

# **Dark Matter - III**



# GRK 1694: Elementarteilchenphysik bei höchster Energie und höchster Präzision Workshop Freudenstadt 2015

**September 30, 2015** 

Guido Drexlin, Institut für Experimentelle Kernphysik



### outline of today's final afternoon lecture



#### Dark Matter – 3: direct detection of dark matter

- expected WIMP rates: SUSY (M<sub> $\chi$ </sub>,  $\sigma_{sl}$ ,SD) and astrophysics ( $\Phi$ , v)
- detection methods: 1- & 2- parameter experiments
- underground experiments & background
- DAMA's annual modulation
- bolometers vs. LXe detectors
- 2-phase liquid noble gas detectors: XENON100/1T/ DARWIN
- conclusion

elastic WIMP-nucleus scattering in keV-range



### WIMP detection



#### reaction kinematics: input from astrophysics & SUSY



**KIT-IEKP** 

### WIMP velocity profile



#### WIMP energies from DM-halo

- <v> ~ 10<sup>-3</sup> c
- $\mathsf{E}_{kin} = \frac{1}{2} \mathsf{M}_{\chi} \cdot \mathsf{V}^2$
- $M_{\chi}$  = 100 GeV ⇒  $E_{kin}$  < 100 keV



#### isothermal WIMP velocity profile f(v)

$$f(\mathbf{v}) dv = \frac{4\mathbf{v}^2}{\mathbf{v}_0^3 \sqrt{\pi}} e^{\left(-\mathbf{v}^2 / \mathbf{v}_0^2\right)} d^3 \mathbf{v}$$

#### Maxwell-Boltzmann-velocity distribution



### WIMP scattering – annual modulation



#### modulation of WIMP recoil spectrum

- superposition of velocity vectors  $v_s$  (sun) &  $v_e$  (earth)  $\Rightarrow$  period: T = 1.00 year phase:  $\phi_0$  = June, 2



### WIMP detection

#### reaction kinematics: input from SUSY

$$R = N_{nuclei} \cdot \langle \Phi \rangle \cdot \langle \sigma_{SI/SD} \rangle = N_{nuclei} \cdot \frac{\rho_{DM, local}}{M(\chi^0)} \cdot \langle \sigma_{SI/SD} \cdot \nabla \Psi \rangle$$

#### 1 – level of partons: q, g

 $\chi^{0}$  - interaction with *quarks, gluons*  $\chi^{0}$  - coupling strength from SUSY model

#### 2 – level of **nucleons**: p, n

q, g kinematics within the *nucleons* is determined by parton distributions (valence- & sea quarks)

#### 3 – level of **nuclear** structure: Ar, Ge, Xe,...

- $\chi^{0}$  interaction on scale of *nucleus* (nuclear wave function)
  - reaction kinematics coherent nuclear recoil

**Xe-nucleus** 

nucleon

χ<sup>0</sup>

χ0

d. Rik 1

### neutralino scattering: scalar interaction



#### scalar interaction: neutralino couples to mass distribution of the nucleus



mechanism:

- exchange of a light or a heavy higgs boson H, h
- annihilation into squark
   (q̃-mixing)
- also loop diagrams with (massless) gluons

**scalar**  $\chi^0$  – **interaction** with a quark ( $\sigma_{sl}$ : spin independent)

- quark- & gluon functions in nucleon: also heavy quarks contribute
- coherent interaction ~ A<sup>2</sup>
- $\sigma_{sl}$  dominates the elastic  $\chi^0$ -cross section in many SUSY models

