Exotics Searches at LHC

Cigdem Issever University of Oxford

GK Workshopl Karlsruher Institut für Technologie 30.09-02.10..2013

.AS Run Number = 189288 leading jet Event Number = 2779906 Z(ee)+jet mass = 1858.8 GeV associated electrons Leading electron pT = 485.1 GeV Second electron pT = 335.1 GeV Leading jet pT = 905.8 GeV Associated jet pT = 96.5 GeV

Acknowledgement

- Hitoshi Murayama, http://arxiv.org/abs/0704.2276v1
- Lykken, <u>http://arxiv.org/pdf/1005.1676.pdf</u>
- CERN 2012 summer school

Discussions with

- Henri Bachacou
- Bryan Lynn
- Christophe Grojean
- Glenn Starkman
- Steven Worm

Why search for new physics?

What are Exotics Searches?

Examples of Searches

Why search for new physics?

- We are reSEARCHers
- We strive for new understandings

Dark Energy

- Our goal is to increase our KNOWLEDGE
- Inspiring, humbling, exciting,

C. Issever, Univ

and a LOT of work.....

C. Issever, University of Oxford

Why look beyond the Standard Model?

Experimental Evidence

Non-baryonic dark matter (~23%)

- Inferred from gravitational effects
- Rotational speed of galaxies
- Orbital velocities of galaxies in clusters
- Gravitational lensing

.

- Dark Energy (~73%)
 - Accelerated Expansion of the Universe
- Neutrinos have mass and mix
- Baryon asymmetry
- Acausual density perturbations

C. Issever, University of Oxford

- Responsible for mass and mixing of quark masses
- Responsible for charged lepton masses
- Generation index: i, j = 1,2,3
- Why 3 families?
- No neutrino masses or mixing included

C. Issever, University of Oxford

vev = vacuum

expectation value

The Higgs is an EXOTIC particle

- ONLY spin 0 elementary particle
- Couplings are NOT dictated by gauge symmetry
 Hmm....
- Symmetry breaking
 - Underlying reason?
 - Unable to explain dynamical
- Small mass possible if protected by
 - Symmetry
 - Not elementary particle

Comment to Fine Tuning....

G.

- 4 ways to solve it
- Supersymmetry
 - Sparticles cancel particle contributions
- Extra Dimensions
 - Higgs is a vector in 5D
- Higgs is composite
 - Strongly coupled new physics
- There is no fine tuning problem in SM
 - Not everybody thinks SM has a fine tuning problem <u>http://arxiv.org/pdf/1005ever0417erpity of Oxford</u>

Higgs sector looks like a provisional structure

Courtesy of C. Grojean & A. Weiler,

$$\begin{split} \mathcal{L}_{SM} &= -\frac{1}{4g'^2} B_{\mu\nu} B^{\mu\nu} - \frac{1}{2g^2} \operatorname{Tr}(W_{\mu\nu} W^{\mu\nu}) - \frac{1}{2g_s^2} \operatorname{Tr}(G_{\mu\nu} G^{\mu\nu}) \\ &+ \bar{Q}_i i \mathcal{D} Q_i + \bar{L}_i i \mathcal{D} L_i + \bar{u}_i i \mathcal{D} u_i + \bar{d}_i i \mathcal{D} d_i + \bar{e}_i i \mathcal{D} e_i \\ &+ (Y_u^{ij} \bar{Q}_i u_j \tilde{H} + Y_d^{ij} \bar{Q}_i d_j H + Y_l^{ij} \bar{L}_i e_j H + \text{h.c.}) \\ &+ (D_\mu H)^{\dagger} (D^\mu H) - \lambda (H^{\dagger} H)^2 - m^2 H^{\dagger} H + \frac{\theta}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} \operatorname{Tr}(G_{\mu\nu} G_{\rho\sigma}). \end{split}$$
Only term in L_{SM} with a dimensionful parameter

Sets the energy scale for the SM: VEV ~ 246 GeV

History suggests.....

- Fundamental theory at <u>shorter distances</u> than distance scale of the problem.
 PERIODIC TABLE OF THE ELEMENTS
- ~1900 reached atomic scale
 - 10⁻⁸ cm $\approx \hbar^2/e^2 m_e$
 - Quantum Mechanics
 - Quantum Electrodynamics

- ~1950 reached strong interaction scale
 - 10⁻¹³ cm $\approx Me^{-8\pi^2/g_s^2(M)b_0}$

 - Quarks, Gluons

Today....Very Special Times

- LHC goes beyond EWK scale: TeV⁻¹ ~ 10⁻¹⁷ cm
- EWK scale: phase transition is happening
 W,Z,electron...etc. acquire mass
- $v = (\sqrt{2}G_F)^{-1/2} \sim 246 \ GeV \leftarrow \text{Higgs VEV}$

This is the scale of SM!

Beyond this we will find NEW INSIGHTS!!!!

Why look beyond the Standard Model???

Aesthetic/Theoretical Reasons

- Hierarchy Problem:
 - why is $G_F \sim 10^{-5} \text{ GeV}^{-2} << G_N \sim 10^{-38} \text{ GeV}^{-2}$
- Quantum gravitational description of Gravity?
 - Gravity is not included in SM
- Higgs

. . . .

- Experimental Reasons
 - Dark Matter/Energy
 - Neutrino masses
 - Baryon Asymmetry

```
C. Issever, University of Oxford
```

Models

Murayama Hitosh

What else is there beside SUSY framework?

SUSY is NOT a model

"Symmetry principle characterizing a BSM framework with an infinite number of models"....Lykken

SUSY is only one possible way.....

- Many more ways to solve problems with Standard Model
- What if nature has not chosen SUSY?
- Make sure to cover every feasible corner...
- SUSY mass limits pushed to 1 TeV
 - SUSY becoming more "Exotic" the higher the mass limits get.

Models try to answer questions

- Hierarchy Problem
 - EWK force ~ 10³² X Gravity?
 - \rightarrow Extra dimension models
- Fine Tuning Problem → SUSY
 - \rightarrow Composite Higgs
 - \rightarrow Extra dimension models
- What is Dark Matter?
 - \rightarrow SUSY
 - \rightarrow Extra dimensions....

- Family structure in SM?
- Running coupling constants?
 → GUT
- Have elementary particles a sub-structure?

Not all questions may be sensible..

What Characterizes Exotics Searches?

