

Quantum corrections at the LHC

Ansgar Denner, Würzburg

Workshop des Graduiertenkollegs Elementarteilchenphysik bei höchster Energie und höchster Präzision Bad Liebenzell, 30.09. - 02.10.2013

- Lecture 1: Precision tests of the Standard Model
- Lecture 2: NLO Calculations for the LHC

Precision tests of the Standard Model

Ansgar Denner, Würzburg

Workshop des Graduiertenkollegs Elementarteilchenphysik bei höchster Energie und höchster Präzision Bad Liebenzell, 30.09. - 02.10.2013

- The Standard Model
- Relevance of radiative corrections
- Evaluation of radiative corrections
- Radiative corrections to muon decay
- Precision tests of the Standard Model

Standard Model

Matter particles: fermions (spin 1/2)

generation	leptons	quarks			
1	$\mathrm{e}, \nu_\mathrm{e}$	d,u	d,u	d,u	
2	μ, u_{μ}	s,c	s,c	s,c	
3	$ au, u_{ au}$	b,t	b,t	b,t	

interactions: via exchange of spin 1 bosons

photon	electromagnetic interaction
Z boson	neutral weak interaction
W boson	charged weak interaction
gluons	strong interaction

mass generation: via Higgs doublet field \Rightarrow physical scalar Higgs boson H (spin 0)

O

V

SM is a gauge theory: gauge group $SU(3)_c \times SU(2)_w \times U(1)_Y$ field content: $SU(3)_c - SU(2)_w - I^3$

					$\mathcal{O}(\mathcal{O})\mathcal{C}$	OO(2)W	¹ W	1	Ŷ
$U(1)_Y$ gauge field:	B_{μ}				singlet	singlet	0	0	0
${\rm SU}(2)_w$ gauge field:	W^{lpha}_{μ}				singlet	triplet	$0,\pm 1$	0	$0,\pm 1$
${ m SU}(3)_c$ gauge field:	G^a_μ				octet	singlet	0	0	0
left-handed leptons:	$\Psi^{\rm L}_{L,i} =$	$\binom{\nu_{\mathrm{e}}^{\mathrm{L}}}{\mathrm{e}^{\mathrm{L}}}$,	$ig(egin{smallmatrix} u_{\mu}^{ m L} \ u^{ m L} \ \end{pmatrix}$,	$\begin{pmatrix} \nu^{\rm L}_{\tau} \\ \tau^{\rm L} \end{pmatrix}$	singlet	doublet	$+\frac{1}{2}$ $-\frac{1}{2}$	-1	$0 \\ -1$
right-handed leptons:	$\psi^{\mathrm{R}}_{l,i} =$	e ^R ,	$\mu^{ ext{R}}$,	$ au^{ m R}$	singlet	singlet	0	-2	-1
left-handed quarks:	$\Psi^{\rm L}_{Q,i} =$	$\binom{u^L}{d^L},$	$\begin{pmatrix} c^L \\ s^L \end{pmatrix}$,	$\left({ t^L \atop b^L } \right)$	triplet	doublet	$+rac{1}{2} -rac{1}{2}$	$+\frac{1}{3}$	$+\frac{2}{3}$ $-\frac{1}{3}$
right-handed quarks:	$\psi^{\mathrm{R}}_{u,i} =$	u ^R ,	c ^R ,	t^{R}	triplet	singlet	0	$+\frac{4}{3}$	$+\frac{2}{3}$
	$\psi^{\mathrm{R}}_{d,i} =$	d ^R ,	\mathbf{s}^{R} ,	$\mathbf{b}^{\mathbf{R}}$	triplet	singlet	0	$-\frac{2}{3}$	$-\frac{1}{3}$
Higgs doublet:	$\Phi(x) =$	$\left(\frac{1}{\sqrt{2}}\left(v\right)\right)$	$\phi^+ + H + i\chi$		singlet	doublet	$+\frac{1}{2}$ $-\frac{1}{2}$	1	+10

right-handed neutrinos ignored

 $Q = I_3 + \frac{1}{2}Y_{\rm w}$

Julius-Maximilians-

,

Lagrangian

$$\begin{aligned} \mathcal{L} &= -\frac{1}{4} F_{1,\mu\nu}(x) F_{1}^{\mu\nu}(x) - \frac{1}{4} F_{2,\mu\nu}^{\alpha}(x) F_{2}^{\alpha,\mu\nu}(x) - \frac{1}{4} F_{3,\mu\nu}^{a}(x) F_{3}^{\alpha,\mu\nu}(x) \\ &+ \sum_{i} (i\overline{\Psi_{L,i}^{L}} \not\!\!\!D \Psi_{L,i}^{L} + i\overline{\Psi_{Q,i}^{L}} \not\!\!\!D \Psi_{Q,i}^{L} + i\overline{\psi_{l,i}^{R}} \not\!\!\!D \psi_{l,i}^{R} + i\overline{\psi_{u,i}^{R}} \not\!\!\!D \psi_{u,i}^{R} + i\overline{\psi_{d,i}^{R}} \not\!\!\!D \psi_{d,i}^{R} \\ &+ (D_{\mu}\Phi)^{\dagger} (D^{\mu}\Phi) - \frac{\lambda}{4} \left(\Phi^{\dagger}\Phi\right)^{2} + \mu^{2}\Phi^{\dagger}\Phi \\ &- \sum_{i,j} \left(\overline{\Psi_{L,i}^{L}} Y_{ij}^{l} \psi_{l,j}^{R} \Phi + \overline{\Psi_{Q,i}^{L}} Y_{ij}^{u} \psi_{u,j}^{R} \bar{\Phi} + \overline{\Psi_{Q,i}^{L}} Y_{ij}^{d} \psi_{d,j}^{R} \Phi + \text{h.c.}\right) \end{aligned}$$