### neutralino scattering: spin-dependent





#### **spin-dependent** $\chi^0$ -interaction ( $\sigma_{SD}$ : spin dependent)

- spin structure functions: nucleon spin (p,n) from partons
- spin matrix elements:
- nuclear shell model:

nucleon spin (p,n) from partons nucleons in nucleus ('mean' p/n-spin in nucleus)

nuclear spin from coupled nucleons in shells

### neutralino scattering: spin-dependent

26.4 %

7.8 %

<sup>73</sup>Ge



$$\sigma_{SD} \sim \sigma_0 \cdot \left(a_p \left\langle S_p \right\rangle + a_n \left\langle S_n \right\rangle\right)^2 \cdot \frac{J+1}{J}$$

$$a_{p,n}: WIMP-proton/neutron couplings (SUSY-model-dependent)$$
J: spin of nucelus via unpaired nucleon (proton/neutron) due to pairing term (Bethe-Weizsäcker)  
(S\_{p,n}) : expectation value of proton/neutron spin (e.g. 5/2, 1/2) within nulcear shell model  
only J ≠ 0 targets are sensitive to spin-dependent WIMP-scattering examples of important target nuclei for  $\sigma_{SD}$  (sensitive to  $a_p$  or  $a_n$ ):  
detector type isotope fraction protons neutrons nucl. spin J coupling NaJ (scintillator) 2<sup>3</sup>Na 11 12 3/2  $a_p$   
LXe (TPC/scint.) 1<sup>31</sup>Xe 21.2 % 54 77 3/2  $a_n$   
1<sup>29</sup>Xe 26.4 % 54 75 1/2  $a_n$ 

54

32

75

41

Ge (bolometer)

an

an

1/2

9/2

### WIMP - recoil spectra



#### **recoil spectrum** for scalar interaction (coherent, form factor)



### WIMP plots – comparison of results



$$R = N_{nuclei} \cdot \langle \Phi \rangle \cdot \langle \sigma_{SI/SD} \rangle = N_{nuclei} \cdot \underbrace{\rho_{DM,local}}_{M(\chi^0)} \cdot \underbrace{\sigma_{SI/SD}}_{V} \rangle$$
  
**light WIMPs:**  
nuclear recoil energy  
below threshold  
**heavy WIMPs:**  
 $\Omega_{CDM} = 0.22$  is fixed  
for large  $M_{\chi}$  the WIMP  
fluss  $\Phi$  decreases,  
less signal events  
**SUSY region:**  
to cover larger fraction:  
larger mass &  
smaller background  
**SUSY condition**  
**SUSY region:**  

### WIMP signal & background rate



| $R = N_{nuclei} \cdot \left\langle \Phi \right\rangle \cdot \left\langle \sigma_{SI \langle SD} \right\rangle = N_{nuclei} \cdot \frac{\rho_{DM}}{M}$ | $\left(\frac{1}{\chi^{0}}, \frac{1}{\chi^{0}}, \frac$ | <image/>               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| source and shielding                                                                                                                                  | events/kg/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | events/kg/day          |
| natural gamma activity                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>10</b> <sup>7</sup> |
| after passive shielding                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 <sup>2</sup>        |
| cosmic muons at surface of earth                                                                                                                      | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>10</b> <sup>4</sup> |
| expected CDM detection rate                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 10 <sup>-2</sup>     |

### underground labs - muon rate & depth





### direct dark matter experiments





Where are the detectors?

AB38-

W.R.

### extensive shielding – example XENON100



- Pb- & Cu-shielding in the XENON100 experiment
  - against gammas (<sup>235</sup>U, <sup>238</sup>U, <sup>232</sup>Th, <sup>237</sup>Np, <sup>40</sup>K,...), neutrons (µ-induced)





### WIMP detection methods – 1 parameter





### WIMP detection methods – 2 parameters



### DAMA/LIBRA



■ DArk MAtter experiment: NaJ scintillation detector array
 target: 9×9.7 kg high-purity NaJ crystals (scintillators)
 E<sub>thres</sub>= 2 keV<sub>ee</sub> (≡ 20 keV recoil energy of <sup>23</sup>Na nucleus)
 Read-out: 2 PMT's/crystal, light yield 5-7 p.e./keV
 background: sehr geringe NaJ Eigenaktivität, shielding : concrete, paraffin, 15 cm "Boliden-Pb", 10 cm Cu, % 1-2 events/keV/kg/day



### DAMA – annual modulation

- 7 years data taking (107731 kg-days) from January 1995 July 2002 modulation of event rate with T = 1a & expected phase (t<sub>0</sub> = June, 2)
  - signal directly above *hardware* threshold in region E = 2 6 keV
  - no modulation for E = 6-14 keV, statistical significance (CL) = 6.3  $\sigma$
  - interpreted by DAMA as evidence for direct WIMP-detection (??)