- No specific Model to guide us. No unified parameter phase
- No unified parameter phase space to map results

C. Issever, University of Oxford

The Role of Models in "most" Exotics Searches

Toscanelli's model of the geography of the Atlantic Ocean, which directly influenced Columbus's plans

The Role of Models in "most" Exotics Searches

C. Issever, University of Oxford

The Role of Models in "most" Exotics Searches

- Models used to quantify our reach.
 - How far did we get?
 - How do we compare to previous searches?
- We use so called Bench Mark Models
 Used before by other experiments
- Simplified Models or generic resonances

Lykken, http://arxiv.org/pdf/1005.1676.pdf

s-channel production

Lykken, http://arxiv.org/pdf/1005.1676.pdf

Pair production

Lykken, http://arxiv.org/pdf/1005.1676.pdf

BSMstrahlung

Pseudo-scalar

C. Issever, University of Oxford

Models-Signature Mapping and vice versa.

H. Bachacou

Models-Signature Mapping and vice versa.

- Many extensions of the SM have been developed over the past decades;
- Supersymmetry^{*}
- Extra-Dimensions
- Technicolor(s)
- Little Higgs
- No Higgs
- GUT
- Hidden Valley,
- Leptoquarks
- Compositeness
- 4th generation (t', b')
- LRSM, heavy neutrino
- What else?

(for illustration only)

- 1 jet + MET jets + MET 1 lepton + MET Same-sign di-lepton Dilepton resonance Diphoton resonance Diphoton + MET Multileptons Lepton-jet resonance Lepton-photon resonance Gamma-jet resonance Diboson resonance Z+MET W/Z+Gamma resonance Top-antitop resonance Slow-moving particles Long-lived particles Top-antitop production Lepton-Jets Microscopic blackholes
- Dijet resonance
 - What else?

A complex 2D problem

- Experimentally, a signature standpoint makes a lot of sense:
 - → Practical
 - → Less modeldependent
 - → Important to cover every possible signature

H. Bachacou

C. Issever, University of Oxford

What Characterizes Exotics Searches?

- Exotics Search Strategy
 - Cover wide range of final states
 - Largely Model independent
 - Look for resonances
 - Look for any disagreement from expectations
 - Cover interesting new BSM models

How do you search for the UNKNOWN?

C. Issever, University of Oxford

You look everywhere for any deviation...

Basic Principles of Exotics Searches

- Identify your discriminant!
- Most important: Robust background estimation!

Biases ?

- Blind analysis ← not appropriate at LHC
- Control regions
- Trade-off between Signal and Background
 - Do NOT optimize towards a specific model
 - Selection cuts defined by triggers and background reduction.

Basic Principles of a Search

- You have a background estimate...what now?
- Check if data agrees with this expectation.
- If it does not agree...
 - Is the significance increasing with more data?
 - Look at time dependences...
 - Cross checks....
 - Discovery if significance is greater than 5 sigma.

If it does agree....

- How far did we explore the new physics phase?
- Use models to quantify the search reach.
- Useable for others (publish acceptance and efficiencies)

Comment to Search Result Selection in this Lecture

Show some typical search examples

"What is the impact of the newly discovered boson on Exotics searches at the LHC?"

8 TeV Results
Exotics Searches

Dilepton Resonance Search

Dilepton Resonance Search

- Models:
 - Little Higgs \rightarrow heavy gauge boson(s) (Z'/W')
 - •GUT-inspired theories \rightarrow heavy gauge boson(s) (Z'/W')
 - Strong and EWK force merged into one interaction
 - Described by higher symmetry group
 - Popular choices:
 - Left right symmetric models (SO(10))
 - E₆ symmetry models
 - Sequential Standard Model (SSM)
 - Z' carbon copy of Z⁰ just heavier
 - Z' decays into any SM lepton-antilepton pair
 - decay into gauge bosons is suppressed by hand
 - not gauge invariant, not very realistic but
 - reference model
 - Randall-Sundrum ED \rightarrow Kaluza-Klein graviton
 - $\begin{array}{l} \blacksquare Technicolor \rightarrow narrow \ technihadrons \\ C. \ lssever, \ University \ of \ Oxford \end{array}$

ATLAS-CONF-2013-017 PAS EXO-12-061

CMS Highest Dimuon Invariant Mass Event; 8 TeV

Proton-Proton Collisions

Luminosity

Single most important quantity

Drives ability to observe new rare processes

exi

- revolving frequency f = 11245.5/s
- n_{bunch} = 2808
- $N_p = 1.15 \times 10^{11}$ Protons/Bunch
- Area of beams: $4\pi\sigma_x\sigma_v$ ~40 µm

Rate of physics processes per unit time $\sim L$

$$N_{Obs} = \int Ldt * \varepsilon * \sigma_{process}$$
Cross section; given by
nature; predicted by theory
Efficiency; optimized by
experimentalists
$$Maximize N_{obs} \rightarrow max \varepsilon and L$$

Our data sample for 2012

Delivered Integrated L: 23.3 fb⁻¹ Recorded Integrated L: 21.7 fb⁻¹ $1b = 10^{-24} cm^2$ $1fb = 10^{-39} cm^2$

Rates of physics processes @ LHC

Interesting physics swamped by background

- Cross section for new physics:
 - ~10¹² times lower !!
- Need to filter → TRIGGER SYSTEMS
- Carefully decide what to record
- You do not have another chance

Compare this to rates of physics processes

Dilepton Resonance Search: Trigger Strategy

ATLAS

ee channel

- Diphoton trigger
- $E_T > 35$ GeV and $E_T > 25$ GeV
- µµ channel
- Single muon triggers
- E_T > 24 GeV or E_T > 36 GeV

CMS

ee channel

- Dielectron trigger
- Both clusters w $E_T > 33$ GeV

µµ channel

- single muon trigger
- E_T > 40 GeV

Compare this to rates of physics processes

CMS Di-Electron Event Zoomed into Inner Detector

Di-Electron Channel

ATLAS Barrel Liquid Argon Calorimeter

Accordion Sampling Layers

Selection for Di-Electron Channel

Problem: jets fake electrons Use isolation to reduce fakes

Electron Isolation I_{conesize}

	ATLAS	CMS			
e1	I ^{calo} _{0.2} <0.7%⋅E _T + 5 GeV	I ^{tracker} o 2<5 GeV	I ^{Calo} , ~3%·E _T		
e2	I ^{calo} _{0.2} <2.2%·E _T + 6 GeV	0.3	0.3 070 -1		

Acceptance x Efficiency after all Selections

ATLAS CMS Axε(m = 2 TeV) = **73%** Axε(m = 2.5 TeV) = **67%**

Di-Muon Channel

Dilepton Resonance Search:: µµ selections

ATLAS

- Single muon triggers
- p_T > 25 GeV
- **■** |η|<2.4
- Suppress cosmic rays
 - |d₀| < 0.2 mm
 - |z₀-z(vertex)|<1 mm</p>
- Suppress jets faking µ's
 - $\sum p_{T}(\Delta R < 0.3) < 5\% \cdot p_{T}$
- Require opposite charge