$$F_{1,\mu\nu}(x) = \partial_{\mu}B_{\nu}(x) - \partial_{\nu}B_{\mu}(x)$$

$$F_{2,\mu\nu}^{\alpha}(x) = \partial_{\mu}W_{\nu}^{\alpha}(x) - \partial_{\nu}W_{\mu}^{\alpha}(x) + g_{2}\varepsilon^{\alpha\beta\gamma}W_{\mu}^{\beta}(x)W_{\nu}^{\gamma}(x)$$

$$F_{3,\mu\nu}^{a}(x) = \partial_{\mu}G_{\nu}^{a}(x) - \partial_{\nu}G_{\mu}^{a}(x) - g_{3}f^{abc}G_{\mu}^{b}(x)G_{\nu}^{c}(x)$$

$$D_{\mu} = \left(\partial_{\mu} + ig_{3}T^{a}G_{\mu}^{a} - ig_{2}I_{w}^{\alpha}W_{\mu}^{\alpha} + ig_{1}\frac{Y_{w}}{2}B_{\mu}\right)$$

parameters: g_1, g_2, g_3 gauge couplings λ, μ parameters of Higgs Potential, Y^f Yukawa coupling matrices

Bad Liebenzell, September/Oktober 2013

Julius-Maximilians-UNIVERSITÄT **Perturbation theory and Feynman diagrams** WÜRZBURG Standard Model is defined via its Lagrangian density predictions are obtained within perturbation theory Lagrangian is equivalent to Feynman rules propagators for free fields vertices for interactions • • • • etc. etc. Feynman diagrams provide an exact formulation of perturbation theory leading order (LO): next-to-leading order (NLO): tree diagrams loop diagrams

matrix element = $\mathcal{M}_{if} = \langle f | \mathcal{M} | i \rangle = \Sigma$ all Feynman diagrams for $|i\rangle \rightarrow |f\rangle$

perturbative series = series in coupling constant e or g_s or both

- = expansion in # of loops of Feynman diagrams
- = expansion in powers of \hbar (quantum corrections)

Feynman rules for Standard Model

AP

Transformation to physical fields (mass eigenstates) \hookrightarrow Lagrangian in terms of physical fields G^a_μ , A_μ , Z_μ , W^{\pm}_μ , H, f $A_{\mu} = \cos \theta_{\rm w} B_{\mu} - \sin \theta_{\rm w} W_{\mu}^3, \quad Z_{\mu} = \sin \theta_{\rm w} B_{\mu} + \cos \theta_{\rm w} W_{\mu}^3$ and parameters $g_{\rm s}$, e, $M_{\rm W}$, $M_{\rm Z}$, $M_{\rm H}$, m_f , $V_{\rm CKM}$ $\cos \theta_{\rm w} = c_{\rm w} = M_{\rm W}/M_{\rm Z}, \qquad \theta_{\rm w}$: weak mixing angle \hookrightarrow Feynman rules for physical fields gauge-boson-fermion couplings $\gamma, Z, W, g \sim f_{2}$ gauge-boson self-interactions $\gamma, Z, g \longrightarrow W^+, g \qquad \gamma, \gamma, Z, W^+, g \longrightarrow W^+, g$ $\gamma, Z, Z, W^-, g \longrightarrow W^-, g$ **Higgs couplings**

Julius-Maximilians

Relevance of radiative corrections

events

Julius-Maximilians

WÜRZBURG

 $1.5 \times 10^7 e^+e^- \rightarrow Z \rightarrow hadrons,$ $4.8 \times 10^4 e^+e^- \rightarrow W^+W^-$

$$1.7 \times 10^6 \ e^+e^- \rightarrow Z \rightarrow leptons$$

 $\begin{array}{ll} \mbox{typical accuracies} &\lesssim 0.1\% \\ & e^+e^- \rightarrow Z \rightarrow \mbox{hadrons: } \Delta \sigma / \sigma \sim 0.09\% \\ & \Delta \sin^2 \theta_{\rm eff}^{\rm lept} \sim 0.03\% \\ & e^+e^- \rightarrow W^+W^- \text{: } \Delta \sigma / \sigma \sim 1\% \\ & \Delta M_W/M_W \sim 0.05\% \end{array}$

predictions are calculated within perturbation theory expansion parameter: $\alpha/\pi \sim 0.23\%$, $\alpha/(\pi \sin^2 \theta_w) \sim 1\%$ generic one-loop corrections: $\sim 2\%$ generic two-loop corrections: $\sim 0.05\%$

implications

complete one-loop electroweak radiative corrections (EWRC) mandatory for $\rm e^+e^- \to Z$ (at least leading) two-loop corrections needed

Mandatory for precision tests of the electroweak (EW) Standard Model (SM) $\sim \left[\frac{\alpha}{\pi} \dots \frac{\alpha}{\pi} \ln \frac{E^2}{m_e^2}\right] \times \mathcal{O}(1) \sim [0.2\% \dots 6\%] \times \mathcal{O}(1)$ for $E = 100 \,\text{GeV}$

depend on all details of the theory

• top quark

Julius-Maximilians-

UNIVERSIT

WÜRZBURG

• gauge-boson self couplings

Higgs boson

• New physics (supersymmetry) ?