### XMASS - overview



- XMASS: Xenon detector for Weakly Interacting MASSive Particles operated in Kamioka mine in the Japanese alps
  - strategy: gradual increase of Xe target mass ⇒ improved self absorption
     of background via LXe (10<sup>-4</sup> events/kg/keV/day)
  - **method:** UV-scintillation light in **liquid-Xenon (LXe)** (T = 165 K) at  $\lambda = 175$  nm, but: Rayleigh scattering limits position resolution



### XMASS - results



XMASS: Xenon detector for Weakly Interacting MASSive Particles operated in Kamioka mine in the Japanese alps

- strategy: gradual increase of Xe target mass ⇒ improved self absorption
   of background via LXe (10<sup>-4</sup> events/kg/keV/day)
- method:UV-scintillation light in liquid-Xenon (LXe) (T = 165 K)at  $\lambda = 175$  nm, but: Rayleigh scattering limits position resolutionstatus:new 2015 results with 832 kg x 16 months exclude DAMA/Libra





### DAMA/Libra results excluded

DAMA/Libra data (favoured regions) and exclusion limits from Xe-experiments (spin-independent iinteraction)

![](_page_23_Picture_2.jpeg)

![](_page_23_Figure_3.jpeg)

### 2-phase detectors: mass vs. surface

 bolometers: only few kg, very low threshold large surface, good discrimination
 noble gases: leading technology for WIMPs deploy multi-ton detectors

> "sensitivity of a dark matter experiment scales with its mass"

> "systematics & bg of a dark matter experiment scales with its **surface**"

![](_page_24_Picture_4.jpeg)

![](_page_24_Picture_5.jpeg)

liquid noble gases

![](_page_24_Figure_7.jpeg)

#### bolometers

### cryogenic bolometers

![](_page_25_Picture_1.jpeg)

#### cryo-bolometer at low temperature in mK regime (CRESST, CDMS,...)

#### advantages:

- good sensitivity to nuclear recoils (phonons)
- very low energy threshold
- good energy resolution (~150 eV @ 6 keV)
- different target materials (Ge, Si, CaWO<sub>4</sub>)
- combine phonons with ionisation & scintillation: very good separation of gammas & electrons
- modular set-up (
   scalable & sequentiel extension replace sub-optimal single detectors, new detectors)

#### disadvantages:

- extensive mK-cryotechnology (long runs)
- limited target mass (~ 30 kg so far)
- **modular setup** ( large inner surface)

![](_page_25_Picture_14.jpeg)

![](_page_25_Picture_15.jpeg)

### Cryo-bolometers – measurement principle

![](_page_26_Picture_1.jpeg)

principle of a cryogenic bolometer (µ-calorimeter):

- energy deposition  $E_R$  of recoil of target nucleus from  $\chi^0$ -scattering leads to small, but measurable temperature increase  $\Delta T$  in absorber
- absorber (Ge, Si, CaWO<sub>4</sub>) with masse M ~ 300-800 g at  $T_0 = 10-20$  mK
- thermometer to measure temperature increase  $\Delta T$  in absorber
- heat bath (weak couplinng) to decrease T(bolometer) to T<sub>0</sub>

 $\Delta T = \frac{E_R}{V \cdot C_V}$  important: **small specific heat capacity C<sub>V</sub>** of asorber  $V \cdot C_V$  important: **small specific heat capacity C<sub>V</sub>** of asorber

![](_page_26_Picture_8.jpeg)

### Bolometers for low-mass region

![](_page_27_Picture_1.jpeg)

future bolometer experiments (Super-CDMS, CRESST) will use few kg
of detectors (Ge, Si) with low threshold to explore low-mass WIMP region

![](_page_27_Figure_3.jpeg)