CMS

- Single muon trigger
- p_T > 45 GeV
- **|**η|<2.4
- Suppress cosmic rays
 |d₀| < 0.2 mm
 |z₀-z(vertex)|<24 cm
- Suppress jets faking µ's
 - $\sum p_{T}(\Delta R < 0.3) < 10\% \cdot p_{T}$
 - |z₀-z(vertex)|< 0.2mm</p>
- Require opposite charge

Very different

 $Ax\epsilon(m = 2 \text{ TeV}) = 46\%$ $Ax\epsilon(m = 2.5 \text{ TeV}) = 80\%$

Dilepton Resonance Search: Backgrounds ee

Dilepton Resonance Search: Backgrounds ee

Dilepton Resonance Search: Backgrounds µµ

(f) Dijets (without the external photon line), γ +jets

Dilepton Resonance Search: Backgrounds µµ

Heavy Resonances Search: 8 TeV Dileptons Backgrounds

- SM Drell-Yan: γ*/Z-> I⁺I⁻
 - shape taken from Monte Carlo
 - normalisation taken from Z peak in data
- t-tbar:
 - where tt goes to e+e-, mu+mu-
 - est. from MC, cross-checked in data
 - also includes Z->TT, WW, WZ
- Jet Background:
 - di-jet, W+jet events where the jets are misidentified as electrons/muons
- Cosmic Ray Background:
 - muons from cosmic rays
 - estimated <0.1 event after vertex and angular difference requirements

Dilepton Search: The Discriminant

ATLAS-CONF-2013-017 PAS EXO-12-061

Invariant mass reach of 1 - 2 TeV

Dilepton Resonance Search: Systematic Uncertainties

ATLAS-CONF-2013-017

Source	Dielectrons		Dimuons	
	Signal	Background	Signal	Background
Normalization	5%	NA	5%	NA
PDF variation	NA	15%	NA	15%
PDF choice	NA	17%	NA	17%
Scale	NA	-	NA	-
α_s	NA	4%	NA	4%
Electroweak corrections	NA	3%	NA	3%
Photon-induced corrections	NA	4%	NA	4%
Efficiency	-	-	6%	6%
Resolution	-	-	-	3% (7%)
W + jet and multi-jet background	NA	9%	NA	-
Diboson and ttbar extrapolation	NA	5%	NA	4%
Total	5%	26%	8%	25% (26%)

Heavy Resonances Search: 8 TeV Dileptons

m_{ee} [GeV]	110 - 200	200 - 400	400 - 800	800 - 1200	1200 - 3000	3000 - 4500
Z/γ^*	119000 ± 8000	13700 ± 900	1290 ± 80	68 ± 4	9.8 ± 1.1	0.008 ± 0.005
$t\overline{t}$	7000 ± 800	2400 ± 400	160 ± 60	2.5 ± 0.6	0.11 ± 0.04	< 0.001
Diboson	1830 ± 210	660 ± 160	93 ± 33	4.8 ± 0.8	0.79 ± 0.26	0.005 ± 0.004
Dijet, W + jet	3900 ± 800	1260 ± 310	230 ± 110	8.6 ± 2.4	0.9 ± 0.6	0.004 ± 0.006
Total	131000 ± 8000	18000 ± 1100	1780 ± 150	84 ± 5	11.6 ± 1.3	0.017 ± 0.009
Data	133131	18570	1827	98	10	0

ATLAS-CONF-2013-017

$m_{\mu\mu}$ [GeV]	110 - 200	200 - 400	400 - 800	800 - 1200	1200 - 3000	3000 - 4500
Z/γ^*	111000 ± 8000	11000 ± 1000	1000 ± 100	49 ± 5	7.3 ± 1.3	0.033 ± 0.029
$t\overline{t}$	5900 ± 900	1900 ± 400	140 ± 60	2.7 ± 0.7	0.16 ± 0.08	< 0.001
Diboson	1520 ± 190	520 ± 140	62 ± 26	2.8 ± 1.0	0.38 ± 0.28	0.002 ± 0.003
Total	118000 ± 8000	13300 ± 1100	1160 ± 120	55 ± 5	7.8 ± 1.3	0.035 ± 0.029
Data	118701	13349	1109	48	8	0

What do you do now?

- Observed numbers consistent with background???
- Many ways to do it
- One way e.g.:

$$P(n \ge n_{obs}) = 1 - f(n; s = 0; b) = 1 - \sum_{n=0}^{n_{obs}-1} \frac{b^n}{n!} e^{-b}$$

- Probability, assuming s = 0, to observe as many events or more for a given expected background amount, b.
- For 800 1200 GeV bin in μμ

Heavy Resonances Search: 8 TeV Dileptons

ATLAS-CONF-2013-017

m_{ee} [GeV]	110 - 200	200 - 400	400 - 800	800 - 1200	1200 - 3000	3000 - 4500
Z/γ^*	119000 ± 8000	13700 ± 900	1290 ± 80	68 ± 4	9.8 ± 1.1	0.008 ± 0.005
$t\overline{t}$	7000 ± 800	2400 ± 400	160 ± 60	2.5 ± 0.6	0.11 ± 0.04	< 0.001
Diboson	1830 ± 210	660 ± 160	93 ± 33	4.8 ± 0.8	0.79 ± 0.26	0.005 ± 0.004
Dijet, W + jet	3900 ± 800	1260 ± 310	230 ± 110	8.6 ± 2.4	0.9 ± 0.6	0.004 ± 0.006
Total	131000 ± 8000	18000 ± 1100	1780 ± 150	84 ± 5	11.6 ± 1.3	0.017 ± 0.009
Data	133131	18570	1827	98	10	0

Analysis: P(ee) = 18%

Analysis: $P(\mu\mu) = 98\%$

$m_{\mu\mu}$ [GeV]	110 - 200	200 - 400	400 - 800	800 - 1200	1200 - 3000	3000 - 4500
Z/γ^*	111000 ± 8000	11000 ± 1000	1000 ± 100	49 ± 5	7.3 ± 1.3	0.033 ± 0.029
tt	5900 ± 900	1900 ± 400	140 ± 60	2.7 ± 0.7	0.16 ± 0.08	< 0.001
Diboson	1520 ± 190	520 ± 140	62 ± 26	2.8 ± 1.0	0.38 ± 0.28	0.002 ± 0.003
Total	118000 ± 8000	13300 ± 1100	1160 ± 120	55 ± 5	7.8 ± 1.3	0.035 ± 0.029
Data	118701	13349	1109	48	8	0

No deviation from expectation found.

We did not find any deviation.....

- Quantify the sensitivity and reach of our analysis
- Again, many ways to do it....
 - "Religious" wars are being fought about this.....