 \Rightarrow allow for indirect experimental tests of not directly accessible quantities

Evaluation of radiative corrections

Perturbative evaluation of quantum field theories

Formulate theory: Lagrangian ∜ quantization \rightarrow gauge fixing, Faddeev–Popov ghosts \downarrow perturbative evaluation: Feynman rules Feynman graphs loop integrals \rightarrow technical problem: divergences (UV, IR) \Downarrow regularization \rightarrow divergences mathematically meaningful \downarrow define input parameters: renormalization \rightarrow absorbs UV divergences ⇓ calculation of observables (cross sections, decay widths, etc.) theoretical predictions: \hookrightarrow IR divergences cancel for sufficiently inclusive quantities (e.g. inclusion of photon bremsstrahlung)

Julius-Maximilians-

UNIVERSIT

AP

Observation: loop integrals involve divergences

• ultraviolet (UV) divergences for $q \rightarrow \infty$ (large momenta), e.g.:

$$\int d^4q \, \frac{1}{(q^2 - m_0^2)((q+p)^2 - m_1^2)} \sim \int \frac{dq}{q} \text{ for } q \to \infty \quad \to \text{ logarithmic divergence}$$

• infrared (IR) divergences for $q \rightarrow q_0$ (small/collinear momenta), e.g.:

$$\int d^4q \, \frac{1}{q^2(q^2 + 2qp_1)(q^2 + 2qp_2)} \sim \int \frac{dq}{q} \text{ for } q \to 0 \quad \to \text{ logarithmic divergence}$$

regularization: extension of theory by free parameter δ (cut-off) such that

- original theory is obtained as limiting case $\delta \rightarrow \delta_0$
- integrals (and thus the theory) become finite, i.e. well defined for $\delta \neq \delta_0$
 - \hookrightarrow fix input parameters x_i of regularised theory ($\delta \neq \delta_0$) by experiment
 - \Rightarrow observables must have finite limit $\delta \rightarrow \delta_0$ as functions of x_i (independent of regularization scheme)

relations between physical quantities should be finite and independent of cut-off if true: theory is renormalizable

Julius-Maximilians-

UNIVERSITÄT

Cut-off regularization: require $q_0^2 + \mathbf{q}^2 < \Lambda^2$ in momentum space

- UV divergences appear as $\log \Lambda^2$, Λ^2 , ...
- breaks Lorentz invariance and gauge invariance \Rightarrow not used

dimensional regularization: switch to $D \neq 4$ space-time dimensions

- regularises UV and IR divergences, respects gauge invariance, easy use
- prescription: $(\mu = arbitrary reference mass, drops out in observables)$

 $\int d^4 q \rightarrow (2\pi\mu)^{4-D} \int d^D q \quad \text{and } D\text{-dim. momenta, metric, Dirac algebra}$

and analytic continuation to continuous complex D !

• divergences appear as poles $\frac{1}{4-D}$ \hookrightarrow define $\Delta \equiv \frac{2}{4-D} - \gamma_{\rm E} + \ln(4\pi) = \frac{2}{4-D} + \text{const.}$

IR regularization by infinitesimal photon mass m_{γ}

and (if relevant) by small fermion mass m_f

• prescription: photon propagator pole $\frac{1}{a^2}$

$$rac{1}{2}
ightarrow rac{1}{q^2 - m_\gamma^2}$$

• divergences appear as $\ln(m_{\gamma})$ and $\ln(m_f)$ terms

Julius-Maximilians-

Propagators and 2-point functions:

structure of one-loop self-energies (scalar case as example):

$$p \rightarrow - = \Sigma(p^2) = C_1 p^2 \Delta + C_2 \Delta + \Sigma_{\text{finite}}(p^2) = \text{UV divergent}$$

behaviour of propagator near pole for free propagation:

$$G^{\phi\phi}(p^2) = \frac{i}{p^2 - m^2 + \Sigma(p^2)} \underbrace{\rho^2 \to m^2}_{p^2 \to m^2} \frac{1}{1 + \Sigma'(m^2)} \frac{i}{p^2 - m^2 + \Sigma(m^2)}$$

 \hookrightarrow higher-order corrections change location and residue of propagator pole !

interaction vertices:

example: scalar 4-point interaction $\mathcal{L}_{\phi^4} = -\lambda \phi^4/4!$

momentum-dependent one-loop correction:

$$\Lambda(p_1, p_2, p_3) = C_3 \Delta + \Lambda_{\text{finite}}(p_1, p_2, p_3) = \mathsf{UV} \,\mathsf{divergent}$$

 \hookrightarrow higher-order corrections change coupling strength !