### Bolometers for low-mass region

![](_page_28_Picture_1.jpeg)

future bolometer experiments (Super-CDMS, CRESST) will use few kg
of detectors (Ge, Si) with low threshold to explore low-mass WIMP region

![](_page_28_Figure_3.jpeg)

### LSM – Laboratoire Souterrain de Modane

![](_page_29_Figure_1.jpeg)

### EDELWEISS – Experiment

![](_page_30_Picture_1.jpeg)

Expérience pour détecter les WIMPs en Site Souterrain French-German experiment at LSM with Ge-/Si-bolometers

- 2000-2003: Edelweiss-I M = 1 kg 3 detectors
- 2008-2010: Edelweiss-II M = 4 kg 10 detectors 400 g each
- 2011-2015: Edelweiss-III M = 32 kg 40 detectors 800 g each

![](_page_30_Figure_6.jpeg)

### CDMS – Cryogenic Dark Matter Search

![](_page_31_Picture_1.jpeg)

**cryo-bolometers** in the Soudan mine in North-Minnesota (2000 m.w.e) absorber: 250 g germanium ( $\emptyset = 7.5$  cm, h = 1 cm) and 100 g Si-crystals

#### **ZIP-detector technology:**

Z-sensitive Ionisation and Phonon mediated detector signals: 'ballistic' phonons (4 × 1036 TES: AI and W) use phonon-timing to discriminate against surface events

![](_page_31_Picture_5.jpeg)

### Liquid noble gas detectors

![](_page_32_Picture_1.jpeg)

LXe & LAr detectors based on ultra-pure liquid noble gases - operated as 2-phase detectors: liquid & gaseous phase advantages:

- large detector volumina (10 kg  $\rightarrow$  100 kg  $\rightarrow$  1 t  $\rightarrow$  50 t  $\dots$  )
- particle identification: chage & scintillation, pulse shape challenges:
- low threshold, further reduction of background rate

#### properties of liquid noble gases as DM-detectors

|       | Z (A)       | boiling<br>T <sub>s</sub> [K] at<br>p = 1 bar | density<br>at T <sub>s</sub><br>[g/cm <sup>3</sup> ] | ionisation<br>[e-/keV] | scintillation<br>[photons/<br>keV] | scintillation<br>light [λ in nm]<br>λ-shifter |
|-------|-------------|-----------------------------------------------|------------------------------------------------------|------------------------|------------------------------------|-----------------------------------------------|
| Neon  | 10 (20)     | 27.1                                          | 1.21                                                 | 46                     | 7                                  | 85 (WLS)                                      |
| Argon | 18 (40)     | 87.3                                          | 1.40                                                 | 42                     | 40                                 | 128 (WLS)                                     |
| Xenon | 54(129/131) | 165.0                                         | 3.06                                                 | 64                     | 46                                 | 175                                           |

![](_page_32_Picture_8.jpeg)

### 2-phase LXe-experiments

![](_page_33_Picture_1.jpeg)

#### principles of LXe 2-phase-detectors:

- scintillation light:
- ionisation signal:

![](_page_33_Figure_5.jpeg)

detection via PMTs in LXe drift of electrons in E-field to Xe gas phase

#### signals S1 (prompt) & S2 (delayed):

- S1: primary Xe-excitation due to recoiling nucleus (prompt scintillation light)
- S2: detection of drifting electrons via extraction to gas phase, there acceleration of e<sup>-</sup> in strong field electro-luminescence via scattering processes of fast electrons off gas
   ♦ delayed light detection in upper PMT

#### coincidence of S1 and S2:

- S1 + S2: particle-ID & point of interaction

### particle identification (PID)

![](_page_34_Picture_1.jpeg)

#### discrimination among WIMP-recoils of Xe-nuclei & electron/gamma-bg

![](_page_34_Figure_3.jpeg)

ratio S2/S1 used for PID

![](_page_34_Figure_5.jpeg)

![](_page_34_Figure_6.jpeg)

**S2** 

![](_page_34_Figure_7.jpeg)

![](_page_34_Figure_8.jpeg)

