transports in the tracker
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Measured leakage current vs. fluence '-\\-J(IT

05 CMS Preliminary 2011, 4.7 fb™
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. ¥/ ndf = 1392 /38

a 93.23+1.76
b 1.247 + 0.005
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® The measured leakage current normalized to 0°C and 1 cm?
dependency in r matches very well with the simulated fluence
expectations within the tracker volume.
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Simulating tool A\J(IT
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Inputs: 80
® Fluence at the module position oL Day x-fluence
® Linearinterpolation of Fluka grid values (& soE
integrated luminosity) 50—
® Temperature of the modules a0
® Measured by DCU 30/
Method/Tools: 201
® Histograms filled with one bin per day for the 10
temperatures and fluences E |

| n | | |
. s 31/03/11 30/04/11 30/05/11 29/06/11 29/07/11 28/08/11
B Afterwards the impact of each day’s fluence to all

consecutive days is computed with the annealing time
constants based on the given temperature at the
respective day.

[ Temperatur Profile | Impact based on respective temperature

Ry

¥ 292
® The integrated sum over all days gives the result _%
© 290 i
Output: g
£
® Leakage current 2 288
® Leakage current of modules for comparison 286

B Measured by DCU, cross checked by PS
values 284

® Depletion voltage
® Toolsto determine Vdep in-situ exists

282

280

20 40 60 80 100 120 140 160 180
Days
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Comparison between simulation and

measurement
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Work in progress
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® Simulation inputs:
® Simplified temperature history based on on/off times (module granularity)
® Measured integrated luminosity (per day)

10.10.2012
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Full Depletion Voltage
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Radiation induced change in full depletion
voltage A\J(IT

® Described by Hamburg Model:

AVFDOCAN ZNA((Deq,t T)"‘N (CD )+N (q)eq’ )

7

® Short term annealing ® Stable damageterm @ Long term annealing
® Low time constant ® Temperature and ® High time constant
® Beneficial with time independent ® Annealing is
respect to @ No annealing reverse with
effective doping process taking respect to short
concentration place (in the term annealing
® Defects anneal to less considered m Defects anneal to more
harmfull structures temperature harmfull structures

regime)
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Radiation induced change in full depletion

voltage

.... with particle fluence:
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.... with time (annealing) :

® N-type silicon bulk material undergoes type inversion.
® Annealing has significant impact on Vg change.
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Depletion voltage measurement approaches -\\J(IT

® Two Measurement types under development:

® Noise Bias Scan

® Using only module intrinsic noise, performed during interfill periodes
for the whole tracker.

® Signal Bias Scan
® Using particle tracks recorded during stable beam collisions.

B 2 - 3 times per year for the whole tracker.

® Monthly for a small subset (5 PGs) without significant impact on
data quality.

19 10.10.2012 C. Barth
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Noise method spotlight ﬂ(".

Undepleted Zone
L |
The width of the depletion zone is w = 25V o this leads to
q|NefF‘ dep
. Vdepn"
C =G Vv for V < Vdep!

this leads with the readout electronic specific parameters A and B to

= + D - 2 | others? for < Vdepl + N = ng else
A+ B-\/Y#)2 1 others? for V < Ve, /
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Fitting noise data _\ﬂ(IT
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® Fit is working reliable for moderate full depletion voltage values.

® With increasing full depletion voltage values, the fit becomes less and
less accurate.
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Signal method spotlight

B Three effects are taken

INto account with our
model:

@ Variation of depletion
zone width.

@ Change in the mobility of

charge carriers.
® Change In the load

capacitance of the APV
leading to a suboptimal

sampling.

22 10.10.2012
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Analysis of signal bias scan
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Bias Voltage [V]

e For each given bias voltage the distribution of the collected charge
per hit is analyzed

@ This distribution is fitted with a Landau, resulting in a peak and an
error
@ We use only hits from good tracks (y? < 5) as well as MPVs with an
error smaller than 5

@ [he graph is fitted with the corresponding curve obtained through

S
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Method compatibility ﬂ(".
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® Correlation plot between the results of the signal method vs. the noise
method in the tracker outer barrel partition.
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Comparison between laboratory CV ﬂ("'
measurement and in situ approaches

Noise Vgep [V]

50 100 120 140 160 180 200 220 240 260 280 80 100 120 140 160 180 200 220 240 260 280
—— Bisectrix Reference Vaep [V] —— Bisectrix Reference vdepl [Vl

® Correlation to CV measurements performed during the production of
the strip tracker.
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Summary _\\J(IT

Karlsruhe Institute of Technology

® Tools have been developed to simulate leakage current and depletion
voltage.

® Radiation damage, annealing, self-heating are taken into account.

® Tool uses historic daily information and the “integrates” on a day-by-day
basis.

® We validated the tool against the measured leakage currents.

® Work is on-going to validate also together with our LHC colleagues —
(inter-experiment working group).
® We developed tools to determine the depletion voltages in-situ.
@ Interfill — Noise vs. bias.
@ Stable Beam — Signal vs. bias.

® Results matching the CV measurement during production.

® No detailed analysis of V, evolution possible with current fluence & accuracy
of the measurement.
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No time for . ..
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Thermal runaway e ey
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Fluka simulation ﬂ(".
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Si 1MeV neutron eq.
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Power scan ﬂ(".
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Thermal Contact TDR
Hybrid End-cap

. .. K . K .
DEU '-'!'.‘ﬁ = W : jl.‘:'i +2.5 ﬁ ’ -{]H;Jrh s -'!-r:rlrliﬂn.i-

k

sensor khybrid

Barrel

K K
Tsi = 5.7 W - Pgi +2.2 W 1 Hyb T Ttootant:

Sensor

® Changing the power on the hybrid via VPSP results in a Temperature
change on the hybrid

® This dT/dP Is taken as an approximation for the dT/dP of the sensor

® FEA is planed to improve the approximation taking also the Tsil into
account
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Full depletion projection
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| Temperatures (A T Mean,99% 13.17, A T Mean,Max 17.67) I | Depletion Voltage vs Time
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® Simulation for Tracker Inner Barrel Layer 1 with:

® High temperatures

® High fluence exposure (nearest to IP at r=24cm)

® Using a scenario with a total luminosity of 400fb-! using the model & constants
proposed in M. Moll's Ph.D. Thesis chap. 5 (DESY-THESIS-1999-040,

December 1999, ISSN 1435-8085)

® The tracker specific constants used in the plot is presented in A. Dierlamm’s

Ph.D. Thesis chap. 3 (IEKP-KA/03-23)
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http://www-ekp.physik.uni-karlsruhe.de/~dierlamm/PhD_Dierlamm.pdf

NIEL — Non ionizing energy loss

D(E) / (95 MeV mb)
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