• Renormalizable field theories:

Julius-Maximilians-

WÜRZBURG

UV divergences in vertex functions have analytical form of elementary vertex structures (directly related to \mathcal{L})

- \hookrightarrow idea: absorb divergences in free parameters
- \Rightarrow reparametrization of theory = renormalization

different types of renormalizable theories:

- theories with unrelated couplings of non-negative mass dimensions
 - \hookrightarrow renormalizability proven by power counting and "BPHZ procedure"
- gauge theories (couplings unified by gauge invariance)
 - \hookrightarrow renormalizability non-trivial consequence of gauge symmetry "t Hooft '71

non-renormalizable field theories:

e.g. theories with couplings of negative mass dimensions (cf. Fermi model, effective field theories)

operators of higher and higher mass dimensions needed to absorb UV divergences in higher orders

 \hookrightarrow infinitely many free parameters, much less predictive power

Consider original ("bare") parameters and fields as preliminary (denoted with subscripts "0" in the following)

 $\,\hookrightarrow\,$ introduce new "renormalized" parameters and fields that obey certain conditions

propagators and 2-point functions:

Julius-Maximilians-

WÜRZBURG

- mass renormalization: $m_0^2 = m^2 + \delta m^2$, $m^2 \stackrel{!}{=}$ location of propagator pole = "physical mass" $\rightarrow \delta m^2 = \Sigma(m^2)$
- field renormalization: rescale fields $\phi_0 = \sqrt{Z_{\phi}}\phi$, $G^{\phi\phi} = Z_{\phi}^{-1}G^{\phi_0\phi_0}$ fix $Z_{\phi} = 1 + \delta Z_{\phi}$ such that residue of $G^{\phi\phi}$ at $p^2 = m^2$ equals 1 $\hookrightarrow \delta Z_{\phi} = -\Sigma'(m^2)$
- $\Rightarrow \text{ renormalized propagator } G^{\phi\phi} \text{ is UV finite:}$ $G^{\phi\phi}(p^2) = \frac{i}{p^2 m^2 + \Sigma_{ren}(p^2)} = \frac{i}{Z_{\phi}[p^2 m_0^2 + \Sigma(p^2)]}$

renormalized self energy

$$\Sigma_{\rm ren}(p^2) = \Sigma(p^2) - \delta m^2 + (p^2 - m^2) \delta Z_{\phi} = \Sigma(p^2) - \Sigma(m^2) - (p^2 - m^2) \Sigma'(m^2) \\ = \Sigma_{\rm finite}(p^2) - \Sigma_{\rm finite}(m^2) - (p^2 - m^2) \Sigma'_{\rm finite}(m^2) = \mathsf{UV} \text{ finite}$$

Vertex functions for interactions:

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

• coupling-constant renormalization: $\lambda_0 = \lambda + \delta \lambda$

fix $\delta\lambda$ such that λ assumes a measured value for special kinematics p_i^{exp} (renormalization point)

note: $\Gamma^{\phi\phi\phi\phi} = Z^2_{\phi}\Gamma^{\phi_0\phi_0\phi_0\phi_0}$

$$\hookrightarrow \ \delta\lambda = -2\delta Z_{\phi}\lambda - \Lambda(p_1^{\exp}, p_2^{\exp}, p_3^{\exp})$$

 \Rightarrow renormalized vertex function is UV finite:

$$\begin{split} \Gamma^{\phi\phi\phi\phi}\left(p_{1},p_{2},p_{3}\right) &= -\mathrm{i}\lambda + \mathrm{i}\Lambda_{\mathrm{ren}}\left(p_{1},p_{2},p_{3}\right),\\ \Lambda_{\mathrm{ren}}\left(p_{1},p_{2},p_{3}\right) &= \Lambda\left(p_{1},p_{2},p_{3}\right) - \delta\lambda - 2\delta Z_{\phi}\lambda\\ &= \Lambda_{\mathrm{finite}}\left(p_{1},p_{2},p_{3}\right) - \Lambda_{\mathrm{finite}}(p_{1}^{\mathrm{exp}},p_{2}^{\mathrm{exp}},p_{3}^{\mathrm{exp}}) \ = \ \mathsf{UV} \text{ finite} \end{split}$$

 \hookrightarrow all divergences of ϕ^4 theory can be absorbed by renormalization of parameters (masses and coupling constants) and the fields (counterterms: $\delta m, \delta \lambda, \delta Z_{\phi}$)

Any physical observable calculated in terms of renormalized parameters is finite and well-defined (although affected by a systematic perturbative uncertainty).

Bare input parameters: $e_0, M_{W,0}, M_{Z,0}, M_{H,0}, m_{f,0}, V_{ij,0}, g_{s,0}$

renormalization transformation:

Julius-Maximilians-

WÜRZBURG

• parameter renormalization:

 $e_{0} = (1 + \delta Z_{e})e, \qquad g_{s,0} = (1 + \delta Z_{g_{s}})g_{s},$ $M_{W,0}^{2} = M_{W}^{2} + \delta M_{W}^{2}, \qquad M_{Z,0}^{2} = M_{Z}^{2} + \delta M_{Z}^{2}, \qquad M_{H,0}^{2} = M_{H}^{2} + \delta M_{H}^{2},$ $m_{f,0} = m_{f} + \delta m_{f}, \qquad V_{ij,0} = V_{ij} + \delta V_{ij}, \quad \text{(both } V_{ij,0}, V_{ij} \text{ unitary)}$