Back of the envelope demonstration....to get the idea
n_{obs} = s + b

- We want an upper limit (bound on s) given we expect b background events and have observed n_{obs} events.
- Use Bayesian method with uniform prior density $\sum_{n=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{j$
- $\beta = \sum_{n=0}^{n_{obs}} (s^{up})^n e^{-s^{up}}/n!$ solve this numerical

n=s^{up}+b

- We ignore error on b....
- We ignore systematic errors

• $\beta = \sum_{n=0}^{n_{obs}} (s^{up})^n e^{-s^{up}} / n!$ solve this numerical

- Back to our example
 - 800 GeV < m_{µµ} < 1200 GeV</p>
 - We have observed n_{obs} = 48 events
 - We expect b=55 background events
 - Our Acceptance x Efficiency ~ 50%
 - We have analysed L = 20 fb-1 of data

C. Issever, University of Oxford

Let us compare with the published limit...

Let us compare with the published limit...

Let us compare with the published limit...

Limits for both channels combined

ATLAS

CMS

Let us discuss a bit the difference btw ATLAS/CMS

ATLAS

CMS

Signal Shapes and Parton Luminosities

ATLAS CMS Differences in the Limit Setting

ATLAS

- Uses signal templates for limits
- Loss of sensitivity at high masses
- Parton luminosities
- Upper cross section limits model specific

CMS

- Uses narrow resonance
 - For cross section upper limit
 - Cross section upper limits less model dependent
 - Give outside world description of what was done
- Take signal shapes within +-40% of the mass peak into account to compute theory curves
- Not sensitive to parton luminosities
- generic resonance search

KK Graviton narrow resonance Obs limit does not go up

Ditaus (fully hadronic)

new

Lepton universality not necessary for these new gauge bosons $\rightarrow \text{Essential to search in ALL decay modes} \quad 19.5 \text{ fb}^{-1}$

Ditau 95% Credibility Limits

ATLAS-CONF-2013-066

new

W' → Iv in 8 TeV Data

Many models possible

- right-handed W' bosons with standard-model couplings
- Ieft-handed W' bosons including interference
- Kaluza-Klein W'_{KK}-states in split-UED
- Excited chiral boson (W*)
- Event Selection and Backgrounds
 - back-to-back isolated lepton and E^{miss}
 - Plot transverse mass of lv system
 - backgrounds from W, QCD, tt+single t, DY, VV from data

PAS EXO12060

C. Issever, Universit $M_{\rm T} = \sqrt{2 \cdot p_{\rm T}^{\ell} \cdot E_{\rm T}^{\rm miss} \cdot (1 - \cos \Delta \phi_{\ell,\nu})}$ 78

$W' \rightarrow Iv$ in 8 TeV Data

М(W'ssм) 95% CL	Observed
ATLAS e+µ, 2011,4.7fb ⁻¹	> 2.55 TeV
CMS e+µ, 2012, 20fb ⁻¹	> 3.35 TeV

M(W'_{SSM}) > 3.35 TeV 95% CL

[ATLAS hep-ex 1209.4446] CMS PAS EXO-12-060

Dijet Event Display with m_{inv} = 4.69 TeV

- Strong gravity, excited quarks
- Selections
 - Two anti-kt 0.6 jets
 - p^j_T>150 GeV && m_{jj}>1 TeV
 - |y|<2.8 && dijet CM rapidity |y*| < 0.6, y*=±0.5*(y1-y2)</p>
- Look for resonance above phenomenological fit of data

$$f(x) = p_1 (1 - x)^{p_2} x^{p_3 + p_4 \ln x}$$
$$x = m_{ii} / \sqrt{s}$$

ATLAS-CONF-2012-148

C. Issever, University of Oxford

Probing quark structure ~ 5 TeV

Good agreement btw data and fit.

- Global χ^2 /NDF=15.5/18 = 0.86 → p-value = 0.61
- good agreement btw data and fit
- Bump Hunter

ATLAS-CONF-2012-148

CMS-PAS-EXO-12-059

- Trigger:
 - L1: single jet trigger
 - HLT:
 - H_T>650 GeV && m_{ii}>750 GeV
- Jets with R=0.5
- p_T > 30 GeV, |η| < 2.5</p>
- combines 0.5 jets into "wide jets" with R = 1.1
- two wide jets satisfy
 - |η_{jj}| < 1.3</p>
 - <mark>-</mark> |η| < 2.5
 - M_{jj}>890 GeV

20.3 fb⁻¹ Dijet resonance + W/Z→Iv/II

ATLAS-CONF-2013-074

- Very interesting final state
 - Sensitive to VH
 - Extradimension
 - Technicolor, little Higgs

Selections

 $p_{T}^{IV/II} > 50 \text{ GeV}$

≥2 jets with p_T> 30 GeV

 $|\Delta \eta_{ii}| < 1.75, |\Delta \phi_{ii}| > 1.6$

Systematic Uncertainties

Backgrounds

- Estimated with MC
 - W/Z+jets dominant
 - ttbar
 - single-top
 - Diboson
- Multijet estimate w data

Source	$\Delta\sigma/\sigma\%$ for Wjj	$\Delta\sigma/\sigma\%$ for Zjj
W/Z+jets normalization	±5	±16
W/Z jets shape variation	± 2	± 4
Multijet shape and normalization	± 5	N/A
Top normalization	± 4	±7
Top Modeling	± 3	± 4
Jet energy scale (all samples)	± 10	±11
Jet energy resolution (all samples)	± 2	± 3
Lepton reconstruction (all samples)	± 1	± 3
PDF (signal)	±5	± 6
$\frac{PDF(top)}{T}$ m(π) = 180 G	$ev = \frac{\pm 6}{2}$	±3

C. Issever, University of Oxford

nev

m_{ii} distributions for Z/W+2 jets

95% CL upper σ XBR on LSTC Technipion + Z/W production

LSTC = Low Scale TechniColor

$$\begin{split} &\mathrm{d}\hat{\sigma}/\mathrm{d}(\cos\hat{\theta}) \propto \sin^{-4}(\hat{\theta}/2) \quad \text{t-channel Spin-1 exchange} \\ &\chi = \frac{1+|\cos\hat{\theta}|}{1-|\cos\hat{\theta}|} \sim \frac{1}{1-|\cos\hat{\theta}|} \propto \frac{\hat{s}}{\hat{t}} \\ &\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\chi} \propto \frac{\alpha_s^2}{\hat{s}} \quad (\hat{s} \text{ fixed}) \quad \hat{s} = m_{jj} \quad \text{Constant in } \chi \text{ for fixed } m_{jj} \end{split}$$