**S1** 

## XENON100 experiment

### XENON-100: at LNGS

![](_page_35_Picture_2.jpeg)

- LXe-detector with 161 kg mass (~99 kg as veto, 62 kg as target)
  - detector:  $\emptyset = 30$  cm, h = 30 cm (maximum drift distance for electrons)
  - 242 PMT for read-out of scintillation- & electro-luminescence- light
  - factor 100 less background (selection, cleaning, self absorption) factor 10 more mass than predecessor XENON10

![](_page_35_Picture_7.jpeg)

### XENON100 experiment

![](_page_36_Picture_1.jpeg)

XENON-100: measurements I II 87 65 at LNGS upper PMT XENON Dark Matter Project array

lower PMT array

### XENON100 experiment: results

#### Inital results from XENON100:

- 224.6 days of data taking: 2323.7 kg days
- scintillation S1 (PE) energy window for WIMP-30 5 10 15 20 25 search: 6.6 - 43.3 keV 0.4 (Xe-recoil energy) (S2/S1) 0.0 - 2 events observed <u>ති</u> -0.4 background expectation  $N_{bq} = (1.0 \pm 0.2)$  events -0.8 -  $\sigma_{SI} < 2.0 \times 10^{-45} \text{ cm}^2$ at WIMP-mass 20 5 10 15 25 30 35 45 50 40  $M_{\gamma} = 55 \text{ GeV}$ energy (keV<sub>reoil energy</sub>)

![](_page_37_Picture_6.jpeg)

## Large Underground Xenon (LUX) experiment

#### 2-Phase-Xenon experiment at Sanford Lab:

- similar technology as in XENON (S1-S2)  $H_2O$  shielding instrumented as muon veto
- detector with 370 kg mass (100 kg 'fiducial volume')
- expected initial WIMP-sensitivity:

 $\sigma_{sl} = 2 \times 10^{-46} \text{ cm}^2$  (for  $R_{bg} = 0.5 \text{ events/month/100 kg}$ )

![](_page_38_Figure_6.jpeg)

### WIMP results: actual status

![](_page_39_Picture_1.jpeg)

![](_page_39_Figure_2.jpeg)

### XENON1T experiment

![](_page_40_Picture_1.jpeg)

#### next-generation-Xenon experiment at LNGS:

- construction period: autumn 2013 autumn 2015
- total (active) LXe mass: 3.3 t (2.0 t), 1 m electron drift, 248 3-inch PMTs
- bg-goal: 100 x lower than XENON100 (~5 · 10<sup>-2</sup> evts to.<sup>-1</sup> d<sup>-1</sup> keV<sup>-1</sup>)

![](_page_40_Picture_6.jpeg)

axions and ALPs, bosonic SuperWIMPs

#### 42 Sept. 30, 2015 G. Drexlin – DM3

### DARWIN R&D and design study

DARWIN: Dark matter Wimp search in Noble liquids

- goal: 'ultimate' DM-experiment: **30-50 tons LXe** 

σ<sub>sl</sub> ~ 10<sup>-48</sup> cm<sup>2</sup>

- reach sensitivity where bg is dominated by neutrinos

#### Experimental design parameters

- TPC diameter > 2 m
- electron drift length > 2 m
- few x 10<sup>3</sup> photosensors

#### Physics goals

- WIMP spectroscopy: mass and cross section
- others: pp-neutrinos, 0vßß of  $^{136}Xe$ ,

![](_page_41_Picture_14.jpeg)

![](_page_41_Picture_15.jpeg)

DARWIN

### DARWIN R&D and design study

![](_page_42_Picture_1.jpeg)

DARWIN: Dark matter Wimp search in Noble liquids

- goal: ´ultimate´ DM-experiment: 30-50 tons LXe
- reach sensitivity where bg is dominated by neutrinos

![](_page_42_Figure_5.jpeg)

### actual & future WIMP sensitivities

![](_page_43_Picture_1.jpeg)

![](_page_43_Figure_2.jpeg)

![](_page_44_Figure_0.jpeg)

![](_page_45_Picture_0.jpeg)