- note: renormalization of c_w , s_w fixed by on-shell condition $c_w = M_W/M_Z$ (s_w is not a free parameter if M_W , M_Z are used as input parameters)
- field renormalization: (physical fields)

$$W_0^{\pm} = \sqrt{Z_W} W^{\pm}, \quad \begin{pmatrix} Z_0 \\ A_0 \end{pmatrix} = \begin{pmatrix} \sqrt{Z_{ZZ}} & \sqrt{Z_{ZA}} \\ \sqrt{Z_{AZ}} & \sqrt{Z_{AA}} \end{pmatrix} \begin{pmatrix} Z \\ A \end{pmatrix}, \quad H_0 = \sqrt{Z_H} H,$$
$$\psi_{f,0}^{\mathrm{L}} = \sqrt{Z_{ff'}^{\mathrm{L}}} \psi_{f'}^{\mathrm{L}}, \qquad \psi_{f,0}^{\mathrm{R}} = \sqrt{Z_{ff'}^{\mathrm{R}}} \psi_{f'}^{\mathrm{R}}, \qquad G_0^a = \sqrt{Z_G} G^a$$

note: matrix renormalization necessary to account for loop-induced mixing

• Mass renormalization:

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

on-shell definition: mass² is location of pole in propagator

 $\hookrightarrow \delta M_{\rm W}^2 = {\rm Re}\{\Sigma_{\rm T}^W(M_{\rm W}^2)\}, \text{ similar expressions for } \delta M_{\rm Z}^2, \delta M_{\rm H}^2, \delta m_f$

- note: o location of pole is complex for unstable particles
 - \hookrightarrow important for processes with unstable-particle production (gauge-invariant definition: mass² as real part of pole location)
 - other definitions of quark masses often more appropriate (e.g. running masses)
- field renormalization: (bosons and fermions)
 - residues of propagators (diagonal, transverse parts) normalized to 1

 $\hookrightarrow \ \delta Z_W = -\operatorname{Re}\{\Sigma_{\mathrm{T}}^{W'}(M_{\mathrm{W}}^2)\},\$

similar expressions for $\delta Z_{AA}, \delta Z_{ZZ}, \delta Z_H, \delta Z_{ff}^{L/R}$

 suppression of mixing propagators on particle poles physical on-shell particles do not mix

 \hookrightarrow fixes non-diagonal constants $\delta Z_{AZ}, \delta Z_{ZA}, \delta Z_{ff'}^{L/R}$ $(f \neq f')$

note: problems for unstable particles beyond one loop (field-renormalization constants become complex)

• Charge renormalization: define *e* in Thomson limit (low-energy-elastic scattering)

e
$$k \xrightarrow{k} A_{\mu} \xrightarrow{k \to 0} ie\gamma_{\mu}$$
 for on-shell electrons

 $\hookrightarrow e =$ elementary charge of classical electrodynamics

fine-structure constant $\alpha(0) = \frac{e^2}{4\pi} = 1/137.03599976$

gauge invariance relates δZ_e to photon field renormalization:

$$\delta Z_e = -\frac{1}{2} \delta Z_{AA} - \frac{s_w}{2c_w} \delta Z_{ZA}$$
 (at one loop)

• CKM-matrix renormalization \rightarrow fixes δV_{ij}

rotation to mass eigenstates;

CKM part requires a careful (non-trivial) investigation of mixing energies, mass eigenstates, LSZ reduction, etc.

general result: all renormalization constants can be obtained from self-energies.

different renormalization schemes are possible.

Julius-Maximilians-

UNIVERSITÄ

- QCD becomes strongly interacting for small momentum transfers
- quarks and gluons are confined in hadrons
- \hookrightarrow on-shell renormalization makes no sense
- \hookrightarrow no obvious renormalization point for strong coupling
- renormalization schemes for QCD
 - momentum subtraction scheme (MOM): choose symmetric Euclidean renormalization point, $p_i^2 = -M^2$, for vertex functions
 - minimal subtraction scheme (MS): subtract only UV divergences 1/(D-4)
 - modified minimal subtraction scheme (MS): commonly used subtract ∆ (UV-divergences plus some universal constants) renormalized results depend on scale µ of dimensional regularization ⇒ renormalization-scale dependence of observables

renormalization constant $\delta g_{\rm s}$ can be determined from any one vertex function

Julius-Maximilians-

IR divergences and photon bremsstrahlung

Consider processes with charged external particles, e.g., $e^+e^- \rightarrow \mu^+\mu^-$

• virtual corrections: loop diagrams

IR divergences from soft virtual photons
$$(q \to 0)$$

$$\int \frac{\mathrm{d}^4 q}{(q^2 - m_\gamma^2)(q^2 + 2qp_1)(q^2 + 2qp_2)} \to C \ln(m_\gamma)$$

• "real" corrections:

Julius-Maximilians-

UNIVFRSIT

WÜRZBURG

photon bremsstrahlung = "real" radiative corrections

IR divergences from soft real photons
$$(\mathbf{q} \to 0)$$

$$\int \frac{\mathrm{d}^{3}\mathbf{q}}{\sqrt{\mathbf{q}^{2} + m_{\gamma}^{2}(2qp_{1})(2qp_{2})}} \to -C\ln(m_{\gamma})$$