C. Issever, University of Oxford

C. Issever, University of Oxford

arXiv:1210.1718

arXiv:1210.1718

$$F_{\chi}(m_{jj}) \equiv \frac{\mathrm{d}N_{\mathrm{central}}/\mathrm{d}m_{jj}}{\mathrm{d}N_{\mathrm{total}}/\mathrm{d}m_{jj}},$$

Models and Limits:

 Quark contact interaction (quark compositeness)

Λ>7.6 TeV (7.7 TeV)

Quantum Black holes M_D>4.1 TeV (4.2 TeV) n=6

New Physics Searches with high-pt top quarks

- Top quark properties
 - Highly coupled to EWK symmetry breaking
 - LHC is a top factory
- Huge mass of top
 - Bizarre
 - New physics
- Heavy new particles
 - Couple strongly to top
 - Produce boosted tops
- New techniques for top ID

Boosted Regime

Boosted Top Event Candidate with m_{ttbar}=2.5 TeV

Top Reconstruction @ LHC: 3 Regimes

Jet Substructure: jet mass

Use jet substructure to "tag" boosted tops

Jet Substructure: Splitting Scales

min $p_T x dR =$

M_{iet} / 2

d₁₂ [GeV

Fixed Cone Size Lepton Isolation

Fixed Cone Size Isolation

Variable Isolation Cone

Efficiency Comparisons

(b) 1.0 TeV Z'

Efficiency Comparisons

(d) 2.0 TeV Z'

Heavy Resonances Search: ttbar

ATLAS-CONF-2013-052

- Lepton+jets channel
- Models: e.g. bulk-RS (esp. KK gluons) and Leptophobic Z'
 - Large Branching Ratio to top-antitop
- Combining resolved and boosted reconstructions
- Taking full advantage of boosted techniques

Heavy Resonances Search: Object Selection

Jets

- Small jets: pT > 25 GeV && |η|<2.5</p>
- Large jets: pT > 300 GeV && |η| < 2.0</p>
- Require that at least one of the small jets is b-tagged

Electrons

- pT > 25 GeV && |η|<1.37, 1.52<|η|<2.47</p>
- Mini Isolation: I_{mini} < 0.05 E_T
- z-impact parameter within 2mm of PV

Muons

- pT > 25 GeV && |η|<2.5</p>
- I_{mini} < 0.05 pT</p>
- z-impact parameter within 2mm of PV

Selections Continued

- Optimized for high-pt tops && reduce ttbar bkg
- High-pt single electron or muon trigger
- >1 primary vertex with \ge 5 tracks of p_T > 0.4 GeV
- Electron channel

• $ME_T > 30 \text{ GeV \& } m_T = \sqrt{2p_T M E_T (1 - cos \Delta \phi)} > 30 \text{ GeV}$

Muon channel

ME_T > 20 GeV && ME_T+m_T > 60 GeV
Resolved Selection

 \geq 4 small jets, j, with p_T> 25 GeV, |η|<2.5

Merged Selection

3 small jets, j, with p_T > 25 GeV, $|\eta|$ <2.5

Boosted Selection

Geometrical Acceptance + Selection Efficiencies

112

Reconstructed top mass distributions

Discriminant distribution m_{ttbar}

 $m_{t\bar{t}}$ resolved + boosted in e+jets and μ +jets

Heavy Resonances Search: Ttbar

Heavy Resonance Search: ttbar hadronic channel

Heavy Quarks

C. Issever, University of Oxford

Fine-Tuning Problem in Electromagnetism

 $r_e \lesssim 10^{-17} \ {
m cm} \implies \Delta {
m E} \gtrsim 10 \ {
m GeV}$

0.511 = -9999.489 + 10000.000 MeV

Fine tuning!

Murayama hep-ph/9410285

C. Issever, University of Oxford

Fine-Tuning Problem in Electromagnetism

- Picture not complete:
 - Positron cancels 1/r_e term
 - New symmetry:
 - particle/anti-particle

$$(m_e c^2)_{\text{observed}} = (m_e c^2)_{\text{bare}} \left[1 + \frac{3\alpha}{4\pi} \log \frac{\hbar}{m_e c r_e} \right]$$

Correction to bare mass becomes small

Supersymmetry

Same problem with Higgs

125 GeV = (huge number)-(huge number) even more fine tuned!

Composite Higgs

But there is another way....look at QCD

Pion mass is not divergent.

Why?

It is a composite particle!

Assume Higgs is a composite particle

- Changes couplings
- Introduces new partners to top quarks
- Vector-like quarks...
 - (both chiralities same under SU(2)xU(1)
- Solves fine-tuning problem....

C. Issever, University of Oxford

- 4th generation would significantly enhance Higgs production cross section
 - (almost) excluded by observed Higgs crosssection
 - t't' \rightarrow WbWb (100%): just like t-tbar but heavier
 - b'b' \rightarrow WtWt (100%): just like ttbar but messier
- Beyond 4th generation: Vector-Like Quarks in Composite Higgs theories
 - More diverse phenomenology
 - T': Decays to Wb, Zt, Ht
 - B': Decays to Wt, Zb, Hb
- Loose constraints on CKM4 \rightarrow decays to light quarks possible!

122

- 4th generation would significantly enhance Higgs production cross section
 - (almost) excluded by observed Higgs crosssection
 - t't' \rightarrow WbWb (100%): just like t-tbar but heavier
 - b'b' \rightarrow WtWt (100%): just like ttbar but messier
- Beyond 4th generation: **Vector-Like Quarks** in Composite Higgs theories
 - More diverse phenomenology
 - T': Decays to Wb, Zt, Ht
 - B': Decays to Wt, Zb, Hb
- Loose constraints on CKM4 → decays to light quarks possible!

$T \longrightarrow H t$

ATLAS-CONF-2013-018

C. Issever, University of Oxford

Complex-conjugate decay modes are implicit

Complex-conjugate decay modes are implicit

Complex-conjugate decay modes are implicit

Discriminant Variable H_T

$$H_{T} = \sum_{Scalar Sum} P_{T,lepton} + E_{T,miss} + P_{T,jets}$$

Discriminant Variable H_T

Discriminant Variable H_T

Exlusion Limits for Vector Like T Quark

Exlusion Limits for Vector-Like T Quark

Exlusion Limits for Vector Like B Quark

Model independent approach

<u>1210.4538</u>

Limit presented in terms of fiducial cross-section limit

- σ^{fid} is (almost) model-independent
- Can turn σ^{fid} into σ^{total} with generator-level information only
- Caveat: not exactly model-independent \rightarrow must be conservative