Bloch–Nordsieck theorem:

IR divergences of virtual and real corrections cancel in the sum

- → virtual and soft-photonic corrections cannot be discussed separately
 are related due to limited experimental resolution of soft photons
- \hookrightarrow predictions depend on treatment of photon emission (energy and angular cuts)

for massless charged particles (QCD) \Rightarrow additional collinear singularities

Radiative corrections to muon decay

 $M_{\rm W}$ and $M_{\rm Z}$ correlated via muon lifetime \leftrightarrow Fermi constant G_{μ} Fermi model

$$\tau_{\mu}^{-1} = \frac{G_{\mu}^2 m_{\mu}^5}{192\pi^3} \left(1 - 8\frac{m_{\rm e}^2}{m_{\mu}^2}\right) \left(1 + \delta_{\rm QED}\right)$$

Standard Model

Julius-Maximilians-

UNIVERSIT

WÜRZBURG

$$G_{\mu} = \frac{\pi \alpha}{\sqrt{2}} \frac{1}{M_{\rm W}^2 (1 - M_{\rm W}^2 / M_{\rm Z}^2)} \frac{1}{1 - \Delta r}$$

 Δr : calculable quantum corrections

(beyond electromagnetic corrections to Fermi model)

Virtual correction – one-loop diagrams:

real correction - one-photon bremsstrahlung:

consistent use of G_{μ} :

photonic QED corrections are treated in the Fermi model and subtracted from Δr

W-boson self-energy:

Julius-Maximilians-

WÜRZBURG

$We\nu_e$ vertex correction:

box diagrams:

• $\Delta \alpha(M_Z^2)$: contribution of running electromagnetic coupling $\Delta \alpha(M_Z^2) \sim \frac{\alpha}{3\pi} \sum_f Q_f^2 \ln \frac{M_Z^2}{m_f^2}$

 \hookrightarrow large effects from small fermion masses

• $\Delta \rho$: leading corrections to the ρ -parameter

$$\Delta \rho_{\rm top} \sim \left(\frac{\Sigma_{\rm T}^{ZZ}(0)}{M_{\rm Z}^2} - \frac{\Sigma_{\rm T}^{WW}(0)}{M_{\rm W}^2} \right)_{\rm top} \sim \frac{3G_{\mu}m_{\rm t}^2}{8\sqrt{2}\pi^2}$$

 \hookrightarrow large effects from top–bottom loops in W self-energy

Veltman '77

Julius-Maximilians-

4

$$\Delta \alpha(s) = -\operatorname{Re}\{\Sigma_{\mathrm{T,ren}}^{AA}(s)/s\} = -\operatorname{Re}\{\Sigma_{\mathrm{T}}^{AA}(s)/s\} + (\Sigma_{\mathrm{T}}^{AA})'(0)$$
$$= \Delta \alpha_{\mathrm{lept}}(s) + \Delta \alpha_{\mathrm{had}}^{(5)}(s) + \Delta \alpha_{\mathrm{top}}(s) \sim \frac{\alpha}{3\pi} \sum_{f} Q_{f}^{2} \ln \frac{M_{\mathrm{Z}}^{2}}{m_{f}^{2}}$$

 $\begin{array}{l} \Delta \alpha_{\rm had}^{(5)} \text{ becomes sensitive to unphysical quark masses } m_q \\ \hookrightarrow \Delta \alpha_{\rm had}^{(5)} \text{ not calculable in perturbation theory} \\ \text{solution: } \Delta \alpha_{\rm had}^{(5)} \text{ obtainable from fit to experimental data with subtracted} \\ \text{ dispersion relation} \end{array}$

$$\Delta \alpha_{\text{had}}^{(5)} = -\frac{\alpha}{3\pi} M_Z^2 \operatorname{Re} \left\{ \int_{4m_\pi^2}^{\infty} \mathrm{d}s' \frac{R(s')}{s'(s' - M_Z^2 - \mathrm{i}\varepsilon)} \right\}$$
$$R(s) = \frac{\sigma(\mathrm{e}^+\mathrm{e}^- \to \gamma^* \to \text{hadrons})}{\sigma(\mathrm{e}^+\mathrm{e}^- \to \gamma^* \to \mu^+\mu^-)}$$

R(s) is taken from perturbative QCD for high energies ($\sqrt{s} \gtrsim 13 \,\text{GeV}$) $\Rightarrow \Delta \alpha_{\text{had}}^{(5)} = 0.027498 \pm 0.000135$

Jegerlehner; Burkhardt, Pietrzyk; Eidelman; Davier, Höcker,...