	Electron requirement	Muon requirement	
Leading lepton $p_{\rm T}$	$p_{\rm T} > 25 {\rm ~GeV}$	$p_{\rm T} > 20 {\rm ~GeV}$	
Sub-leading lepton $p_{\rm T}$	$p_{\rm T} > 20 {\rm ~GeV}$	$p_{\rm T} > 20 {\rm ~GeV}$	
Lepton η	$ \eta < 1.37$ or $1.52 < \eta < 2.47$	$ \eta < 2.5$	
Isolation	$m^{\text{cone}0.3}/mm < 0.1$	$p_{\rm T}^{\rm cone0.4}/p_{\rm T} < 0.06$ and	
Isolation	$p_{\rm T}$ / $p_{\rm T}$ < 0.1	$p_{\rm T}^{\rm cone0.4} < 4~{\rm GeV} + 0.02 \times p_{\rm T}$	136
	Leading lepton $p_{\rm T}$ Sub-leading lepton $p_{\rm T}$ Lepton η Isolation	Electron requirementLeading lepton p_T $p_T > 25 \text{ GeV}$ Sub-leading lepton p_T $p_T > 20 \text{ GeV}$ Lepton η $ \eta < 1.37 \text{ or } 1.52 < \eta < 2.47$ Isolation $p_T^{\text{cone0.3}}/p_T < 0.1$	Electron requirementMuon requirementLeading lepton $p_{\rm T}$ $p_{\rm T} > 25 \text{ GeV}$ $p_{\rm T} > 20 \text{ GeV}$ Sub-leading lepton $p_{\rm T}$ $p_{\rm T} > 20 \text{ GeV}$ $p_{\rm T} > 20 \text{ GeV}$ Lepton η $ \eta < 1.37 \text{ or } 1.52 < \eta < 2.47$ $ \eta < 2.5$ Isolation $p_{\rm T}^{\rm cone0.3}/p_{\rm T} < 0.1$ $p_{\rm T}^{\rm cone0.4}/p_{\rm T} < 0.06 \text{ and}$

<u>1210.4538</u>

<u>1210.4538</u>

95% upper limits			Mass	е	е	e	μ	μ	ιμ	
1.7 fb and 64 fb				exp	obs	exp	obs	exp	obs	
				Mass range	expected e^{\pm}	e^{\pm}	5% C.L. up expected e^{\pm}	per limit [f] observed μ^{\pm}	$\begin{bmatrix} expected \\ \mu^{\pm} \end{bmatrix}$	observed μ^{\pm}
				$m>15~{\rm GeV}$	46^{+15}_{-12}	42	56^{+23}_{-15}	64	$24.0^{+8.9}_{-6.0}$	29.8
Fiducial cross section upper limits			$m>100~{\rm GeV}$	$24.1^{+8.9}_{-6.2}$	23.4	$23.0^{+9.1}_{-6.7}$	31.2	$12.2^{+4.5}_{-3.0}$	15.0	
		$m > 200 { m ~GeV}$	$8.8^{+3.4}_{-2.1}$	7.5	$8.4^{+3.4}_{-1.7}$	9.8	$4.3^{+1.8}_{-1.1}$	6.7		
			$m > 300 { m ~GeV}$	$4.5^{+1.8}_{-1.3}$	3.9	$4.1^{+1.8}_{-0.9}$	4.6	$2.4^{+0.9}_{-0.7}$	2.6	
				$m > 400 { m ~GeV}$	$2.9^{+1.1}_{-0.8}$	2.4	$3.0^{+1.0}_{-0.8}$	3.1	$1.7^{+0.6}_{-0.5}$	1.7
-				e^+e^+		$e^+\mu^+$		$\mu^+\mu^+$		
	e^-e^-			$m > 15 { m ~GeV}$	$29.1^{+10.2}_{-8.6}$	22.8	$34.9^{+12.2}_{-8.6}$	34.1	$15.0^{+6.1}_{-3.3}$	15.2
	10.0			m > 100 GeV	$16.1^{+5.9}_{-4.3}$	12.0	$15.4^{+5.9}_{-4.1}$	18.0	$8.4^{+3.2}_{-2.4}$	7.9
$m > 15 { m GeV}$	$23.2^{+8.6}_{-5.8}$	25.7		m > 200 GeV	$7.0^{+2.9}_{-2.2}$	6.1	$6.6^{+3.5}_{-1.8}$	8.8	$3.5^{+1.6}_{-0.7}$	4.3
> 100 CL-V	$m > 100 \text{ GeV}$ $12.0^{+5.3}_{-2.8}$ 18.7	10 7		m > 300 GeV	3.7 - 1.0 3.2 + 1.1	2.9	$3.2_{-0.9}$ $2.4^{+0.9}$	0.2 0.5	$2.0_{-0.5}$ 1 5 ^{+0.6}	1.8
m > 100 GeV		18.7		<i>m ></i> 400 Gev	2.0-0.6	1.1	2.4-0.6	2.0	1.0_0.3	1.0
$m > 200 \text{ GeV}$ $4.9^{+1.9}_{-1.2}$ 4.0	4.0		m > 15 GeV	93 9+8.6	е 25.7	26 2+10.6	μ 34.4	μ 19.1+4.5	μ 18.5	
	4.0		m > 10 GeV m > 100 GeV	120.2-5.8 $120^{+5.3}$	18.7	20.2 - 7.6 11 5 ^{+4.2}	16.0	$6.0^{+2.3}$	10.0	
$m > 300 \text{ GeV}$ $2.9^{+1.0}_{-0.6}$ 2.7	97		m > 100 GeV m > 200 GeV	$49^{+1.9}$	4.0	$46^{+2.1}$	4.5	$2.7^{+1.1}_{-1.9}$	4 4	
	2.1		m > 200 GeV m > 300 GeV	$2.9^{+1.0}$	2.7	$2.7^{+1.1}_{-1.2}$	3.5	$1.5^{+0.8}_{-0.7}$	1.7	
$m > 400 { m ~GeV}$	$1.8^{+0.8}_{-0.4}$	2.3		m > 400 GeV	$1.8^{+0.8}_{-0.4}$	2.3	$2.3^{+0.8}_{-0.5}$	2.5	$1.2^{+0.4}_{-0.0}$	1.2
		U					-			

Possible Models

- Ieft-right symmetric models
- Higgs triplet models
- Iittle Higgs model
- fourth-family quarks
- supersymmetry
- universal extra dimensions

Acceptances: 43% - 65 %

Inclusive Same-Sign Dilepton Search: H++/-- Limits

- Models explaining non-zero neutrino masses predict H^{++/--}
 - e.g. minimal type II seesaw model
 - additional scalar field

■ triplet (under SU(2)_L with Y=2): H^{++/--}, H^{+/-}, H⁰

pair production

associate production

Signature: same-sign leptons

C. Issever, University of Oxford

arXiv:1210.5070

Doubly Charged Higgs Limits

arXiv:1210.5070

Used e.g. limits on doubly charged Higgs

C. Issever, University of Oxford

Doubly Charged Higgs Limits

Example of more optimized search

arXiv:1207.2666

Includes also τ-channel and associate production.