Experimental confirmation of quantum corrections

$$1 - \Delta r = \frac{\pi \alpha}{\sqrt{2}G_{\mu}} \frac{1}{M_{\rm W}^2 (1 - M_{\rm W}^2/M_{\rm Z}^2)}$$

 $\Rightarrow \text{ experimental determination of } \Delta r \qquad \Delta r = 0.0350 \pm 0.0009$ $\Delta r \neq 0 \text{ with } 39\sigma \qquad \Rightarrow \text{ confirmation of quantum corrections}$

 $\Delta r \neq \Delta \alpha \sim 0.0594$ wity $27\sigma \Rightarrow$ confirmation of weak corrections

Julius-Maximilians-

Precision tests of the Standard Model

Z physics tests predominantly effective Z-boson–fermion couplings (on-shell, massless fermions)

$$Z \sim \int_{\bar{f}}^{f} = i \frac{e}{2s_w c_w} \gamma_\mu (g_{v_f} - g_{a_f} \gamma_5)$$

effective couplings contain weak corrections to on-shell $Z\bar{f}f$ vertex Z-boson width

$$\Gamma(\mathbf{Z} \to f\bar{f}) = \frac{G_{\mu}M_{\mathbf{Z}}^3}{6\pi\sqrt{2}} ((g_{v_f})^2 + (g_{a_f})^2) (1 + \delta_f^{\text{QED}})$$

forward–backward asymmetry

$$A_{\rm FB}^f = \frac{\sigma_f(\theta < 90^\circ) - \sigma_f(\theta > 90^\circ)}{\sigma_f(\theta < 90^\circ) + \sigma_f(\theta > 90^\circ)}$$

contribution of Z-boson exchange (pseudo observable: pole asymmetry)

$$A_{\rm FB}^f(s=M_{\rm Z}^2) = \frac{3}{4} \frac{g_{v_{\rm e}}/g_{a_{\rm e}}}{(g_{v_{\rm e}}/g_{a_{\rm e}})^2 + 1} \frac{g_{v_f}/g_{a_f}}{(g_{v_f}/g_{a_f})^2 + 1}$$

 $\Rightarrow g_{v_f}, g_{a_f}$

Julius-Maximilians-

UNIVERSITÄT

Julius-Maximilians-UNIVERSITÄT

Lowest order:

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

$$g_{a_f,0} = I_{w,f}^3, \qquad g_{v_f,0} = (I_{w,f}^3 - 2Q_f \sin^2 \theta_w)$$

definition of effective fermionic mixing angle (pseudo observable)

$$g_{a_f} = \sqrt{\rho_f} I_{w,f}^3, \qquad g_{v_f} = \sqrt{\rho_f} (I_{w,f}^3 - 2Q_f \sin^2 \theta_{eff}^f)$$

$$g_{v_f}, g_{a_f} \Rightarrow \sin^2 \theta_{\text{eff}}^{\text{f}}, \ \rho_{\text{f}}, \qquad g_{v_f}/g_{a_f} \Rightarrow \sin^2 \theta_{\text{eff}}^{\text{f}} = \frac{I_{\text{w},f}^3}{2Q_f} \left(1 - \frac{g_{v_f}}{g_{a_f}}\right)$$

lowest-order perturbation theory:

$$\sin^2 \theta_{\rm eff}^{\rm f} = \sin^2 \theta_{\rm w} = 1 - \frac{M_{\rm W}^2}{M_Z^2}, \qquad \rho_{\rm f} = 1$$

including weak corrections:

$$\sin^2 \theta_{\rm eff}^{\rm f} \neq \sin^2 \theta_{\rm w}, \qquad \rho_{\rm f} \neq 1$$

experiment:

$$\sin^2 \theta_{\text{eff}}^{\text{lept}} \approx 0.2315, \qquad \sin^2 \theta_{\text{w}} \approx 0.2229, \qquad \sin^2 \theta_{\text{eff}}^{\text{lept}} / \sin^2 \theta_{\text{w}} \approx 1.039$$

 $\rho_f \approx 1.005$

Effective mixing angle versus leptonic ρ parameter

Julius-Maximilians-

calculate all precision observables in SM including quantum corrections in terms of $\alpha(M_Z)$, G_{μ} , M_Z , $m_{f \neq t}$, m_t , M_H , $\alpha_s(M_Z)$ determine parameters by fit to all precision data results

- good agreement between SM and data at the per-mille level (some exceptions)
- indirect determination of parameters all Z-pole data, M_W, Γ_W: ⇒ m_t = 179⁺¹²₋₉ GeV 1994: m_t = 169⁺²⁴₋₂₇ (top discovery 1995) present experimental value: m_t = 173.2 ± 0.9 GeV all Z-pole data, M_W, Γ_W, m_t

$$\Rightarrow M_{\rm H} = 94^{+29}_{-24} \text{ GeV}$$
$$M_{\rm H} < 152 \text{ GeV} (95\% \text{ C.L.})$$
$$\alpha_s(M_{\rm Z}) = 0.1185 \pm 0.0026$$

preference for light Higgs boson

Julius-Maximilians-UNIVERSITÄT

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

LEPEWWG '12 before Higgs discovery

good agreement

best fit for Higgs-boson mass: $M_{\rm H} = 94^{+29}_{-24} \,{\rm GeV},$ $M_{\rm H} < 152 \,{\rm GeV}$ @ 95% CL

direct search at LEP2 ($e^+e^- \not\rightarrow ZH$) LEPHIGGS '03 $M_{\rm H} > 114.4 \, {\rm GeV}$