Combined ττ: M(H^{++/--}) > 198 GeV

General 3 Charged Lepton (e/μ/τ) Search

ATLAS-CONF-2013-070

- complements previous searches model independent
- 4 inclusive signal regions

20.3 fb⁻¹

Flavor Chan.	Z Chan.	Expected			Observed
$\geq 3e/\mu$	off-Z	$260 \pm$	$10 \pm$	40	280
$2e/\mu + \ge 1\tau_{had}$	off-Z	$1200 \pm$	$10 \pm$	290	1193
$\geq 3e/\mu$	on-Z	$3100 \pm$	$40 \pm$	500	3199
$2e/\mu + \ge 1\tau_{had}$	on-Z	$17000 \pm$	$40 \pm$	4000	14733

100 exclusive signal regions

- H_T^{leptons}, H_Tjets
- Min p_T^I
- $m_{eff} = |H_t^{jets}| + |E_t^{miss}| + |p_T|$
- for on-Z: m_T^W
- number of b-jets

Selections

2 isolated electrons or muons, p_{T1} > 26 GeV, p_{T2}>15 GeV

 3^{rd} lepton: e or μ or τ_{had} p_T(e, μ)>15 GeV, p_T^{vis}(τ_{had})>20 GeV

akt4 jets with $p_T > 30 \text{ GeV}$
General 3 Charged Lepton (e/μ/τ) Search ATLAS-CONF-2013-070

General 3 Charged Lepton (e/μ/τ) Search

ATLAS-CONF-2013-070

Mono Jet Event Display

M. Fedderke

M. Fedderke

DM Interpretations of Mono-Object Analyses

Idea: Effective Theory

Johanna Gramling

Heavy particle mediating interaction btw DM and SM

too heavy to be on-shell → can be integrated out
 interaction treated as contact interaction!

Like Fermi's Theory of Beta Decay

Advantage of Effective Theory

arXiv:1008.1783

- Model depends only on a few parameters
 - dark matter mass, **m**_x
 - Cut-off scale ∧ or M_{*}
 - much easier than e.g. a full SUSY model
- Allows easy comparison to direct or indirect DM detection experiments
- DM
 - Fermion: Dirac or Majorana
 - Scalar: Complex or Real

Dark Matter Production at a Collider

Dark Matter (DM) Production at LHC $pp \rightarrow \chi \chi + X$

Effective interactions coupling DM to SM quarks or gluons

	Name	Initial state	Type	Operator
4491v2	D1	qq	scalar	$\frac{m_q}{M_\star^3} \bar{\chi} \chi \bar{q} q$
1210 <u>.</u> 4	D5	qq	vector	$\frac{1}{M_\star^2} \bar{\chi} \gamma^\mu \chi \bar{q} \gamma_\mu q$
	D8	qq	axial-vector	$\frac{1}{M_\star^2} \bar{\chi} \gamma^\mu \gamma^5 \chi \bar{q} \gamma_\mu \gamma^5 q$
	D9	qq	tensor	$\frac{1}{M_\star^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$
	D11	gg	scalar	$\frac{1}{4M_{\star}^3} \bar{\chi} \chi \alpha_s (G^a_{\mu\nu})^2$

characteristic set

Dark Matter (DM) Production at LHC $pp \rightarrow \chi \chi + X$

Effective interactions coupling DM to SM quarks or gluons

	Name	Initial state	Type	Operator
4491v2	D1	qq	scalar	$\frac{m_q}{M_\star^3} \bar{\chi} \chi \bar{q} q$
1210.4	D5	qq	vector	$\frac{1}{M_\star^2} \bar{\chi} \gamma^\mu \chi \bar{q} \gamma_\mu q$
	I rela	ted to spin-ind	ependent DM	-nucleon interactions
	D9	qq	tensor	$\frac{1}{M_{\star}^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$
	D11	gg	scalar	$\frac{1}{4M_{\star}^3}\bar{\chi}\chi\alpha_s(G^a_{\mu\nu})^2$

characteristic set

Dark Matter (DM) Production at LHC $pp \rightarrow \chi \chi + X$

Effective interactions coupling DM to SM quarks or gluons

Name	Initial state	Type	Operator
D1	qq	scalar	$rac{m_q}{M^3}ar\chi\chiar q q$
rel	ated to spin d	ependent DM-	nucleon interactions
D5	qq	vector	$\frac{1}{M_{\star}^2}\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$
D8	qq	axial-vector	$\frac{1}{M_\star^2} \bar{\chi} \gamma^\mu \gamma^5 \chi \bar{q} \gamma_\mu \gamma^5 q$
D9	qq	tensor	$\frac{1}{M_{\star}^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$
D11	gg	scalar	$\frac{1}{4M_\star^3} \bar{\chi} \chi \alpha_s (G^a_{\mu\nu})^2$

1210.4491v2

Conditions of EFT

1. $g_q, g_\chi < 4\pi \rightarrow \frac{m_M}{\Lambda \pi} < \Lambda$ (to stay in perturbative regime) 2. $m_M > m_{\chi}$ (M can not be produced, but χ can) $\Lambda > \frac{m_M}{4\pi} > \frac{m_{\chi}}{4\pi}$ Johanna Gramling **3.** $m_M > Q_{TR}$ $\Lambda > \frac{m_M}{4\pi} > \frac{Q_{TR}}{4\pi}$ **4.** Q_{TR} > 2m_y (DM pair-produced on-shell)

Combining 3 & 4 gives stronger constraint than 2!

$$\Lambda > \frac{Q_{TR}}{4\pi} > \frac{2m_{\chi}}{4\pi}$$

Spin Independent Limits on Λ

Intensive Discussion about how to interpret Mono-X analyses

- G. Busonia, A. De Simonea, E. Morgantec, A. Riotto
 - "On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC", arXiv:1307.2253v1
 - Derive stronger bounds than currently used by LHC experiments
- New models:
 - A. DiFranzo, K. I. Nagao, A. Rajaraman, T.M.P. Tait,
 - Simplified Models for Dark Matter Interacting with Quarks", arXiv:1308.2679v1
 - S. Chang, R. Edezhath, J. Hutchinson, and M. Luty,

"Effective WIMPs", arXiv:1307.8120v1

Yang Bai and Joshua Berger,

"Fermion Portal Dark Matter", arXiv:1308.0612v2 C. Issever, University of Oxford

Discussion on Validity continued....

- See recent workshop in Chicago
 - Dark Matter at the LHC, 18.09-21.09.2013
 - ATLAS and CMS mono-object teams met with theorists
 - Expect for Run2 improved presentation of limits

Coming back to CMS Mono-Jet Search

EXO-12-048 PAS

Selections

- ≥1 good vertex
- > 20% E_{iet} from charged hadrons
- <70% E_{iet} from neutral hadrons or photons
 - $p_T(jet1) > 110 \text{ GeV \& } |\eta_{jet1}| < 2.4$

no other jet with p_T >30GeV in $|\eta| < 4.5$ except $\Delta \phi(j1,j2) < 2.5$

no isolated leptons

Selection Variable Distributions

Background: Z(vv)+jet

- Use data to estimate background
- Select Z(µµ)+jet applying all selections BUT lepton veto
- 2 μ with p_T > 20 GeV && |η|<2.1</p>
- \ge 1 isolated μ
- 60 GeV < m_{µµ} < 120 GeV</p>

Distribution of $Z(\mu\mu)$ + jet Sample

Background: Z(vv)+jet

- Use data to estimate background
- Select Z(µµ)+jet applying all selections BUT lepton veto
- 2 μ with p_T > 20 GeV && |η|<2.1</p>
- \ge 1 isolated μ
- 60 GeV < m_{µµ} < 120 GeV</p>

$$N(Z(\nu\nu)) = \frac{N^{\text{obs}} - N^{\text{bgd}}}{A \times \epsilon} \cdot R\left(\frac{Z(\nu\nu)}{Z(\mu\mu)}\right)$$

Missing E_T Distribution after all Selections

Spin Dependent Limits on Λ

Darkmatter-Nucleon Cross Section Limit

170

DM-Nucleon cross section upper limits

Boosted Mono W/Z Production 20.3 fb⁻¹

1st time:

ATLAS-CONF-2013-073

- Hadronically decaying W/Z's
- Jet Substructure techniques
 - Cambridge-Aachen 1.2 jets
 - Probe momentum balance
 - \mathbf{I} $\sqrt{y} = \min(p_{T1}, p_{T2}) \Delta R/m_{jet}$

Backgrounds

- Z \rightarrow vv + jet and W/Z \rightarrow lv/ll + jet
 - Use data control regions
- Diboson, ttbar, single top
 - Use simulation
- Multijet negligible

Signal Samples

Name	Operator	Coefficient
D9	$\overline{\chi} \sigma^{\mu\nu} \chi \overline{q} \sigma_{\mu\nu} q$	$1/{M_{*}}^{2}$
D5	χγ ^μ χqγ _μ q	$1/{M_{*}}^{2}$
D1	<u></u>	m_q/M_*^3
C1	χ [†] χ <u>ą</u>	$m_q/{M_*}^2$

Interference btw diagrams

- $C(u\chi)=C(d\chi)$, C=coupling
 - destructive
 - W's p_T low
- C(uχ) = -C(dχ)
 - Constructive
 - W's p_T high
- D5 signal generated
 - C(ux)=C(dx)
 - C(ux)=-C(dx)

Boosted Mono W/Z Production

Exclusion limits at 90% CL using shape of m_{jet}

Process	$E_{\rm T}^{\rm miss} > 350 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 500 { m GeV}$
$Z \to \nu \bar{\nu}$	400^{+39}_{-34}	54^{+8}_{-10}
$W \to \ell^{\pm} \nu, Z \to \ell^{\pm} \ell^{\mp}$	210^{+20}_{-18}	22_{-5}^{+4}
WW, WZ, ZZ	57^{+11}_{-8}	$9.1^{+1.3}_{-1.1}$
$t\bar{t}$, single t	39_{-4}^{+10}	$3.7^{+1.7}_{-1.3}$
Total	710_{-38}^{+48}	89^{+9}_{-12}
Data	705	89

Limits on Parameters of effective DM Model

Regions below the lines excluded

m_χ [GeV] 175

Limits on Nucleon-x Cross Section

Limits on Nucleon-x Cross Section

Graviton Production in Extra Dimensions

Extra Dimensions are not a new idea!

- 1920's Kaluza&Klein unify electromagnetism with gravity
- 1970 String Theory is born
- 1971 SUSY enters the stage
- 1974 Gravitons "pop out" of string theory

Extra Dimension (ED) Models

ED may explain complexity of particle physicsWhere are they?

Gravity is escaping into the extra dimensions.

nttp://www.particleadventure.org/frameless/extra_dim.html
Gravity in Extra Dimension

At small distances gravity can be very strong, up to 10³⁸ times stronger:

$$\mathbf{F} \approx \frac{\mathbf{G}_{\mathrm{D}}}{\mathbf{r}^{\mathrm{n+2}}} \qquad \qquad \mathbf{G}_{\mathrm{D}} = \mathbf{G}\mathbf{L}^{\mathrm{n}} \qquad \qquad \mathbf{M}_{\mathrm{D}}^{\mathrm{n+2}} =$$

$$F \approx \frac{G_{D}}{L^{n} \cdot r^{2}} \approx \frac{G}{r^{2}}$$

G is "diluted" strength of gravity in our 3-dim. space.

G_D is the (4+n)-dimensional Newton gravity constant.

04.02.2009

C. Issever, University of Oxford

(2π)ⁿ

 $8\pi G_{n}$

Other Predictions of Extra Dimension Models

KK particles

C. Issever, University of Oxford

Exclusion Limits on M_D from CMS

ATLAS Exotics Summary

Limits pushed into 1 TeV regime

We are at the beginning....

Up to now, small parton luminosity at high masses Large discovery potential: 13 TeV

Conclusion

- Role of models in Exotics
 - Models are used map our search reach
 - They give us some guidance where to look
 - But, Exotics searches are mainly model-independent.
- Exotics searches coverage
 - Vast range of final states
 - Vast range of models
 - Searches with H boson in final state added
- Searches will continue
 - Continue exploration beyond TeV regimes
 - Push σ-limits at low invariant masses down.

Literature for Further Reading

- Technicolor and related models
 - http://dx.doi.org/10.1016/0370-1573(81)90173-3
 - http://dx.doi.org/10.1103/RevModPhys.55.449
 - http://inspirehep.net/record/205523?In=en
 - http://dx.doi.org/10.1016/0146-6410(83)90005-4
- Extra Dimensions
 - http://arxiv.org/pdf/hep-ph/0302189.pdf
 - http://arxiv.org/pdf/gr-qc/0312059.pdf
- Exotics new particles
 - http://dx.doi.org/10.1016/0370-1573(89)90071-9
 - http://dx.doi.org/10.1142/S0217751X88000035
- GUT: <u>http://dx.doi.org/10.1016/0370-1573(81)90059-4</u>