Higgs discovery at LHC ATLAS/CMS July '12 $M_{
m H} \approx 126 \, {
m GeV}$

- Natural input parameters: α , $M_{\rm W}$, $M_{\rm Z}$, m_f , $M_{\rm H}$, $\alpha_{\rm s}$
- weak mixing angle: on-shell definition $\sin \theta_{\rm w} = \sqrt{1 M_{\rm W}^2/M_{\rm Z}^2}$
- alternative input parameter sets: G_{μ} instead of $M_{\rm W}$ or α G_{μ} no fundamental parameter, but precisely measured in μ decay
- definition of α

Julius-Maximilians-

WÜRZBURG

- on-shell: α(0) appropriate for external photons
- $\alpha(M_Z), \alpha(\sqrt{s}): \frac{\alpha(M_Z)}{\alpha(0)} \approx 1.06$ absorbs running of α from Q = 0 to EW scale appropriate for internal photons and weak bosons
- G_{μ} scheme: $\alpha_{G_{\mu}} = \sqrt{2}G_{\mu}M_{W}^{2}(1 M_{W}^{2}/M_{Z}^{2})/\pi$: $\frac{\alpha_{G_{\mu}}}{\alpha(0)} \approx 1.03$ absorbs running of α from Q = 0 to EW scale and $\Delta \rho$ in $Wf\bar{f}'$ coupling appropriate for processes with W bosons

suitable choice of α reduces missing higher-order corrections effects can amount to several 10 per cent for high powers of α

gauge invariance demands unique input-parameter set!

Standard Model established as a quantum field theory

- in agreement with all experiments (accuracy $\geq 0.1\%$)
- quantum corrections = radiative corrections are established
- indirect and direct determinations of $m_{\rm t}$ agree
- precision tests suggest light Higgs boson
- observed Higgs boson agrees well with SM predictions
- triple-gauge-boson self-interactions established at per-cent level

to be confirmed

Julius-Maximilians-

- precise determination of Higgs-boson quantum numbers
- precise measurement of Higgs-boson couplings to gauge bosons and fermions
- Higgs-boson self-interaction ⇒ Higgs potential

Textbooks and Reviews:

Julius-Maximilians-

- **Peskin/Schroeder**, *An introduction to Quantum Field Theory*
- Itzykson/Zuber, Quantum Field Theory
- ► Weinberg, The Quantum Theory of Fields, Vol. 1: Foundations;
 - The Quantum Theory of Fields, Vol. 2: Modern Applications
- Böhm/Denner/Joos, Gauge Theories of the Strong and Electroweak Interaction
- ► Collins, *Renormalization*
- Experimental results:
 - The ALEPH, DELPHI, L3, OPAL, SLD Collaborations, the LEP Electroweak Working Group, the SLD Electroweak and Heavy Flavour Groups, Phys. Rept. 427 (2006) 257
 - The ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD Collaborations, the LEP Electroweak Working Group, the Tevatron Electroweak Working Group, and the SLD electroweak and heavy flavour groups, LEPEWWG/2010-01, http://lepewwg.web.cern.ch/LEPEWWG/
 - ATLAS collaboration, Phys. Lett. B716 (2012) 1, arXiv:1207.7214, ATLAS-CONF-2012-170; CMS collaboration, JHEP 06 (2013) 081, arXiv:1303.4571; CMS-HIG-12-036

Backup

Z physics at LEP and SLC

Z-boson resonance

e⁻ Z
$$f = e^{-}, \mu^{-}, \tau^{-}, q$$

e⁺ (γ) $\bar{f} = e^{+}, \mu^{+}, \tau^{+}, \bar{q}$

LEP1: $\sim 16 \times 10^7$ events (1989–1995)

unfolded resonance cross-section $s = E_{\text{CMS}}^2$ $\sigma_f(s) = 12\pi \frac{s}{M_Z^2} \frac{\Gamma(Z \to e^+e^-) \Gamma(Z \to f\bar{f})}{(s - M_Z^2)^2 + s^2 \Gamma_Z^2 / M_Z^2} = \sigma^0 \frac{s \Gamma_Z^2}{(s - M_Z^2)^2 + s^2 \Gamma_Z^2 / M_Z^2}$

- line shape $\Rightarrow M_{\rm Z}, \Gamma_{\rm Z}$
- peak cross section σ^0 $\Rightarrow \Gamma(Z \to l^+ l^-) / \Gamma_Z,$ $\Gamma(Z \to hadrons) / \Gamma_Z$
- angular distributions, polarization asymmetries \Rightarrow effective $Zf\bar{f}$ vector and
 - axial-vector couplings g_{v_f} , g_{a_f}

Z-boson width and number of light neutrinos

• $\Gamma_{\rm Z}$ measured from Z line shape

•
$$\Gamma_{\text{had}}$$
 and $\Gamma_{l=e,\mu,\tau}$ from $R_l = \frac{\Gamma_{\text{had}}}{\Gamma_l}$ and $\sigma_{\text{had}}^0 = \frac{12\pi}{M_Z^2} \frac{\Gamma_e \Gamma_{\text{had}}}{\Gamma_Z^2}$

Fit of $\Gamma_{\rm Z}$, R_l , and $\sigma_{\rm had}^0$ yields invisible Z-decay width: $\Gamma_{\rm inv} = N_{\nu} \Gamma_{\rm Z \to \nu \bar{\nu}}^{\rm theory}$ $\hookrightarrow N_{\nu} = 2.9840 \pm 0.0082$

Julius-Maximilians-

UNIVERSITÄI